
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4, NO. 20, APRIL 1994, PP. 259–274

Using Term Rewriting to Verify Software∗

Sergio Antoy

Portland State University
Department of Computer Science

Portland, OR 97207

John Gannon

University of Maryland
Department of Computer Science

College Park, MD 20742

Abstract

This paper describes a uniform approach to the automation of verification tasks
associated with while statements, representation functions for abstract data types,
generic program units and abstract base classes. Program units are annotated with
equations containing symbols defined by algebraic axioms. An operation’s axioms
are developed using strategies that guarantee crucial properties such as convergence
and sufficient completeness. Sets of axioms are developed by stepwise extensions that
preserve these properties. Verifications are performed with the aid of a program that
incorporates term rewriting, structural induction, and heuristics based on ideas used
in the Boyer-Moore prover. The program provides valuable mechanical assistance:
managing inductive arguments and providing hints for necessary lemmas, without
which formal proofs would be impossible. The successes and limitations of our
approaches are illustrated with examples from each domain.

1 Introduction

Many different methods have been used to annotate software and prove properties about it. Fewer
attempts have been made to adapt a single notation to a variety of different annotation tasks and
explore the interactions between the types of tasks, properties of the specifications, and demands of
verification techniques. In this paper, we apply equational specification and reasoning techniques
to verify properties of while statements, abstract data types, generic program units, and derived
classes. We present new techniques for computing the weakest preconditions of while statements,
∗This research has been supported in part by the National Science Foundation grant CCR-8908565 and the Office

of Naval Research grants N00014-87-K-0307 and N0014-90-J4091.

Using Term Rewriting to Verify Software 260

annotating abstract base classes from which other classes are derived, and designing algebraic spec-
ifications which are convergent and sufficiently complete. In addition, we discuss an experimental
tool for partially automating verification activities and report some of our experiences using these
techniques and tool.

Rewriting [10, 26] is central to our approach. We use rewriting concepts both for designing small
specifications with desirable properties, such as completeness and consistency, and for extending
specifications incrementally while preserving these properties. We also use rewriting concepts for
proving that programs are correct with respect to their specifications.

Abstraction and factorization reduce the amount of detail that needs to be considered when
solving problems. Specifications play a key role in abstraction, hiding details of implementations,
and in factoring program components, collecting program units with common semantics rather
than just common syntax.

The weakest precondition [11] of a while statement abstracts the particular state transformation
induced by a while statement to a class of state transformations which satisfy a particular post-
condition [17]. The notion of weakest precondition extends the method proposed in [20] to include
termination. Since both termination and verification of programs are unsolvable, it is somewhat
surprising that one can compute a first order expression of the weakest precondition of a while state-
ment [8, 32]. This expression, however, involves concepts such as Gödelization or Turing machines,
which cannot be reasoned about automatically. We introduce a notation called power functions
to describe while statements’ state transformations. Power functions are described with algebraic
equations, as are the operations which appear in while statements’ postconditions. Thus, we may
reason about power functions in the same automated way we reason about the operations appearing
in program annotations. Power functions also allow us to address incompleteness problems arising
in the verification of while statements involving abstract data types [24, 30].

Abstract data types permit program proofs to be factored into two parts: proofs of programs
which depend only on abstract properties of objects, and proofs that implementations of types
guarantee the abstract properties. In the second type of proof, implementations manipulating con-
crete objects must satisfy pre and postconditions containing abstract objects. Hoare [21] introduced
representation mappings to map concrete objects to their corresponding abstract objects to make
such reasoning possible. We show that representation mappings can be cast within the equational
framework, allowing us to reap the benefits of equational reasoning and automated term rewriting.

Parameterized subprograms factor similar operations on different objects with the same types,
thus reducing the sizes of programs. Generic clauses, like those in Ada, extend the benefits of
factoring to program units which manipulate objects with different types. Generic formal type pa-
rameters represent classes of types providing a few basic operations (e.g., assignment or equality).
Additional generic formal subprogram parameters can be specified to access additional operations.
When a generic unit is instantiated, only syntactic discrepancies are reported between the types
of the formal and actual generic subprogram parameters. Alphard’s designers [31] were among the
first to suggest that functions defined with generic type parameters have semantic restrictions that
guarantee the functions are properly instantiated. Several research projects are currently investi-
gating how such restrictions should be stated and checked [13, 14, 16]. We use equational reasoning
to show that formal parameter specifications denoting properties required of actual parameters are
checked when generic program components are instantiated.

Object-oriented programming languages permit new classes to be defined via inheritance. A
superclass defines interfaces (and perhaps implementations) for operations, which are inherited by

Using Term Rewriting to Verify Software 261

its subclasses. In order to factor the implementation of a common operation in a superclass, each
subclass that redefines operations used in implementations of common operations must ensure that
its new operations have behaviors which are consistent with those of the respective superclass’s
operations. That is, each subclass must behave like a subtype of the supertype. Groups of re-
searchers [1, 28, 29] are currently defining subtype relations. We present a method for annotating
C++ abstract base classes and other classes which are derived from them. Using equational reason-
ing, we show that derived classes are subtypes of an abstract base class in a manner similar to that
in [19].

In Section 2, we discuss these four classes of verification problems. Although we limit the
size of our examples to dimensions suitable for a technical presentation, they are representative of
increasingly larger programming problems.

The common denominator for these verification tasks is that we use equations both to annotate
each of the program components and to reason about the annotations. In Section 3, we address
the problems of both the quality and the expressiveness of specifications on which annotations
are based. We motivate the need of structuring specifications as rewrite systems both to ensure
crucial properties of specifications and to overcome inherent difficulties of equational reasoning. We
present design strategies for extending a specification while preserving its properties as a rewrite
system.

In Section 4, we briefly describe an automated tool for formally proving the obligations arising
from verification problems. In Section 5, we discuss the use of this tool and informally compare its
performance with another automated prover. Section 6 contains our conclusions.

2 Program Annotation and Verification

2.1 While Statements

Power functions [2] are a device to express the weakest precondition of a while statement in a form
which is useful for stating and verifying program correctness. We briefly review this technique and
show its application in two examples. In a later section we show how to automate the steps of the
process.

For any statement w and postcondition R, the weakest precondition wp(w,R) of w with respect
to R describes the set of all states S such that when w is activated in a state s in S it terminates
in a state r satisfying R [11]. If w is a while statement with condition b and body stmt, then

wp(w,R) = ∃k : k ≥ 0 : Hk(R)

where Hk(R) is defined recursively as follows:

H0(R) = ¬b ∧R
Hk+1(R) = b ∧ wp(stmt,Hk(R))

If the while statement is not defined on some state s, then wp(w,R)(s) is false, since Hk(R)(s) does
not hold for any k.

The power function of a function f , whose domain and range are identical, embodies the k-fold
composition of f . If [stmt] is the function computed by statement stmt and s is a state, the power

Using Term Rewriting to Verify Software 262

function pf of [stmt] is defined as

pf (k, s) =


s, if k = 0;
pf (k − 1, [stmt](s)), if k > 0 and [stmt](s) is defined;
undefined, otherwise.

(1)

Every function has a unique power function; and the totality, computability, and primitive recur-
siveness of a function imply similar properties for its power function [2].

Using the notion of power function, we can obtain a first order expression of the weakest
precondition of a while statement with respect to any first order postcondition. If [stmt] is a total
function and pf is its power function, then

Hk(R)(s) = (R(pf (k, s)) ∧ k = µi(¬b(pf (i, s))))

The expression µi P (i) stands for the minimum non-negative integer i, if it exists, such that P (i)
holds. More precisely, the second conjunct of the right side is a short hand for ¬b(pf (k, s)) ∧ ∀i :
i < k : b(pf (i, s)), i.e., k is the least value such that k applications of the [stmt] to the original
state produce a state in which b evaluates to false. This yields the following equation

wp(w,R)(s) = ∃k : k ≥ 0 : (R(pf (k, s)) ∧ k = µi(¬b(pf (i, s)))) (2)

The right side requires only pf , the power function of [stmt], which is immediately obtained via
equation (1).

Often, we find it convenient to express a power function in terms of other functions that capture
higher level abstractions. We show one such example below, where very loosely speaking we say
that the power function of a maximum accumulator is the maximum of a sequence. In this case
we must ensure the validity of our claim, i.e., we must prove that some function pf is the power
function of a given function f . We call this step validation of pf with respect to f .

The weakest precondition of a while statement is more manageable when in equation (2) the
conjunct k = µi(¬b(pf (i, s))) can be solved with respect to k, i.e., the value of k can be explicitly
determined from s. We call this step minimization of the loop. Loop minimization is obviously an
unsolvable problem since it is more difficult to demonstrate than loop termination. In the following
examples we show how to minimize loops and how this operation considerably simplifies the weakest
precondition.

Example 1

Consider the following program with while statement w and postcondition R:

m := a[1];
i := 2;

w : while i ≤ n loop
if m < a[i] then m := a[i]; end if ;
i := i+ 1;

end loop;
R : {m = max(a[1..n])}

where max(a[1..n]) is the largest value in the set {a[1], . . . , a[n]}.

Using Term Rewriting to Verify Software 263

The function computed by the while statement body ([stmt]) returns the program state after
examining one component of the array.

[stmt](i, a,m) = (i+ 1, a,max(a[i],m))

Its power function (pf) returns the program state after examining a slice of the array.

pf (k, (i, a,m)) = (i+ k, a,max(a[i..i+ k − 1],m))

where max(a[i..j],m) is the largest value in the set {a[i], . . . , a[j],m}. We use induction to validate
pf , i.e., to show that it is indeed the power function of [stmt].

Base : pf (0, (i, a,m)) = (i+ 0, a,max(a[i..i+ 0− 1],m)) = (i, a,m)
Ind. : pf (k + 1, (i, a,m)) = (i+ (k + 1), a,max(a[i..i+ (k + 1)− 1],m))

= ((i+ 1) + k, a,max(a[i+ 1..(i+ 1) + k − 1],max(a[i],m)))
= pf (k, (i+ 1, a,max(a[i],m)))
= pf (k, [stmt](i, a,m))

The minimization of the loop requires us to demonstrate that µk(i+k > n) is n−i+1. Substituting
this expression for k, we can calculate wp(w,R).

R(pf (n− i+ 1, (i, a,m))) = R(i+ n− i+ 1, a,max(a[i..i+ (n− i+ 1)− 1],m))
= R(n+ 1, a,max(a[i..n],m))
= (max(a[i..n],m) = max(a[1..n]))

Although the annotations appear to use familiar, “well-defined” functions such as addition and
max, we have actually overloaded the function symbol max. Assuming all the scalar values are
natural numbers, one version of max is defined on two naturals, another on an array of naturals,
and a third on an array of naturals and a natural. Algebraic axioms permit us to define the relations
between symbols that appear in specifications.

max0 : nat× nat→ nat

max0(0, i) = i
max0(i, 0) = i
max0(i+ 1, j + 1) = max0(i, j) + 1

max1 : natarray × nat× nat→ nat

max1(a, i, 0) = a[i]
max1(a, i, k + 1) = max0(a[i+ k],max1(a, i, k))

max2 : natarray × nat× nat× nat→ nat

max2(a, i, 0,m) = m
max2(a, i, k + 1,m) = max0(a[i+ k],max2(a, i, k,m))

With these definitions, wp(w,R) can be expressed as:

max2(a, i, n− i+ 1,m) = max1(a, 1, n)

The initializing statements i := 2;m := a[1] transform the above equation into

max2(a, 2, n− 1, a[1]) = max1(a, 1, n)

Using Term Rewriting to Verify Software 264

which can be verified for any a and n > 0.
Each of the verification tasks outlined above can be expressed as equations and verified me-

chanically. These tasks are:

1. Power function validation

Base cases add(0, i) = i
max2(a, i, 0,m) = m

Inductive cases add(k + 1, i) = add(k, i+ 1)
max2(a, i, k + 1,m) = max2(a, i+ 1, k,max0(a[i],m))

2. Loop minimization

(k < n− i+ 1)⇒ (i+ k ≤ n)
(k = n− i+ 1)⇒ (i+ k > n)

3. Loop initialization

max2(a, 2, n− 1, a[1]) = max1(a, 1, n)

Example 2

The previous example shows that one may need to define new symbols for the analysis of a loop.
This is not a peculiarity of our method. Classic approaches to correctness verification may fail due
to the lack of expressiveness of data type specifications [24, 30]. For example, Kamin shows that a
program containing the following while statement

s := s0;
t := newstack;

w: while ¬ isnewstack(s) loop
t := push(t, top(s));
s := pop(s);

end loop;
R: {t = reverse(s0)}

cannot be properly annotated by the lack of expressiveness of the usual theory of type Stack. A
similar result appears in [30].

Equation (2) implies that all one needs to properly annotate a loop is the power function of (the
functional abstraction of) the loop body. Rather than using equation (1), we chose to formulate the
power function of the loop in terms of high-level abstractions. These abstractions capture formally
the intuitive concepts that allow a programmer to code the above program.

The repeated execution of the loop body has the effect of chopping off a topmost portion of s,
reversing it, and placing it on top of t. The concept of separating a sequence into an initial portion
and a remainder generalizes the usual head and tail operations on sequences. We associate the

Using Term Rewriting to Verify Software 265

symbols drop and take with the more general operations and axiomatize them below.

drop : nat× stack → stack

drop(0, s) = s
drop(i+ 1, newstack) = newstack
drop(i+ 1, push(s, e)) = drop(i, s)

take : nat× stack → stack

take(0, s) = newstack
take(i+ 1, newstack) = newstack
take(i+ 1, push(s, e)) = push(take(i, s), e)

The operation drop is denoted pop∗ in [24] and is required to make the type stack expressive. drop is
the power function of pop. The operation take returns the portion of a stack dropped by drop. We
formulate the power function of the loop (pf) from the functional abstraction of the body ([stmt]),
exactly as informally stated earlier.

[stmt](s, t) = (pop(s), push(t, top(s)))
pf (k, (s, t)) = (drop(k, s), concat(reverse(take(k, s)), t))

where concat and reverse are defined as usual.

concat : stack × stack → stack

concat(newstack, s) = s
concat(push(s, e), t) = push(concat(s, t), e)

reverse : stack → stack

reverse(newstack) = newstack
reverse(push(s, e)) = concat(reverse(s), push(newstack, e))

To validate pf we prove that

drop(0, s) = s
drop(i+ 1, s) = drop(i, pop(s))
concat(reverse(take(0, s)), t) = t
concat(reverse(take(i+ 1, push(s, e))), t) = concat(reverse(take(i, s)), push(t, e))

The last equation is not an instance of the second case of equation (1). It stems from a simple
result [2, Th. 5.7] concerning the equivalence of two formulations of power functions, i.e., accumu-
lation vs. recursion.

To minimize the loop we define the operation size, which computes the size of a stack, axiomatize
isnewstack, and verify µk(isnewstack(take(k, s))) = size(s).

size : stack → nat

size(newstack) = 0
size(push(s, e)) = size(s) + 1

isnewstack : stack → bool

isnewstack(newstack) = true
isnewstack(push(s, e)) = false

Using Term Rewriting to Verify Software 266

The minimization of the loop is obtained by proving that

(k < size(s))⇒ ¬ isnewstack(drop(k, s))
(k = size(s))⇒ ¬ ¬ isnewstack(drop(k, s))

The latter is equivalent to isnewstack(drop(size(s), s)). Substituting size(s) for k permits us to
calculate wp(w,R).

R(pf (size(s), s, t)) =
R(drop(size(s), s), concat(reverse(take(size(s), s)), t)) =
concat(reverse(take(size(s), s)), t) = reverse(s0)

Initializing t with newstack and s with s0 results in the following wp for the program:

concat(reverse(take(size(s0), s0)), newstack) = reverse(s0)

which holds for any s0.

2.2 Data Type Implementations

Modern programming languages provide special constructs to implement user-defined data types.
These constructs are specifically designed to hide the representation of a type from its users. Code-
level verification techniques, such as those discussed in Examples 1 and 2 are insufficient to address
the correctness of an implementation because of the wide gap between the low-level operations
performed by the code and the high-level operations described by the operation’s interface. For
example, decrementing an integer variable may be all it takes to pop a stack. However, verifying that
the variable is decremented does not ensure that the code correctly implements the pop operation.
We need to show that the code fulfills its obligations to the abstract operations [21].

Example 3

An implementation of the data type stack may represent an instance of the type by a record as
follows:

subtype index is integer range 1..size;
type data is array (index) of item;
type stack is record

pntr : integer range 0..size := 0;
items : data;

end record;

This code fragment belongs to a package with generic arguments size, a positive, and item, a
private type.

The correctness of an implementation of the type stack entails the type’s representation map-
ping [21]. This function, denoted with A below, maps a concrete instance of stack, represented by
the above record, to its abstract counterpart.

A(pntr, items) =

{
newstack, if pntr = 0;
push(A(pntr − 1, items), items[pntr]), otherwise.

Using Term Rewriting to Verify Software 267

The implementation of the stack operation pop is straightforward.

procedure pop(q : in out stack) is
begin

if q.pntr = 0
then raise underflow ;
else q.pntr := q.pntr − 1;

end if ;
end pop;

On input a stack q, pop raises an exception if q.pntr = 0, that is, q.pntr > 0 is a precondition for the
normal termination of the procedure. If the precondition is satisfied, pop simply decrements q.pntr.
The implementation is correct if clients of the stack package, to which the stack representation and
the procedure code may be hidden, indeed perceive decrementing q.pntr as popping q.

The proof method proposed by Hoare reduces the correctness of the implementation to individ-
ual obligations of each procedure of the package. Omitting for readability the qualification of pntr
and items, the obligation of the procedure pop is

pntr > 0 ∧ A(pntr, items) = s {if pntr = 0 . . . ; end if ; } pntr ≥ 0 ∧ A(pntr, items) = pop(s)

Standard techniques [20] reduce the correctness of the code to the truth of

(pntr > 0 ∧ A(pntr, items) = s)⇒
((pntr = 0 ∧ false) ∨ (pntr > 0 ∧ A(pntr − 1, items) = pop(s)))

where “false” in the first disjunct describes the (impossible) initial state that would result in the
normal termination of the procedure pop when the exception underflow is raised. The representation
mapping can be defined equationally and the proof obligation can be discharged automatically using
the tool discussed in Section 4.

2.3 Instantiations of Generic Program Units

Modularity is an essential feature for the design and implementation of large programs. Generic
type and subprogram parameters have been added to statically typed programming languages to
avoid duplicating an operation’s source code in cases where it manipulates objects only through
other operations that are either implicitly defined for its generic formal type parameters or appear as
generic formal subprogram parameters. Interconnection errors become more likely and more subtle
when such language features are used. Compilers and/or loaders verify only syntactic properties
of module interconnections. The verification of (semantic) correctness entails activities similar
to those required for the verification of loops and data types discussed earlier, i.e., axiomatizing
symbols used for asserting properties or requirements of modules, and proving theorems, expressed
by means of these symbols, about the modules.

Example 4

Many computations on sets or sequences of elements are instances of a general paradigm referred
to as accumulation [4], for example, finding the maximum element, computing the sum of the
elements, or counting how many elements have a certain property. These computations can be

Using Term Rewriting to Verify Software 268

implemented by a loop whose body processes a new element of the sequence on each iteration. A
special variable, whose initial value depends on the computation being performed, “accumulates”
the result of the computation for the portion of the sequence processed thus far.

Example 1 presented earlier is an instance of accumulation in which the sequence of elements
is represented by an array and the process being performed is finding the maximum. In a language
supporting generic parameters, the interface of a simple accumulator (in which the types of the
elements and the accumulated result are the same) appears as follows:

−− specification
generic

type elem;
type vector is array(integer range <>) of elem;
init : elem;
with function step(a, b : elem) return elem;

function accumulator(v : vector) return elem;

−− body
function accumulator(v : vector) return elem is

a : elem := init;
begin

for i in v ′first . . v ′last loop
a := step(a, v[i]);

end loop;
return a;

end accumulator;

When a generic subroutine is instantiated (e.g., with actual parameters natural, nat vect, 0, and
max, as shown below) discrepancies may be detected between the types of the generic subprogram
parameters and the types of the actual objects bound to them.

procedure main is
. . .
function max array is new

accumulator(elem⇒ natural, vector ⇒ nat vect, init⇒ 0, step⇒ max);
. . .

Unfortunately, only syntactic discrepancies are reported. Some implementations of an accumulator
may rely on semantic properties which do not hold for all bindings, but cannot be detected by the
compiler.

For example, certain accumulations can be performed in parallel. In the simplest form, a
parallel implementation of an accumulator may simultaneously activate two tasks. Each task is an
accumulator operating on half of the input array and feeding its results to the function step which
returns the desired value. To improve the implementation’s efficiency, we can use a tree-like cascade
of tasks each executing a single invocation of step in parallel. However, the parallel implementation
of the accumulator assumes that the function bound to the generic parameter step is associative and
that the element bound to the parameter init is its left identity i.e., (elem; step, init) is a monoid.

Using Term Rewriting to Verify Software 269

This result can be established in the following manner. Let e1, e2, . . . be the sequence of values
processed by the accumulator, and A the function defined by

A(ei, . . . , ej) =

{
init, if i > j;
step(A(ei, . . . ej−1), ej), otherwise.

With the techniques described in Section 2.1 we can prove that A is the function computed by the
code of accumulator. If for all k such that i ≤ k ≤ j, the following equation holds

A(ei, . . . , ej) = step(A(ei, . . . , ek),A(ek+1, . . . , ej)) (3)

we can implement our accumulator in parallel as described above. It is easy to show that equa-
tion (3) holds when elem is a monoid.

Algebraic notation can be used to specify properties of generic subroutine parameters that can
be verified from the specifications of the actual parameters. Such restrictions can be made explicit
by writing them as conditions and including them with the text of the specification of accumulator.

step(step(x, y), z) = step(x, step(y, z))
step(init, x) = x

When the function accumulator is instantiated with actual arguments replacing the formal parame-
ters, the identifiers in the axioms of the actuals can be replaced by the names of the formals and the
specification of the actual arguments can be used to prove these conditions. For example, it is easy
to verify these conditions for the operation max0, the maximum of two natural numbers, specified
in Example 1. Likewise, the instantiation requirement holds for both addition and multiplication,
but not for exponentiation. Thus, exponentiation cannot be legally bound to the generic parameter
step.

2.4 Inheritance

Object-oriented programming languages permit the definition of new classes via inheritance. A
subclass inherits data representations and operations from a superclass and may add or redefine
these components. We use algebraic equations to specify both the behavior of classes and to verify
that a subclass relation is also a subtype relation.

Example 5

In the following example, Shape is an abstract class; it can serve as a superclass for another class
but no objects of type Shape may be created.

class Shape {
public:

virtual Point center () const {
return Point ((left() + right()) / 2, (top() + bottom()) / 2); };

virtual void move (const Point & P) = 0;
void recenter (const Point& p) { move (p-center()); };
virtual double top () const = 0;
virtual double bottom () const = 0;
virtual double left () const = 0;
virtual double right () const = 0;

};

Using Term Rewriting to Verify Software 270

An abstract class is used to define interfaces for operations which manipulate objects created by
its subclasses. For example, recenter moves an object to a new position.

Circle is declared as a subclass of Shape, redefining the latter’s center operation with a more
efficient version of its own and providing definitions for those operations which are pure virtual
functions in Shape (i.e., move, top, etc.).

class Circle : public Shape {
public:

Circle (const Point & C, const double & R) : _center (C) { radius (R); };
inline void radius (const double & R) { assert (R>=0); _radius = R; };
inline double radius () const { return _radius; };
inline void center (const Point & C) { _center = C; };
inline Point center () const { return _center; };
inline void move (const Point & P) { _center.move(P); };
double top () const { return (_center.y() + _radius); };
double bottom () const { return (_center.y() - _radius); };
double left () const { return (_center.x() - _radius); };
double right () const { return (_center.x() + _radius); };

private:
Point _center;
double _radius;

};

When it is passed a reference to a Circle object, recenter invokes Circle’s center and move
operations.

Point p1(10,10), p2(5,5);
Circle c(p1,20);
...
c.recenter(p2);

We can use algebraic specifications to define meanings for Shape’s operations. The first argument
of an abstract operation f modeling a corresponding concrete operation f is the class instance to
which f belongs. For example, referring to the above program fragment, recenter(c, p2) is the
abstract counterpart of c.recenter(p2).

We do not specify an abstract class, such as Shape, by means of a sort. Rather, we describe
relationships between the class’ defined operations. The completeness of our specification is a
critical issue. Heuristically, we consider each pair, triple, etc. of member functions of Shape and
capture their mutual dependencies, if any, by algebraic equations. We remove obviously redundant

Using Term Rewriting to Verify Software 271

equations.

center(move(S, P)) = center(S) + P
top(move(S, point(X,Y))) = top(S) + Y
bottom(move(S, point(X,Y))) = bottom(S) + Y
left(move(S, point(X,Y))) = left(S) +X
right(move(S, point(X,Y))) = right(S) +X
center(S) = point((left(S) + right(S))/2, (top(S) + bottom(S))/2)
recenter(S, P) = move(S, P − center(S))
left(S) ≤ right(S)
bottom(S) ≤ top(S)

These specifications define the meanings of operations which manipulate objects of type Shape.
Using these specifications we may prove the correctness of the implementation of member functions
which are not pure virtual, by assuming the correctness of the “future” implementation of the
member which are pure virtual. As discussed earlier, the verification condition is

A(this) = s ∧ p = p′ { move (p-center());} A(this) = recenter(s, p) ∧ p = p′

where the conjunct p = p′ ensures that the argument of recenter remains constant.
The proof of the implementation of recenter relies on the pre- and post-conditions of Shape’s

center and move operations. For such proofs to hold when recenter is passed an object whose
type is derived from Shape, the object’s type must be a subtype, not merely a subclasses, of type
Shape. To show this, we must demonstrate that the relationships among the operations of Shape
hold for the operations and instances of Circle.

The specifications of Circle (shown below) differ from those of Shape, since the latter is a
classic abstract data type, rather than an abstract class in the C++ sense. The first condition is the
class invariant. It ensures that every Circle has a non-negative radius.

S = circle(C,R)⇒ R ≥ 0
R ≥ 0⇒ radius(circle(C,Q), R) = circle(C,R)
radius(circle(Q,R)) = R
center(circle(C,R)) = C
move(circle(C,R), P) = circle(C + P,R)
top(circle(point(X,Y), R)) = Y +R
bottom(circle(point(X,Y), R)) = Y −R
left(circle(point(X,Y), R)) = X −R
right(circle(point(X,Y), R)) = X +R

Circle’s operations can be annotated as usual [21], although the standard proof techniques for
imperative languages [11, 20] may fall short to prove object-oriented code.

We are concerned with a different problem here, that is, we want to prove that Circle is a
subtype of Shape. For this task we verify that the annotations of Shape hold for every instance
of Circle. This activity is similar to proving that Circle implements Shape with the technique
proposed in [19], with minor a difference—a Circle is a Shape, thus, no representation function
or equality interpretation is involved in the proofs.

Most of these proofs are easily formulated as problems for our theorem prover and completed
automatically.

Using Term Rewriting to Verify Software 272

3 Designing Specifications for Annotations

The problems discussed in the previous sections are formulated and resolved using first order
formulas. These formulas involve the symbols of a specification whose atomic components are
equations. In this section we discuss how we design both our equations and specifications. Our goal
is to produce equations and specifications that are easy to process automatically. The processing
is not limited to proving the formula expressing the correctness of a piece of software, but also
includes analyzing the specifications to determine that they satisfy properties whose absence is
often a sign of flaws.

A major obstacle to automation is the declarative nature of equations. Changing equations into
rewrite rules makes a specification more operational and simplifies the problem.

3.1 Term Rewriting

The unrestricted freedom, provided by equational reasoning, of replacing a term with an equal term
leads to a combinatorial explosion of possibilities which are hard to manage by a prover, whether
automated or human. An equation t1 = t2 can be “oriented” yielding a rewrite rule t1 → t2. This
rewrite rule still defines the equality of t1 and t2. It allows the replacement of an instance of t1
with the corresponding instance of t2, but forbids replacement in the opposite direction. Orienting
equations transforms an algebraic specification into a term rewriting system [10, 26].

There are two crucial properties that must be achieved when equations are oriented. Two
terms provably equal by equational reasoning, should have a common reduct, i.e., a third term
to which both can be rewritten. This property is referred to as confluence or Church-Rosser. In
addition, it should not be possible to rewrite a term forever, in particular there should be no
circular rewrites. This property is referred to as termination or Noetherianity. A system with both
properties is canonical or complete or convergent. The Knuth-Bendix completion procedure [27]
attempts to transform an equational specification into a complete rewrite system. The termination
of the procedure cannot be guaranteed and its execution may require human intervention. The
difficulty stems from the undecidability of whether or not a rewrite system is canonical [9, 22].

For this reason, we do not attempt to convert an equational specification in the correspond-
ing complete rewrite system. Rather, we ask specifiers to structure their specifications as rewrite
systems with the above characteristics. The task is eased considerably by two strategies used in de-
signing a specification. The technique also ensures other properties, such as sufficient completeness,
which we deem essential in our framework.

3.2 Sufficient Completeness of Constructor-Based Systems

To apply our technique we consider only constructor-based systems, i.e., we partition the signature
symbols into constructors and defined operations. The constructors of a type T generate all the
data instances or values of T which are represented by terms, called normal forms, that cannot be
reduced. Terms containing defined operations represent computations. For example, the construc-
tors of the natural numbers are 0 and successor (denoted by the postfix “+1” in the examples).
The constructors of the type stack discussed in Example 2 are newstack and push, since any stack
is either empty or is obtainable by pushing some element on some other stack. Concat and reverse
are examples of defined operations.

Using Term Rewriting to Verify Software 273

Considering constructor-based systems raises the problem of sufficient completeness, yet another
undecidable property [25]. For the specification of type T to be sufficiently complete, it must assign
a value to each term of type T [18]. If the specification is structured as a constructor-based rewrite
system, sufficient completeness is equivalent to the property that normal forms are constructor
terms. If left sides of axioms have defined operations as their outermost operators and constructor
terms as arguments, we can state necessary and sufficient conditions for the sufficient completeness
of a specification.

A constructor enumeration [7] is a set, C, of tuples of constructor terms such that substituting
constructor terms for variables in the tuples of C exhaustively and unambiguously generates the set
of all the tuples of constructor terms. The set of tuples of arguments of a defined operation should
be a constructor enumeration. For example, the set of tuples of arguments of drop, discussed in
Example 2 and shown below

C = {〈0, s〉, 〈i+ 1, newstack〉, 〈i+ 1, push(s, e)〉}

is a constructor enumeration of 〈nat, stack〉, since every pair 〈x, y〉, with x natural and y stack is
an instance of one and only one element of C.

The set of tuples of arguments of the operation max0 discussed in Example 1 is not a constructor
enumeration, since 〈0, 0〉 is an instance of both 〈0, i〉 and 〈i, 0〉. The second axiom of max0 should
have been

max0(i+ 1, 0) = i+ 1

Although the difference does not affect the specification, the latter axiomatization removes a (triv-
ial) ambiguity. Note that if the right side of the second axiom of max0 were defined as i+ 1, rather
than i, the specification would be inconsistent since 0 = 1 would be a consequence of the axioms.

An operation is overspecified when two rules can be used to rewrite the same combination of
arguments. It is underspecified when no rule can be used to rewrite some combination of arguments.
Overspecification can be detected by a superposition algorithm [27] which uses unification to detect
overlapping. Underspecification is a natural condition for some operations, although it creates
non-negligible problems. It can be systematically avoided, for example, in the framework of order-
sorted specifications [15]. Underspecification can be detected by an algorithm informally described
below [23]. Operations that are not underspecified are called completely defined.

Huet and Hullot devised an algorithm to detect incompletely defined operations. This algorithm
assembles the arguments of the axioms into tuples and the terms in the ith position of each tuple
are checked to see that they include a variable or “an instance of each constructor.” For each
constructor c, tuples of remaining arguments with constructor c or a variable in position i are
formed and recursively tested. A rigorous description appears in [23].

By way of example, we execute this algorithm with the set C as input. For constructor 0
in position 1, tuple 1 is considered. The set of tuples of remaining arguments, {〈s〉}, is trivially
complete. For constructor successor in position 1, tuples 2 and 3 are considered. The set of tuples
of remaining arguments is {〈newstack〉, 〈push(s, e)〉}. It contains an instance of each constructor of
stack in position 1. The completeness of each recursive problem, {〈〉} from newstack and {〈s, e〉}
from push, is obvious.

To ensure the confluence of a constructor-based specification it is sufficient to avoid overspecifi-
cation. To ensure sufficient completeness it is necessary, but not sufficient, to avoid underspecifica-
tion. If all operations are completely defined and terminating, then the specification is sufficiently

Using Term Rewriting to Verify Software 274

complete. In fact, every term has a normal form which obviously contains only constructor symbols
because any term containing a defined operation is reducible. Underspecification and overspeci-
fication are easily checked syntactic properties. However, the termination of a rewrite system is
undecidable [9]. In the next section, we discuss syntactic properties sufficient to ensure termination
and show how to obtain them through our design strategies.

3.3 Design Strategies for Axioms

Confluence and sufficient completeness are undecidable, although essential, properties of a spec-
ification. Lack of confluence implies that some computation is ambiguously specified. Lack of
sufficient completeness implies that some computation is unspecified. We regard both conditions
as serious flaws of a specification. We describe two design strategies for generating confluent and
sufficiently complete specifications.

The binary choice strategy is an interactive, iterative, non-deterministic procedure that through
a sequence of binary decisions generates the left sides of the axioms of a defined operation. We
used the symbol “ ”, called place, as a placeholder for a decision. Let f be an operation of type
s1, . . . , sk → s. Consider the template f(, . . . ,), where the ith place has sort si. To get a rule’s
left side we must replace each place of a template with either a variable or with a constructor term
of the appropriate sort. In forming the left sides, we neither want to forget some combination of
arguments, nor include other combinations twice. That is, we want to avoid both underspecification
and overspecification. This is equivalent to forming a constructor enumeration.

We achieve our goal by selecting a place in a template and chosing one of two options: “variable”
or “inductive.” The choice variable replaces the selected place with a fresh variable. The choice
inductive for a place of sort si splits the corresponding template in several new templates, one for
each constructor c of sort si. Each new template replaces the selected place with c(, . . . ,), where
there are as many places as the arity of c. A formal description of the strategy appears in [3].
We apply the strategy for designing the (left sides of the) rules of the operation drop discussed in
Example 2. The initial template is

drop(,)

We chose inductive for the first place. Since the sort of this place is natural, we split the template
into two new templates, one associated with 0 and the other with successor

drop(0,)
drop(+ 1,)

We now chose variable for the remaining place of the first template and variable again for the first
place of the second template to obtain:

drop(0, s)
drop(i+ 1,)

We chose inductive for last remaining place. Since the sort of this place is stack, we again split
the template in two new templates, one associated with newstack and the other with push. We
obtain:

drop(0, s)
drop(i+ 1, newstack)
drop(i+ 1, push(,))

Using Term Rewriting to Verify Software 275

For each remaining choice, variable is selected, completing the rules’ left sides.
We now describe the second strategy, which ensures termination. The recursive reduction of a

term t is the term obtained by “stripping” t of its recursive constructors. A constructor of sort s
is called recursive if it has some argument of sort s. For example, successor and push are recursive
constructors. “Stripping” a term c(t1, . . . , tk), where c is a derived operation and ti is a recursive
constructor, removes the outermost application of the constructor from ti. The stripping process is
recursively applied throughout the term. A formal description of the recursive reduction function
appears in [3]. We show its application in examples.

For reasons that will become clear shortly, we are interested in computing the recursive reduction
of the left side of a rewrite rule for use in the corresponding right side. The symbol “$” in the right
side of a rule denotes the recursive reduction of the rule’s left side. With this convention, the last
axiom of drop is written

drop(i+ 1, push(s, e)) = $

since the recursive reduction of the left side is drop(i, s). We obtain it by replacing i+1 with i since
i is the recursive argument of successor, and by replacing push(s, e) with s since s is the recursive
argument of push. When a constructor has several recursive arguments the recursive reduction
requires an explicit indication of the selected argument. We may also specify a partial, rather than
complete, “stripping” of the recursive constructors.

The recursive reduction strategy consists in defining the right sides of rules using only functional
composition of symbols of a terminating term rewriting system and the recursive reduction of the
corresponding left sides. If a specification is designed using the binary choice and the recursive
reduction strategies, then it is canonical and sufficiently complete [3].

3.4 Design Strategies for Specifications

The above strategies lead naturally to the design approach called stepwise specification by exten-
sions [12]. Given a specification Si, a step extends the specification by adding some operations
and yielding a new specification Si+1. Si+1 is a complete and consistent extension of Si [12], if
every data element of Si+1 was already in Si and distinct elements of Si remain distinct in Si+1.
Furthermore, if Si is canonical and sufficiently complete, then so is Si+1 [3].

We clarify these concepts by showing the steps yielding the specification of Example 2. Our
initial specification, S0, consists of the sorts boolean, natural and stack with their constructors
only, i.e., true, false, 0, successor, newstack, and push. Since there are no rewrite rules, i.e., the
constructors are free, the canonicity and sufficient completeness of S0 are trivially established. Now
we extend S0 with the operation concat obtaining S1.

concat(newstack, s) = s
concat(push(s, e), t) = push($, e)

The recursive reduction of the left side is concat(s, t). Since we designed the concat axioms using
the binary choice and recursive reduction strategies, S1 is a complete and consistent extension of
S0 and is a canonical and sufficiently complete specification. During this step we may also extend
S0 with drop, take, size, and isnewstack. However, we cannot extend S0 with reverse because
the right side of one axiom of reverse contains concat. We must first establish the properties of

Using Term Rewriting to Verify Software 276

the specification containing concat. Hence, a separate step is necessary. Then, we extend S1 with
the operation reverse obtaining S2.

reverse(newstack) = newstack
reverse(push(s, e)) = concat($, push(newstack, e))

Our strategies together with the stepwise approach ensure again that S2 is a complete and consistent
extension of S1 and is a canonical and sufficiently complete specification. All the specifications
presented in this note are designed in this manner.

The binary choice strategy force us to construct left sides of plausible axioms for which we
do not want to define a right side. We complete the definition of these “axioms” by placing the
distinguished symbol “?” in the right side. Other specification languages follow an equivalent
approach to control incompleteness. For example, Larch would declare as “exempt” any term
appearing as left side of one of the axiom we single out with “?” Our strategies can be used also in
the presence of non-free constructors. Some properties of specifications with non-free constructors,
such as confluence, are no longer automatically guaranteed, but they can be checked more easily
than when no strategies at all are used in the design of the specification [3].

4 Proving Theorems About Annotations

The examples in the previous section contain many small theorems that need to be proved. Au-
tomating these proofs makes them easier to carry out and less prone to error. In this section we
report our experience with this task.

4.1 Induction

Many equations, e.g., X + Y = Y + X, cannot be proved by rewriting, i.e., using only equational
reasoning. Such equations can be proved via structural induction [6] or data type induction [19].
Inductive variables of type T are replaced by terms determined by T ’s constructors and inductive
hypotheses are established. If F is a formula to be proved, v is the inductive variable, and s is the
type of v, our induction proofs are carried out in the following manner. For every constructor c of
type s1 × . . . × sn → s for n ≥ 0, we prove F [c(v1, . . . , vn)/v], where vi, 1 ≤ i ≤ n, is a distinct
Skolem constant; and if si = s, then F [vi/v] is an inductive hypothesis.

4.2 An Automated Theorem Prover

We have implemented a prototype theorem prover incorporating many concepts from the Boyer-
Moore Theorem Prover [5]. However, except for built-in knowledge of term equality and data type
induction, the knowledge in the theorem prover is supplied by specifications. Our theorem prover
checks that each function is completely defined by executing Huet’s inductive definition. During
this check it identifies as “inductive” those arguments filled by instances of constructors. The
discovery of inductive arguments allows the prover to generate automatically the theorems which
constitute the cases of a proof by induction.

The theorem prover executes four basic actions: reduce, fertilize, generalize, and induct. Reduce
applies a rewrite rule to the formula being proved. Fertilize is responsible for “using” an inductive
hypothesis (i.e., replacing a subterm in the current formula with an equivalent term from an induc-
tive hypothesis). Generalize tries to replace some non-variable subterm common to both sides of

Using Term Rewriting to Verify Software 277

the formula with a fresh variable. Induct selects an inductive variable and generates new equations.
An induction variable is chosen from the set of the inductive arguments by heuristics which include
popularity [5] and seniority.

The theorem prover computes a boolean recursive function, called prove, whose input is an
equation and whose output is true if and only if the equation has been proved. Axioms and lemmas
of the specification are accessed as global data. Proofs of theorems are generated as side effects of
computations of prove. Users may override the automatic choices, made by the prover, for inductive
variables and generalizations. A technique discussed later allows users to use case analyses in proofs.

function prove(E) is
begin

if E has the form x = x, for some term x, then return true; end if;
if E can be reduced, then return prove(reduce(E)); end if;
if E can be fertilized, then return prove(fertilize(E)); end if;
E′ := generalize(E);
if E′ contains an inductive variable, then

E1, . . . , En := induct(E′);
return prove(E1) andalso . . . andalso prove(En);

end if;
return false;

end prove;

An attempt to prove a theorem may exhaust the available resources, since induction may generate
an infinite sequence of formulas to be proved. However, the termination property of the rewrite
system guarantees that an equation cannot be reduced forever and the elimination of previously
used inductive hypotheses [5] guarantees that an equation cannot be fertilized forever.

5 Experience Proving Theorems

All the proofs discussed in the previous sections have been completely generated with our theorem
prover, except for two proofs of inheritance properties. Many proofs were produced automatically
by the prover. Others were generated only after we supplied additional lemmas, independently
proved using the theorem prover.

The validation proofs for power functions for both while statement examples were all done
automatically, some with just term rewriting and the others with rewriting and induction. The
minimization proofs were slightly more challenging. Those for the array example required three
simple lemmas (e.g., X + 1 > Y = X ≥ Y) to be proved and added to the set of axioms before the
theorem prover could finish the proofs. The lemmas were suggested by the similarity of terms on
opposite sides of the equations generated by the theorem prover. Generalization had to be inhibited
to obtain the minimization proofs for the stack example, as explained below. Relationships between
different Skolem constants inserted at the same time may be lost when generalization replaces terms
containing these constants with new constants. In attempting to verify

(k < size(s))⇒ ¬isnewstack(drop(k, s))

we generate the equation

((1 < size(A1))⇒ ¬isnewstack(drop(1, A1))) = ((0 < size(A1))⇒ ¬isnewstack(A1))

Using Term Rewriting to Verify Software 278

Generalization replaces size(A1) with a new Skolem constant B2 and starts to verify the lemma

((1 < B2)⇒ ¬isnewstack(drop(1, A1))) = ((0 < B2)⇒ ¬isnewstack(A1))

The relation between A1 and B2, lost by the generalization, is crucial to the validity of the theorem.
In nested inductions, for B2 = 1 and A1 = newstack, this equation is rewritten to

true = false

and the proof attempt fails. Simply inhibiting generalization in this case solves the problem and
the theorem is proved with just rewriting and induction.

However, generalization is essential to other proofs. We illustrate this by an example, which
also shows how we discover the lemmas that make some proofs possible or simpler. The proof of
the total correctness of Example 2 requires verifying

concat(reverse(take(size(s), s)), newstack) = reverse(s)

During an induction on s, the formula to be proved becomes

concat(concat(reverse(take(size(A1), A1)), push(newstack,A2)), newstack)
= concat(concat(reverse(take(size(A1), A1)), newstack), push(newstack,A2))

The prover simultaneously generalizes reverse(take(size(A1), A1)) and push(newstack,A2) and
attempts to prove

concat(concat(A6, A7), newstack) = concat(concat(A6, newstack), A7) (4)

The proof is easily completed by nested inductions on A6 and A7. Without generalization, the
proof continues by induction on A1, but the inductive hypothesis is not strong enough to complete
the proof. The prover keeps generating new inductions on formulas with increasing complexities
until the available resources are exhausted.

We regard generalized formulas as lemmas. Often we are able to further generalize the lemmas
suggested by the prover. For example, equation (4) suggests that newstack might be a right identity
of concat. Thus we prove

concat(s, newstack) = s

and use it as a lemma in the original proof. This immediately reduced the original formula to

reverse(take(size(s), s)) = reverse(s)

The presence of a leading reverse on each side of the equation suggests that the equality may
depend on the arguments only. Thus we attempt to prove

take(size(s), s) = s

The proof succeeds and we use this result as a lemma in the original proof. With these two
lemmas the original proof becomes trivial. Both lemmas are obtained by “removing context.”
Generalization hypothesizes that the truth of an equation does not depend on certain internal
specific portions of each side. The latter example hypothesizes that the truth of an equation does
not depend on certain external specific portions each side, i.e., reverse(. . .).

Using Term Rewriting to Verify Software 279

A proof of the conditions required for the semantic correctness of the generic instantiations of
accumulator was attempted for the operations max0 (see Example 1), addition, multiplication, and
exponentiation. The theorems relative to the first three instantiations were all proved automatically.
However, the attempt to prove the associativity of exponentiation fails. The prover attempts to
verify (xy)z = x(yz) by a nested induction. For z = 0 and x = 0 the equation is reduced to 1 = 0 and
the prover halts with a message that it failed for this case. Thus, only the first three instantiations
of the generic accumulator are semantically correct. Interestingly, the fact that equation (3) holds
when step is associative and init is its left identity was proved automatically by our prover too.

The reversal of a stack discussed in Example 2 can be parallelized by a divide-and-conquer
technique similar to that discussed for accumulation. This program is an instance of a more
complex case of accumulation, in which the type of the result of the accumulation differs from the
type of the of elements of the accumulated sequence. We may exploit parallelism if we assume that
a stack is dynamically allocated in “chunks.” Each chunk consists of a fixed-size array-like group of
contiguous memory locations, which are addressed by an index. Chunks are allocated on demand
and do not necessarily occupy contiguous locations of memory, rather are threaded together by
pointers as in a linked list. We reverse a stack in parallel only when the stack consists of several
chunks. In this case, we split the stack in two non-empty portions, say x and y, of linked together
whole chunks. We assume that the bottommost chunk of x points to the topmost chunk of y. We
reverse this link and recursively reverse x and y. When a portion of a stack consists of a single
chunk, we only have to swap the content of the chunk’s memory locations to achieve reversal. The
correctness of this parallel implementation of a stack reversal relies on the equation

reverse(concat(x, y)) = concat(reverse(y), reverse(x))

where reverse and concat were defined in Example 2. Operationally, concat stands for the operation
linking together two portions of a stack represented by its arguments. Reverse is overloaded: on
multi-chunk stacks it partitions and recurs whereas on single-chunk stacks it swaps. The proof of the
equation entails only the mutual relationships between these symbols, not their implementations.
Thus, the representation “in chunks” of the type stack is not an issue of the proof. Obviously, in a
comprehensive proof of correctness the differences between the two computations associated to the
symbol reverse must be accounted for, e.g., as discussed in Section 2.2.

Our prover proves the above equation without human help. Interestingly, during the proof,
which is by induction on x, the prover automatically generates and proves an independent lemma
for each case of the induction. One lemma states that newstack is a right identity of concat, the
other that concat is associative.

In Section 2.4, we presented annotations involving the C++ predefined type double. We did not
axiomatize this type by means of an algebraic inductive specification, and consequently we could
not use our prover for theorems relying on intrinsic properties of this type. However, all the proofs
in this section, except left(S) ≤ right(S) and bottom(S) ≤ top(S), were easily proved when we
provided some simple unproved lemmas, such the commutativity of “+” for double.

5.1 An Informal Comparison

The need to supply guidance to an automatic prover is not a peculiarity of our implementation.
For example, the Larch Theorem Prover (LP) [13] is designed to be a proof checker as well as an
automated prover. We consider this a approach very sensible.

Using Term Rewriting to Verify Software 280

The guidance required by our prover is in the form of lemmas. Lemmas simplify proofs and
improve understanding by “removing context.” In our case they also overcome the lack of certain
proof tactics and of a friendly interface in our implementation.

We briefly compare how LP and our prover prove two sample theorems proposed in [13]. The
proofs involve the types linear container and priority queue, whose axioms are shown below, a total
order, and the type boolean with standard operators.

isempty : queue→ boolean

isempty(new) = true
isempty(insert(C,E)) = false

member : queue→ boolean

member(new,E) = false
member(insert(C,E), F) = ((E = F) ∨member(C,F))

next : queue→ nat

next(new) = ?
next(insert(Q,C)) = if isempty(Q) then C

else if next(Q) < C then next(Q)
else C

The “?” symbol in the axioms of next corresponds to the Larch declaration “exempt” for next(new).
LP was used to prove the theorems:

isempty(C) ⇒ ¬member(C,E)
member(Q,E) ⇒ ¬(E < next(Q))

The first theorem was proved after an inductive variable (C) was explicitly picked. The second
theorem required more intervention after rewriting produced:

((E = V) ∨member(Q,E))⇒
¬(E < (if isempty(Q) then V else if V < next(Q) then V else next(Q)))

LP was given a series of commands to divide the proof into cases and apply critical-pairs comple-
tions. The case isempty(Q) required a critical-pairs completion. The case ¬isempty(Q) required
case analysis on the truth V < next(Q). Each case was further subdivided based on the truth
of E = V . For the case ¬(V < next(Q)) and ¬(E = V) another critical-pairs completion was
requested.

Our prover also verified both these theorems, the first automatically and the second after we
added a few lemmas to the axioms. Since our prover’s only knowledge derives from axioms, we do
not treat conditional expressions or implications in any special manner. They are represented by
means of user-defined operations. For example, implication is defined by the following axioms.

⇒ : boolean× boolean→ boolean

true⇒ X = X
false⇒ X = true

Thus we often need lemmas to manipulate these functions.

Using Term Rewriting to Verify Software 281

Since our prover handles only equations, we formulate the second theorem as

(member(A0, A1)⇒ ¬(A1 < next(A0))) = true

The prover automatically chooses A0 as the inductive variable. The base case, A0 = new, is
trivially proved by rewriting. The inductive case, A0 = insert(A2, A3), gives (member(A2, A1)⇒
¬(A1 < next(A2))) = true as an inductive hypothesis and reduces the left side to

((A3 = A1) ∨member(A2, A1))⇒ ξ

where ξ is a large nested conditional expression. We use two “standard” lemmas to simplify ξ. One
distributes “<” with respect to conditionals, i.e., we replace instances of x < if b then y else z
with if b then x < y else x < z. This transformation allows the use of properties of the ordering
relation “<” such as irreflexivity and the “implied equation” [13, Fig. 9]. The other lemma splits
implications whose antecedent is a disjunction, i.e., we replace instances of x ∨ y ⇒ z with (x ⇒
z)∧ (y ⇒ z). This transformation allows the use of each antecedent independently. By applications
of these lemmas, left side of the equation to be proved becomes

((A3 = A1)⇒ ξ′) ∧ (member(A2, A1)⇒ ξ′)

Now we enable the use of the antecedent of each conjunct of the formula by means of two “specific”
lemmas. This approach is directly inspired by [5]. One lemma replaces instances of (x = y)⇒ P (y)
with (x 6= y)∨P (x), the other lemma replaces instances Q⇒ P (y) with ¬Q∨P (x), if Q⇒ (x = y)
holds. The specific instance of the latter is member(A2, A1) => (isempty(A2) = false), i.e., the
contrapositive form of the first theorem proved for this problem.

After several inference steps, the left side is reduced to:

¬member(A2, A1) ∨ ¬(((next(A2) < A3) ∧ (A1 < next(A2))) ∨
(¬(next(A2) < A3) ∧ (A1 < A3)))

Now, we continue by cases on next(A2) < A3 because this expression and its negation appear in
the formula. Although, our prover lacks a “proof-by-cases” tactic, we can simulate it by a lemma.
If P is the formula being proved and x is a boolean subexpression of P , we use a lemma to rewrite
P to (x ⇒ P) ∧ (¬x ⇒ P). In x ⇒ P , we can replace the subexpression x of P by any y that is
known to be implied by x, and likewise for the other conjunct, that is reasoning by cases allows us
to cross-fertilize P [5]. Using this lemma triggers additional rewriting activity to transform the left
side to:

((next(A2) < A3)⇒ (¬member(A2, A1) ∨ ¬(A1 < next(A2)))) ∧
(¬(next(A2) < A3)⇒ (¬member(A2, A1) ∨ ¬(A1 < A3)))

The conjunct with antecedent next(A2) < A3 is rewritten as

(next(A2) < A3)⇒ (member(A2, A1)⇒ ¬(A1 < next(A2)))

fertilized with the inductive hypothesis, and reduced to true.
We continue by cases on member(A2, A1) because the truth of the theorem depends on standard

properties of ordering relations.

(member(A2, A1)⇒ (¬(next(A2) < A3)⇒ ((A1 < next(A2)) ∨ ¬(A1 < A3)))) ∧
(¬(member(A2, A1))⇒ (¬(next(A2) < A3)⇒ (true ∨ ¬(A1 < A3))))

Using Term Rewriting to Verify Software 282

The first conjunct is rewritten to

member(A2, A1)⇒ (¬(next(A2) < A3) ∧ (¬(A1 < next(A2))⇒ ¬(A1 < A3)))

where the consequent holds by the transitivity of “≥”. By successively reducing its consequents to
true, the second conjunct is eventually reduced to true.

¬(member(A2, A1))⇒ (¬(next(A2) < A3)⇒ (true ∨ ¬(A1 < A3)))
¬(member(A2, A1))⇒ (¬(next(A2) < A3)⇒ true)
¬(member(A2, A1))⇒ true
true

Thus the proof terminates successfully.
The complexities of these proofs are comparable to those obtained with LP. All inductive vari-

ables are chosen automatically, less case analysis is required, and there is no need to invoke the
Knuth-Bendix completion. Although this technique is occasionally useful, we find the proofs it
generates difficult to understand, and thus we prefer this tactic for situations that do not allow
data type induction, e.g., non constructor-based specifications.

We had to provide more lemmas to our prover. These lemmas are either trivial or instances
of trivial lemma schemas, although suggesting them requires “understanding the proof.” This
is a mixed blessing. The effort to understand why a proof does or does not go through helps
discovering the relevant properties of a specification. This may lead to better specifications and
even code enhancements.

The user interface of our prover is very primitive. As a consequence we iterated our proof
attempt several times before completion and we had to create manually the instances of the lemma
schemas we supplied to the prover.

6 Concluding Remarks

We have discussed formal verification techniques for problems characterized by both differences
in sizes and addressed properties. Loops are the critical components of small programs. The
problems to be solved in this domain are correctness and termination, lack of expressiveness of
the axiomatizations used for annotations, and the inherent difficulty of reasoning about repeated
modifications of a program state.

Data type implementations are representative of medium size programs. The crucial problem to
be solved is the mutual internal consistency of a group of related subroutines bound by the choice
of the representation of abstract concepts by means of the structures offered by some hardware
architecture and/or some programming language. Proofs of correctness in this domain entail not
only the code, but also the representation mapping which has no physical presence in the software.

Module interconnection is the significant feature of large programs. Syntactic and semantic
commitments of one component may not match the expectations of another. This problem is ex-
acerbated by languages that allow the customization of a software unit by means of other units.
Proving correctness does not involve code directly, but annotations generated by proofs of correct-
ness for previous problems.

These tasks can all be addressed with a common formalism (equational specifications) and proof
techniques (rewriting and induction). In particular, their formalizations are based on specifications

Using Term Rewriting to Verify Software 283

that from a qualitative (and to some extent quantitative) point of view are independent of the tasks
and of their sizes. Furthermore, we have discussed conceptual and practical tools for designing and
using these specifications.

A crucial requirement of any specification is its adequacy. The assumption that a specification
is “good” is often mistaken unless considerable care is devoted to its design. Several properties,
unfortunately undecidable, are generally used to address the quality of a specification. We have
shown that, by restricting the expressive power of our specification language, the most common
and fundamental of these properties can be guaranteed. It is hard to say whether our restrictions
are too severe, but it is encouraging to discover that typical verification problems proposed in the
literature do not pose severe problems and that the proposed specifications are easy to use for both
humans and an automated tool.

Rewriting is the fundamental idea behind our approach. The design strategies we have presented
for designing rewrite rules ensure properties of the smaller units of specifications, the defined
operations. Our strategies also allow us to build specifications incrementally in a way that preserves
the properties of smaller units. In building large specifications from smaller ones, we glossed over the
problems of modularizations and parameterization of specifications. Our approach is compatible
with various techniques proposed for these features. In this respect, the properties we are able
guarantee ease the composition of specifications.

The hardest task of nearly any verification problem is proving theorems. Informal proofs are
easier to understand than formal ones, but are less reliable. Formal proofs, except for the simplest
problems, are too complicated for humans without automated tools. Our proofs contain a few
hundreds inferences, the majority of which are simple rewriting steps. Our prover becomes more
effective with occasional hints. The lemmas we supply are “macro-steps” that the prover, for lack
of knowledge and experience, would not carry to completion in certain contexts.

Finding the appropriate lemmas is not always easy. However, some lemmas such as those
discussed in our comparison with LP are relatively standard. Others are suggested by the prover
itself through generalization. From generalizations we sometimes find more elegant lemmas. Finally,
by inspecting proof attempts, we are able to detect repeated patterns or formulas of increasing
complexities which generally lead to proof failures. When these conditions arise, we look for lemmas
that overcome the problems.

We believe that our specification approach is adequate for a large number of cases. However,
our prover still fails to solve most non-trivial problems autonomously. It manages the bookkeeping
of inductions and it provides hints for necessary lemmas. It completely removes the tedium of
rewriting and the clerical mistakes associated with this activity. It prints readable proofs, although
sometimes it makes inferences that are not necessary because the prover’s rewrite strategy is in-
nermost. An outermost rewriting strategy would produce shorter and more readable proofs. It
shows a remarkable skill in finding inductive variables. Despite the considerable limitations in its
user interface and proof tactics, the prover increases the quality of our specifications and enhances
considerably the human ability to produce formal proofs for software problems.

References

[1] P. America. A parallel object-oriented language with inheritance and subtyping. ACM SIG-
PLAN Notices, 25(10):161–168, October 1990.

Using Term Rewriting to Verify Software 284

[2] S. Antoy. Automatically provable specifications. Technical Report 1876, Dept. of Computer
Science, University of Maryland, 1987.

[3] S. Antoy. Design strategies for rewrite rules. In S. Kaplan and M. Okada, editors, CTRS’90,
pages 333–341, Montreal, Canada, June 1990. Lect. Notes in Comp. Sci., Vol. 516.

[4] S.K. Basu. On development of iterative programs from functional specifications. IEEE Trans.
Soft. Eng., 6(2):170–182, 1980.

[5] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.

[6] R. Burstall. Proving properties of programs by structural induction. Computer Journal,
12(1):41–48, 1969.

[7] C. Choppy, S. Kaplan, and M. Soria. Complexity analysis of term-rewriting systems. Theo-
retical Computer Science, 67:261–282, 1989.

[8] J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, London, 1980.

[9] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116, 1987.

[10] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pages 243–320.
North Holland, Amsterdam, 1990.

[11] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[12] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications 1: Equations and Initial
Semantics. Springer-Verlag, Berlin, 1985.

[13] S.J. Garland, J.V. Guttag, and J.J. Horning. Debugging Larch shared language specifications.
IEEE Trans. on Soft. Eng., 16(9):1044–1057, 1990.

[14] J. Goguen. Reusing and interconnecting software components. IEEE Computer, 19(2):16–28,
1986.

[15] J. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semantics of order-sorted algebras.
In W. Brauer, editor, CALP’85, 1985. Lect. Notes in Comp. Sci., Vol. 194.

[16] J. A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI
International, Menlo Park, CA, 1988.

[17] J. Guttag. Notes on type abstraction. IEEE Trans. Soft. Eng., 6(1):13–23, 1980.

[18] J.V. Guttag and J.J. Horning. The algebraic specification of abstract data types. Acta Infor-
matica, 10:27–52, 1978.

[19] J.V. Guttag, E. Horowitz, and D. Musser. Abstract data types and software validation. Comm.
of the ACM, 21:1048–1064, 1978.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12:576–583, 1969.

Using Term Rewriting to Verify Software 285

[21] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,
1972.

[22] G. Huet. Confluent reductions: Abstract properties and applications to term-rewriting sys-
tems. JACM, 27:797–821, 1980.

[23] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. JCSS,
25:239–266, 1982.

[24] S. Kamin. The expressive theory of stacks. Acta Informatica, 24:695–709, 1987.

[25] D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related properties of
term rewriting systems. Acta Informatica, 24:395–415, 1987.

[26] J.W. Klop. Term rewriting systems. In D. Gabbay S. Abramsky and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume II, pages 1–112. Oxford University Press,
1992.

[27] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras, pages 263–297.
Pergamon, 1970.

[28] G.T. Leavens. Modular specification and verification of object-oriented programs. IEEE Soft-
ware, 8(4):72–80, July 1991.

[29] B. Liskov and J.M. Wing. Family values: A semantic notion of subtyping. Technical Report
LCS TR-562, MIT, 1992.

[30] M. Wand. A new incompleteness result for Hoare’s system. JACM, 25:168–175, 1978.

[31] W.A. Wulf, R.L. London, and M. Shaw. An introduction to the construction and verification
of Alphard programs. IEEE Trans. Soft. Eng., 2:253–265, 1976.

[32] R.T. Yeh. Verification of programs by predicate transformation. In R.T. Yeh, editor, Current
Trends in Programming Methodology, volume 1, pages 228–247. Prentice-Hall, Englewood Cliff,
NJ, 1978.

Using Term Rewriting to Verify Software 286

A Proving a Theorem

We show the session in which our prover proves the main theorem of example 2, that is, for all
stacks s

concat(reverse(take(size(s), s)), newstack) = reverse(s)

The input to our prover has the syntax of Prolog. The complete input for the above problem
is shown below. Sortn is a binary predicate declaring a sort and its constructors. Function is a
ternary predicate defining arity and co-arity of a signature symbol. Axiom is a ternary predicate.
It defines left and right sides of a rewrite rule in the second and third arguments respectively. The
first argument is a label for reference in the proofs. Theorem is a predicate defining an equation
to be proved. Similar to axiom, its first argument is a label. Go is the command to prove a set of
theorems.

sortn(nat,[0,succ]).
function(0,[],nat).
function(succ,[nat],nat).

sortn(elem,[]).

sortn(stack,[newstack,push]).
function(newstack,[],stack).
function(push,[stack,elem],stack).

function(take,[nat,stack],stack).
axiom(take_1,take(0,_),newstack).
axiom(take_2,take(succ(_),newstack),newstack).
axiom(take_3,take(succ(N),push(S,E)),push(take(N,S),E)).

function(concat,[stack,stack],stack).
axiom(concat_1,concat(newstack,S),S).
axiom(concat_2,concat(push(S,E),T),push(concat(S,T),E)).

function(reverse,[stack],stack).
axiom(reverse_1,reverse(newstack),newstack).
axiom(reverse_2,reverse(push(S,E)),concat(reverse(S),push(newstack,E))).

function(size,[stack],nat).
axiom(size_1,size(newstack),0).
axiom(size_2,size(push(S,_)),succ(size(S))).

theorem(’wp by pf’, concat(reverse(take(size(S),S)),newstack), reverse(S)).

?- go.

The following transcript shows a session with our prover. Appendixa is the name of the file contain-
ing the above data. Induce is a shell script that loads a Prolog image of our prover and feeds input

Using Term Rewriting to Verify Software 287

to it. Long lines have been wrapped to fit the page width. Lines headed by “IH-” show inductive
hypotheses, if any. Lines headed by “(L)” or “(R)” indicate the application of a transformation to
the left or respectively right side of the equation being proved. The transformation is explained in
the string delimited by “<<”.

The text describes how the lemma to which the proof reduces is automatically generated and
how the proof could be considerably simplified by the use of two other lemmas.

antares[4]% induce appendixa

yes
{consulting /home/antares/users/antoy/theorems/appendixa...}

The theorem is:
concat(reverse(take(size(A0),A0)),newstack) = reverse(A0)

Begin induction on A0
Induction on A0 case newstack
Inductive hypotheses are:

(L) concat(reverse(take(size(newstack),newstack)),newstack)
<< subst A0 with newstack <<

(R) reverse(newstack) << subst A0 with newstack <<
(L) concat(reverse(take(0,newstack)),newstack) << reduct by size_1 <<
(L) concat(reverse(newstack),newstack) << reduct by take_1 <<
(L) concat(newstack,newstack) << reduct by reverse_1 <<
(L) newstack << reduct by concat_1 <<
(R) newstack << reduct by reverse_1 <<
*** equality obtained ***

Induction on A0 case push(A1,A2)
Inductive hypotheses are:

IH- concat(reverse(take(size(A1),A1)),newstack)=reverse(A1)
(L) concat(reverse(take(size(push(A1,A2)),push(A1,A2))),newstack)

<< subst A0 with push(A1,A2) <<
(R) reverse(push(A1,A2)) << subst A0 with push(A1,A2) <<
(L) concat(reverse(take(succ(size(A1)),push(A1,A2))),newstack)

<< reduct by size_2 <<
(L) concat(reverse(push(take(size(A1),A1),A2)),newstack)

<< reduct by take_3 <<
(L) concat(concat(reverse(take(size(A1),A1)),push(newstack,A2)),newstack)

<< reduct by reverse_2 <<
(R) concat(reverse(A1),push(newstack,A2)) << reduct by reverse_2 <<
(R) concat(concat(reverse(take(size(A1),A1)),newstack),push(newstack,A2))

<< ind. hyp. on A0 for A1 <<
(L) concat(concat(A6,A7),newstack)

<< gen of reverse(take(size(A1),A1)) push(newstack,A2) <<
(R) concat(concat(A6,newstack),A7)

<< gen of reverse(take(size(A1),A1)) push(newstack,A2) <<

Using Term Rewriting to Verify Software 288

*** equality depends on next lemma ***
The lemma is:

concat(concat(A6,A7),newstack) = concat(concat(A6,newstack),A7)
Begin induction on A6
Induction on A6 case newstack
Inductive hypotheses are:

(L) concat(concat(newstack,A7),newstack) << subst A6 with newstack <<
(R) concat(concat(newstack,newstack),A7) << subst A6 with newstack <<
(L) concat(A7,newstack) << reduct by concat_1 <<
(R) concat(newstack,A7) << reduct by concat_1 <<
(R) A7 << reduct by concat_1 <<

Begin induction on A7
Induction on A7 case newstack
Inductive hypotheses are:

(L) concat(newstack,newstack) << subst A7 with newstack <<
(R) newstack << subst A7 with newstack <<
(L) newstack << reduct by concat_1 <<
*** equality obtained ***

Induction on A7 case push(B0,B1)
Inductive hypotheses are:

IH- concat(B0,newstack)=B0
(L) concat(push(B0,B1),newstack) << subst A7 with push(B0,B1) <<
(R) push(B0,B1) << subst A7 with push(B0,B1) <<
(L) push(concat(B0,newstack),B1) << reduct by concat_2 <<
(L) push(B0,B1) << ind. hyp. on A7 for B0 <<
*** equality obtained ***

End induction on A7
Induction on A6 case push(A8,A9)
Inductive hypotheses are:

IH- concat(concat(A8,A7),newstack)=concat(concat(A8,newstack),A7)
(L) concat(concat(push(A8,A9),A7),newstack) << subst A6 with push(A8,A9) <<
(R) concat(concat(push(A8,A9),newstack),A7) << subst A6 with push(A8,A9) <<
(L) concat(push(concat(A8,A7),A9),newstack) << reduct by concat_2 <<
(L) push(concat(concat(A8,A7),newstack),A9) << reduct by concat_2 <<
(R) concat(push(concat(A8,newstack),A9),A7) << reduct by concat_2 <<
(R) push(concat(concat(A8,newstack),A7),A9) << reduct by concat_2 <<
(L) push(concat(concat(A8,newstack),A7),A9) << ind. hyp. on A6 for A8 <<
*** equality obtained ***

End induction on A6
End induction on A0
QED
{/home/antares/users/antoy/theorems/appendixa consulted, 1390 msec 4416 bytes}

yes
antares[5]%

