
10th International Workshop on Functional and Logic Programming
and 16th Workshop on Logic Programming (WFLP’01)

Kiel, Germany, Sept. 2001, pages 17-30.

Improving the Efficiency of
Non-Deterministic Computations

Sergio Antoy1 Pascual Julián Iranzo2,3 Bart Massey1

Computer Science Department
Portland State University

Portland, Oregon
{antoy,pjulian,bart}@cs.pdx.edu

Abstract. Non-deterministic computations greatly enhance the expres-
sive power of functional logic programs, but are often computationally
expensive. We analyze two programming techniques that improve the
time and memory efficiency of some non-deterministic computations.
These techniques rely on the introduction of a new symbol into the sig-
nature of a program. In one technique this symbol is a polymorphic
defined operation, in the other an overloaded constructor. Our program-
ming techniques may save execution time by reducing the number of
steps of a computation, as well as memory occupation, by reducing the
number of terms constructed by a computation. We show how to apply
our techniques using some examples, and informally reason about their
effects.

1 Introduction

Functional logic programming studies the design and implementation of pro-
gramming languages that integrate both functional programming and logic pro-
gramming into a homogeneous paradigm. In recent years, it has become increas-
ingly evident that non-determinism is an essential feature of these integrated
languages. Non-determinism is a cornerstone of logic programming. It allows
problem solving using programs that are textually shorter, easier to understand
and maintain, and more declarative than their deterministic counterparts.

In a functional logic programming language, non-deterministic computations
are modeled by the defined operations of a constructor-based left linear condi-
tional rewrite system. With respect to logic computations, which are based on
resolution, functional logic computations are nested and therefore can be lazily
executed. The combination of these features makes functional logic languages
both more expressive than functional languages and more efficient than tradi-
tional logic languages.
1 Supported in part by the NSF grant INT-9981317.
2 Supported by the Spanish Knowledge Society Foundation.
3 Permanent Address: Univ. Castilla La-Mancha, Spain, pjulian@inf-cr.uclm.es.

A typical approach to the definition of non-deterministic computations is by
means of the defined operations of a constructor based non-confluent rewrite
system. The following emblematic example [8, Ex. 2] defines an operation, coin,
that non-deterministically returns either zero or one. Natural numbers, repre-
sented in Peano notation, are defined by the datatype (or sort) nat.

datatype nat = 0 | s nat
coin = 0
coin = s 0

Rewrite systems with operations such as coin are non-confluent. A computation
in these rewrite systems may have distinct normal forms and/or non terminate.
To understand non-determinism in the context of a computation, consider the
following operations:

add 0 Y = Y
add (s X) Y = s (add X Y)
positive 0 = false
positive (s -) = true

The evaluation of a term such as positive (add coin 0) requires the eval-
uation of subterm coin. This subterm has two replacements, i.e., 0 and s 0.
Each replacement leads to a different final result. The choice between these two
replacements is non-deterministic. Assuming that non-determinism is appropri-
ately used in the program where the evaluation occurs, there is no feasible means
of deciding which replacement should be chosen at the time coin is evaluated.
Therefore, evaluation under both replacements must be considered.

To ensure operational completeness, all the possible replacements of a non-
deterministic computation must be executed fairly. In fact, if one replacement
is executed only after the computation of another replacement is completed,
the second replacement will never be executed if the computation of the first
replacement does not terminate. Thus, continuing with our example, to com-
pute positive (add coin 0) one must compute fairly and independently both
positive (add 0 0) and positive (add (s 0) 0).

This approach, which we refer to as fair independent computations, captures
the intended semantics, but clearly it is computationally costly. In some situa-
tions the cost of fair independent computations might be avoided. For example,
define a “bigger” variant of coin:

bigger = s 0
bigger = s (s 0)

and consider again the previous example, but invoking bigger instead of coin.
The evaluation of positive (add bigger 0), which will be shown in its entirety
later, may be carried on, as in the previous example, using fair independent
computations. However, this is not necessary. The computation has a single result
that may be obtained using only deterministic choices. Avoiding fair independent
computations saves execution time, memory occupation, and the duplication of
the result.

In this paper, we discuss two programming techniques that have been consid-
ered within a project aiming at the implementation of a back-end for a wide class
of functional logic languages [7]. In some cases, these techniques have the po-

18

tential to offer substantial improvements. In other cases, they tend to consume
slightly more memory, but without a substantial slowdown. We are currently
working to assess whether either or both techniques should be deployed in the
back-end: this document is a report of our preliminary findings.

Section 2 discusses the usefulness of non-deterministic computations in func-
tional logic programs and how they are related to our work. Section 3 justifies
our overall approach to measuring the efficiency of a computation. Section 4
presents the programming techniques that are the focus of our work. In some
cases, these techniques reduce the computing time and/or the memory consump-
tion attributed to non-deterministic computations. Section 5 discusses, both the-
oretically and experimentally, the effects of our techniques on some examples.
Section 6 contains our conclusions.

2 Non-Determinism

Non-determinism is an essential feature of logic programming, perhaps the single
most important reason for its acceptance and success. Some early proposals
of functional logic programming languages neglected this aspect. Programs in
these early languages were modeled by weakly orthogonal rewrite systems. In
these languages, the results of non-deterministic computations are obtained by
instantiating the arguments of a predicate. A serious drawback of this situation is
that a non-deterministic computation cannot be functionally nested in another
computation. The lazy evaluation of non-deterministic computations becomes
impossible and the efficiency of a program may incur severe losses.

More recently [4, 8], non-determinism in functional logic programming has
been described using the operations of a non-confluent Term Rewriting System
(TRS). These operations are quite expressive, in that they allow a programmer
to translate problems into programs with a minimal effort. For example, the
following operation computes a non-empty regular expression over an alphabet
of symbols. Each non-empty regular expression is obtained by appropriate non-
deterministic choices of a computation.

regexp X = X
regexp X = "(" ++ regexp X ++ ")"
regexp X = regexp X ++ regexp X
regexp X = regexp X ++ "*"
regexp X = regexp X ++ "|" ++ regexp X

The definition of operation regexp closely resembles the formal definition of
regular expression, e.g., as found in [1, p. 94]. This transparency in semantics
can be very convenient for the programmer. For example, to recognize whether a
string s denotes a well-formed non-empty regular expression over some alphabet
a, it suffices to evaluate regexp a = s,

Non-deterministic operations support a terse programming style, but may
impose a stiff penalty on execution performance. In practice, several computa-
tions originating from a non-deterministic choice may have to be executed fairly.
Therefore, techniques to improve the efficiency of non-deterministic computa-
tions, in particular to limit the number of fair independent computations that

19

originate from a non-deterministic choice, are quite useful. The overall goal of
this paper is the study of two techniques for this purpose.

3 Cost Analysis

The most common approach to analyzing the efficiency of a program is mea-
suring its execution time and memory occupation. We measure the execution
time of benchmark programs by means of primitives available in our run-time
environment. In addition to measuring the amount of memory used during the
execution of a program by means of primitives, we compute the amount of mem-
ory used by simple benchmarks using a theoretical technique. In this section, we
discuss this theoretical approach to memory usage measurement.

Our starting point is the number of applications cost criterion defined in ear-
lier work on partial evaluation [2, Def. 2]. This criterion intends to measure the
storage that must be allocated for executing a computation. We adapt the crite-
rion to the behavior of our run-time environment. We also address the problems
of non-deterministic steps. We show that non-determinism, which is not consid-
ered in the earlier definition, adds an interesting twist to the situation.

The following definitions formalize our adaptation of the cost criterion “num-
ber of applications.”

Definition 1 (number of applications). We denote by A an overloaded func-
tion, called the number of applications, as follows:

- If t is a term, A(t) = Σp∈P(t) (arity(root(t|p)) + 1), where P(u) is the set
of positions of non variable symbols of arity greater than zero in any term
u, root(u) is the root symbol of any term u, and arity(f) is the arity of any
symbol f .

- If R ≡ l→ r is a rewrite rule,1 we define A(R) = A(r).
- If C ≡ t →R1 t1 →R2 · · · →Rn tn is a computation of a term t to a con-

structor term tn, we define A(C) = A(tn) +Σn
i=1A(Ri).

The number of applications of a term t is the total number of occurrences of
n-ary symbols, with n > 0, in t, plus their arities. In our run-time environment
(and, we believe, in many lazy language implementations) it is appropriate to
consider both defined operation and constructor symbols occurring in the term.
The number of applications of a computation accounts for the number of appli-
cations of each step and the number of applications of the result. In a run-time
environment that supports in-place updates, it would not be necessary to ac-
count for the number of applications of the result. We use the implementation of
narrowing in Prolog described in [6]. We have verified on several simple programs
that this implementation allocates memory in accordance to our definition.

Earlier work [2] shows that the number of reduction steps of a computation
is weakly correlated to its execution time. Nevertheless, we count the number of
steps [2, Def. 1] of a computation, since the computation of all cost criteria in
this work is based on steps.
1 Without loss of generality, we consider only unconditional rules [5].

20

Most cost analysis techniques in the literature are proposed for deterministic
computations. Non-deterministic computations in functional logic programming
are a relatively newer concept, and introduce significant theoretical and practical
complications.

To ensure operational completeness, non-deterministic computations must be
executed fairly. A consequence of this condition is that when a program outputs a
result (derived, for example, by using the first alternative in a non-deterministic
computation) the time and space resources consumed from the beginning of
the execution to the time of the output may not be a correct indication of
the cost of computing that result. The reason is that the measured values may
include resources spent to partially compute other results that have not yet been
output. The extent of these computations, and consequently a quantification of
the resources spent by these computations, are generally difficult to estimate.
A better approach would be to measure the resources needed to compute all
the results of a non-deterministic computation, but this is impossible in practice
for computations over an infinite search space, such as the computation of the
regexp operation presented earlier.

To deal with these difficulties, which to date have no universally accepted
solution, we consider only simple examples. In particular, we reason with natural
numbers in Peano notation. This decision is quite convenient for explanation
purposes. In practice, one technique that we will discuss in the next section may
not be well suited for builtin types, such as binary integers.

We informally reason about the number of steps of a computation and the
memory occupied to represent terms. In typical implementations of rewrite sys-
tems and functional logic programs, terms are represented by dynamic (linked)
data structures. In these structures, each occurrence of a symbol of arity n
greater than zero takes n+ 1 units of dynamic (heap) memory. Nullary symbols
are allocated in global (static) memory. Variables are local to rules or clauses and
are allocated in local (stack) memory. The following picture informally shows the
5 units of memory allocated to represent the term positive (add coin 0). The
symbols in the right column are allocated in global memory. They are not not
specifically allocated to represent any term, but are shared by all terms. The
number of arguments of an occurrence of a symbol is not a part of the term
because in our run-time environment, Prolog, symbols are fully applied.

• // positive

• // • // add

• // coin

• // 0

The previous analysis [2] and the adaptation introduced in this section are
limited to deterministic computations. The extension to non-deterministic com-
putations would be a non-trivial task. We believe that our less formal discussion
is appropriate for our goals and easier to grasp than a more rigorous approach.

To understand why the treatment of non-deterministic computations is more
complicated, consider the evaluation of t = s coin. This term has two normal

21

forms, s 0 and s (s 0). The root symbol of each normal form can be traced back
to the root symbol t. This shows that fair independent computations may have to
duplicate the portion of a term above a redex with distinct reducts. Hence, even
in run-time environments that support in-place updates, the cost of a step may
depend on its context. This consideration further supports the appropriateness
of including the number of applications of the result of a computation in the
number of applications of the computation itself.

4 Programming Techniques

We attempt to improve the efficiency of non-deterministic computations by
avoiding the duplication of both reduction steps and term representations that
occur within fair independent computations. We use two programming tech-
niques that achieve some improvements in some cases. In other words, our ap-
proach is a guideline for the programmer, i.e., a suggestion on how to code certain
problems into programs. However, we envision that an optimizing compiler or
a similar specialized tool could automatically transform a program in the same
way. In fact, several experimental variations of the second technique have been
automatically implemented in our current system [7].

Both of our programming techniques are based on the introduction of a new
symbol into the signature of the TRS modeling a functional logic program. One
technique regards the new symbol as a polymorphic defined operation, the other
as an overloaded constructor. The first approach is not new [8]: our contribution
in this case is limited to recognition that there are potential benefits of this
technique in the context of modern FLP implementation, and the quantification
of these benefits. The new symbol that we introduce, is denoted by the infix
operator “!”, and read as alternative.

4.1 The Alternative Operator

In the first programming technique, the alternative operation is defined by the
rules:

X ! Y = X
X ! Y = Y

An operation with these rules is called alt and denoted by “//” in the work of
González-Moreno et. al. [8, 9]. We could regard this symbol as left associative
or overload it for arbitrarily long argument lists: in our examples the symbol is
always binary, so the difference is irrelevant.

The alternative operation allows us to give a different, though equivalent,
definition of the operation bigger presented earlier.

bigger = s (0 ! s 0)

The significant difference is that a common portion of the right-hand sides of
the two rewrite rules of the original definition of bigger has been “factored”.
This new definition can be directly coded by the programmer or it could be
automatically obtained from the original definition by an optimizing compiler or
other specialized tool.

22

The advantage of this definition of bigger with respect to the original one
is that if only the factored portion of the two alternative right-hand sides of the
rewrite rules of bigger is needed by a context, no fair independent computations
are created by a needed strategy [4]. A single deterministic computation suffices
in this case. This is exactly what the composition of positive and add requires,
as shown by the following derivation:

positive (add bigger 0)
→ positive (add (s (0 ! s 0)) 0)
→ positive (s (add (0 ! s 0)) 0)
→ true

Two computations have been replaced by a single computation of the same
length. In cases where factoring the right-hand sides of two rewrite rules does
not eliminate the need of fair independent computations, the run-time cost of
the factorization is a single additional rewrite step. For realistic programs, this
cost is negligible. Hence, the factorization of right-hand sides is a worthwhile
potential improvement. In the best case, it saves computing time and/or storage
for representing terms. In the worst case, it costs one extra step and very little
additional memory.

4.2 The Alternative Constructor

Our second approach is to consider the alternative symbol as a constructor.
Since functional logic programs are generally strongly typed, they are modeled
by many-sorted rewrite systems. This condition requires overloading the symbol
“!” for each sort in which it is introduced.

The consequences of introducing such an overloaded constructor are inter-
esting. For example, the new definition of bigger is like the previous one

bigger = s (0 ! s 0)

except that the right-hand side is an irreducible (constructor) term. In this ex-
ample, new constructor terms should be interpreted as non-deterministic choices
in sets of terms. The right-hand side of the definition of bigger is interpreted
as an element in the set {s 0, s (s 0)}. In general, we think that extending
builtin types, (such as the integers or booleans) or well-known types (such as
the naturals) is inappropriate. Extending a sort with new constructor symbols
radically changes the nature of that sort. The interpretation of the new terms
of an extended sort may be difficult. Nevertheless, we do it here for the sort nat
for its immediateness and to ease the comparison with the examples presented
for the first technique.

The introduction of a new constructor symbol makes some formerly well-
defined operations incompletely defined. It is relatively easy to correct this prob-
lem in the class of the overlapping inductively sequential TRSs [4]. Every oper-
ation in this class has a definitional tree [3]. The necessary additional rules may
be determined from this tree. For example, consider the operation that halves a
natural:

half 0 = 0
half (s 0) = 0

23

half (s (s X)) = s (half X)

If the type natural is extended by an alternative constructor, the following ad-
ditional rewrite rules complete the definition of half:

half (X ! Y) = (half X) ! (half Y)
half (s (X ! Y)) = (half (s X)) ! (half (s Y))

In general, a new rewrite rule is needed for each branch of the tree. If π is the
pattern of a branch and p is the inductive position of π, then the required rewrite
rule is:

π[X ! Y]p → π[X]p ! π[Y]p

The advantages of factoring right-hand sides when the alternative symbol is an
operation are preserved by additional rewrite rules of this kind when the alterna-
tive symbol is a constructor as well. However, when one of the new rewrite rules is
applied, additional storage is required for the representation of terms. Referring
to the example under discussion, the representation of half (s X) ! half (s Y)
takes more storage—exactly three units for the top occurrence of the alternative
constructor—than the representations of half (s X) and half (s Y) combined.

In general, it is not possible to say whether defining the alternative sym-
bol as a constructor will increase or decrease the storage used to represent the
terms of a computation. In some case, the alternative symbol allows a more
compact representation of some results of a computation. For example, consider
the evaluation of:

add (s 0) coin
→ s (add 0 coin)
→ s (coin)
→ s (0 ! s 0)

If the alternative symbol were not a constructor, the last term of the above
computation would create two fair independent computations. To complete these
computations both additional steps would be executed and additional storage
would be needed for the execution of these steps.

A consequence of defining the alternative symbol as a constructor is that
several alternative normal forms are represented by a single term. Therefore, it
is likely inappropriate to adopt this programming technique to code problems
where only a small fraction of the potentially computed values of a computation
are actually needed.

5 Examples

In order to reason about the advantages and disadvantages of our techniques,
we analyze a few computations using the cost criterion discussed in Section 3.
As noted there, the theory that we use has previously been studied only for de-
terministic computations. In our simple examples, where the computation space
is finite, we adapt it to non-deterministic computations as follows.

Consider a complete independent computation for each non-deterministic
step, and two independent computations that differ for a non-deterministic re-
placement. In our implementation [7], some fair independent computations may

24

share steps and terms. In these cases, our theory would predict that the storage
allocated for all the computations of a term is higher than it is actually is.

We consider the computations of positive (add bigger 0) with and without
using our first technique. In the following tables, each line represents a step
of a computation. We measure both the number of steps and the number of
applications of a computation. The columns of a table respectively show the step
counter, the rewrite rule applied in the step, and the number of applications of
the step. The result does not contribute to the number of applications of the
computation because it is a constant (a nullary symbol).

Tables 1–3 show that when bigger is defined by two rewrite rules, the re-
sources spent to compute positive (add bigger 0) are 6 steps and 16 units of
memory. By contrast, our first technique cuts the number of steps in half and
reduces the memory consumption by 25%. These exact savings are also obtained
with our second technique.

Step Rule A

1 bigger → s 0 2
2 add (s X) Y → s (add X Y) 5
3 positive (s -) → true 0

Table 1. Computation when bigger

non-deterministically rewrites to s 0.
Total resources: steps 3, memory units 7.

Step Rule A

1 bigger → s (s 0) 4
2 add (s X) Y → s (add X Y) 5
3 positive (s -) → true 0

Table 2. Computation when bigger

non-deterministically rewrites to s (s 0).
Total resources: steps 3, memory units 9.

Step Rule A

1 bigger → s (0 ! s 0) 7
2 add (s X) Y → s (add X Y) 5
3 positive (s -) → true 0

Table 3. Computation when bigger

rewrites to s (0 ! s 0) and “!” is an oper-
ation.
Total resources: steps 3, memory units 12.

A similar analysis for the computation of half bigger shows that when
bigger is defined by two rules, the resources spent by all the computations are 5
steps and 12 units of memory. By contrast, using our second technique (i.e., when
bigger rewrites to s (0 ! s 0) and “!” is a constructor) the resources used are 5
steps and 27 units of memory: there is a 108% increase in memory consumption.
The first technique uses 6 steps and 19 units of memory, an increase of 58%.

On these examples, the implementation of [6] allocates memory according to
our theoretical model. However, the above examples are too small and artificial
for understanding the effects of our programming techniques in practice. Also,
our theoretical analysis is difficult to apply to programs that make more than a
few steps. For this reason, we benchmark both the memory consumption and the
execution times of larger programs. Our programming language is Curry [10].
The compiler is PAKCS, which transforms Curry source code into Prolog for
execution.

The first program that we benchmark is an implementation of the game of 24.
Some of us first encountered this problem at a meeting of the Portland Extreme

25

Programming User Group on June 5, 2001: it is inspired by a commercial game
intended to develop mathematical skills in middle school students. The game is
played as follows: given four 1-digit positive integers find an arithmetic expression
in which each digit occurs exactly once and that evaluates to 24. A number can
be divided only by its factors. For example, a solution for the instance [2, 3, 6, 8]
is (2 + 8) ∗ 3− 6. There are 25 other distinct solutions of this instance (including
commutatively and associatively equivalent solutions), including 3 ∗ (2 + 8)− 6
and 6 ∗ 3 + (8− 2).

The program for this problem, shown in its entirety in the Appendix, proceeds
via straightforward generate-and-test. Table 4 shows the CPU time (on a Sun
SPARCStation running Solaris) spent for computing all the solutions of a few
problems, and the global and local stack allocations for the computation reported
by the Curry primitive evalSpace. The first group of data is for a version of the
program that does not use our techniques. The second group is for a program
that uses our first technique, i.e., the alternative symbol is a defined operation.
The second technique is not appropriate for this problem. The runtime measures
are nearly identical over several executions. The memory measures are constant
for every execution.

The data shows that our technique consumes slightly more memory, but
speeds the execution of the program by 44% on average. The speedups for various
problems range from 27% to 58%. (The speedup achieved by our technique is
computed by (t1− t2)/t1 where t1 and t2 are the averages of the execution times
of the programs not using and using the technique respectively. This speedup
indicates the percentage of execution time saved by the technique.)

Table 4. Runtime (msec.) and memory usage (bytes) for “24” instances.

regular program first technique
problem Runtime G. stack L. stack Runtime G. stack L. stack Speedup
[2,3,6,8] 66 2596 932 48 2800 1100 27%
[2,3,4,9] 94 2632 860 52 2836 972 45%
[3,4,5,8] 65 2476 868 27 2680 1036 58%
[1,2,6,8] 64 2812 868 36 2816 980 44%
[4,6,8,9] 38 2416 832 19 2620 1000 50%

Average 65 2586 872 36 2750 1017 44%

Our second example is a parser that takes a string representing a parenthe-
sized arithmetic expression and returns a parse tree of the input. Our implemen-
tation is simplified to the extreme and serves only as a proof of concept. The
abstract syntax generated by the parser is defined by the type:

data AST = Num String | Bin Char AST AST

For example, on input "1+(2-3)" the parser generates

Bin’+’(Num"1")(Bin’-’(Num"2")(Num"3")).

26

Replacing the argument of Num with an integer and the Bin Char combination
with a token would be more appropriate, but it would add to the program details
that are irrelevant to our analysis. The language recognized by the parser is
generated by the following grammar:

expression ::= term ‘+’ expression
| term ‘-’ expression
| term

term ::= ‘(’ expression ‘)’
| digits

Sequences of digits are recognized by a scanner.
The parser is implemented using two defined operations: expression and term.

The type of both operations is [Char] → [Char] → AST. For all strings s and
r, expression s r evaluates to a if and only if there exists a string u such that
s = u r and a is the parse tree of u. Operation term is analogous. For example,
term "1+(2-3)" "+(2-3)" evaluates to Num"1". To parse an entire string,
operation expression is initially called with its second argument equal to the
empty string. In recursive calls, the second argument is a free variable.

Table 5 shows execution time and memory usage on a 233MHz Pentium PC
running Linux. In this program, too, the data show that our first technique con-
sumes more memory, but substantially cuts the execution time to parse certain
strings. The speedup is highly dependent on the structure of the input string.

Table 5. Runtime (msec.) and memory usage (bytes) while parsing.

regular program first technique
input Runtm G. stck L. stck Runtm G. stck L. stck Speedup
”1+1+1+1+1+1+1+1” 10 12528 736 10 16152 1012 0%
”((((((0))))))” 1440 2676 8 5 6992 568 99%
”5-((2+1)+3+(5-4))” 60 10468 528 10 15240 1144 83%
Average 500 8557 424 8 12795 908 98%

6 Conclusions

Non-deterministic computations are an essential feature of functional logic pro-
gramming languages. Often, a non-deterministic computation is implemented as
a set of fair independent computations whose results are used, and possibly dis-
carded, by a context. A non-deterministic computation can be costly to execute:
any reasonable attempt to improve its efficiency is worthwhile.

In this paper, we have proposed two simple programming techniques intended
to improve the efficiency of certain non-deterministic computations. Both tech-
niques are based on the introduction of a new symbol, called alternative, into
the signature of a program. In one technique, the alternative symbol is a poly-
morphic defined operation. In the other technique, the alternative symbol is

27

an overloaded constructor. This symbol allows a program to factor a common
portion of the non-deterministic replacements of a redex.

Either technique may improve the efficiency of a computation by reducing the
number of computation steps or the memory used in representing terms. These
savings are obtained in two situations. For both techniques, savings are obtained
when fair independent computations are avoided because only the factored por-
tion of non-deterministic replacements is needed. For the second technique, sav-
ings are obtained when distinct non-deterministic results are more compactly
represented by sharing a common factor. In some cases, the improvements of-
fered by these techniques are substantial. In all cases, the cost of applying the
first technique is small. There are cases in which the application of the second
technique may actually result in computations that consume more memory.

We have discussed how to apply our techniques, and we have quantified the
effects of the application of these techniques in simple examples. Our techniques
are applicable to programs coded in many existing or proposed functional logic
programming languages. Our techniques can be directly adopted by program-
mers or can be introduced into a program automatically at compile time.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

2. E. Albert, S. Antoy, and G. Vidal. Measuring the effectiveness of partial evalua-
tion in functional logic languages. In Proc. of 10th Int’l Workshop on Logic-based
Program Synthesis and Transformation (LOPSTR’2000), pages 103–124. Springer
LNCS 2042, 2001.

3. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming (ALP’92), pages 143–157. Springer LNCS 632,
1992.

4. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Inter-
national Conference on Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

5. S. Antoy. Constructor-based conditional narrowing. In Proc. of 3rd Int’l Conf. on
Principles and Practice of Declarative Programming (PPDP’01). Springer LNCS,
2001. To appear.

6. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into pro-
log. In Proc. of the 3rd International Workshop on Frontiers of Combining Systems
(FroCoS 2000), pages 171–185, Nancy, France, March 2000. Springer LNCS 1794.

7. S. Antoy, M. Hanus, B. Massey, and F. Steiner. An implementation of narrowing
strategies. In Proc. of 3rd Int’l Conf. on Principles and Practice of Declarative
Programming (PPDP’01). Springer LNCS, 2001. To appear.

8. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. A rewriting logic for declarative programming. In Proc.
ESOP’96, pages 156–172. Springer LNCS 1058, 1996.

9. J.C. González-Moreno, F.J. López-Fraguas, M.T. Hortalá-González, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. The Journal of Logic Programming, 40:47–87, 1999.

10. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Version
0.71). Web document http://www.informatik.uni-kiel.de/~mh/curry/report.
html (accessed Jul 10, 2001 04:07 UTC), 2000.

28

Appendix

The Game of 24

This program solves the game of 24.

infixr 5 +++

(+++) eval flex

[] +++ x = x

(x:xs) +++ y = x:xs +++ y

permute [] = []

permute (x:xs) | u+++v =:= permute xs = u++[x]++v where u,v free

data exp = num Int

| add exp exp

| mul exp exp

| sub exp exp

| dvv exp exp

generate [y] = num y

generate (y:y1:ys)

| (y:y1:ys) =:= u:us+++v:vs

= add (generate (u:us)) (generate (v:vs)) where u,us,v,vs free

generate (y:y1:ys)

| (y:y1:ys) =:= u:us+++v:vs

= mul (generate (u:us)) (generate (v:vs)) where u,us,v,vs free

generate (y:y1:ys)

| (y:y1:ys) =:= u:us+++v:vs

= sub (generate (u:us)) (generate (v:vs)) where u,us,v,vs free

generate (y:y1:ys)

| (y:y1:ys) =:= u:us+++v:vs

= dvv (generate (u:us)) (generate (v:vs)) where u,us,v,vs free

test (num y) = y

test (add x y) = test x + test y

test (mul x y) = test x * test y

test (sub x y) = test x - test y

test (dvv x y) = opdvv (test x) (test y)

where opdvv x y = if y == 0 || not (x ‘mod‘ y == 0)

then failed else x ‘div‘ y

solve p | test x == 24 = x where x = generate (permute p)

-- example: solve [2,3,6,8]

The application of our technique calls for the definition of the alternative
function and the replacement of operation generate.

infixl 0 !

x ! _ = x

_ ! y = y

29

generate [y] = num y

generate (y:y1:ys)

| (y:y1:ys) =:= u:us+++v:vs

= (add ! mul ! sub ! dvv) (generate (u:us)) (generate (v:vs))

where u,us,v,vs free

The Parser

This is a parser for parenthesized arithmetic expressions.

--import Char

data AST = Num String | Bin Char AST AST

expression X0 X3

| A1 =:= term X0 X1 &>

’+’:X2 =:= X1 &>

A2 =:= expression X2 X3

= Bin ’+’ A1 A2 where X1, X2, A1, A2 free

expression X0 X3

| A1 =:= term X0 X1 &>

’-’:X2 =:= X1 &>

A2 =:= expression X2 X3

= Bin ’-’ A1 A2 where X1, X2, A1, A2 free

expression X0 X1 = term X0 X1

term X0 X2

| X:X1 =:= takeWhile isDigit X0 &> X0 =:= X:X1 ++ X2

= Num (X:X1)

| X0 =:= ’(’:Y0

= expression Y0 (’)’:X2)

where Y0, X, X1 free

-- example: expression "1+(2-3)" ""

The application of our technique calls for the definition of the alternative
function, as in the previous program, and the replacement of operation expression
with the following code.

expression X0 X3

| A1 =:= term X0 X1 &>

((OP:X2 =:= X1 &>

OP =:= (’+’!’-’) &>

A2 =:= expression X2 X3 &>

TREE =:= Bin OP A1 A2)

! (X3 =:= X1 &> TREE =:= A1)

)

= TREE where OP, X1, X2, A1, A2, TREE free

30

