
Under consideration for publication in Theory and Practice of Logic Programming 1

Default Rules for Curry∗
SERGIO ANTOY

Computer Science Dept., Portland State University, Oregon, U.S.A.

(e-mail: antoy@cs.pdx.edu)

MICHAEL HANUS

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
(e-mail: mh@informatik.uni-kiel.de)

submitted January 31, 2016; revised April 13, 2016; accepted May 2, 2016

Abstract

In functional logic programs, rules are applicable independently of textual order, i.e., any
rule can potentially be used to evaluate an expression. This is similar to logic languages
and contrary to functional languages, e.g., Haskell enforces a strict sequential interpreta-
tion of rules. However, in some situations it is convenient to express alternatives by means
of compact default rules. Although default rules are often used in functional programs, the
non-deterministic nature of functional logic programs does not allow to directly transfer
this concept from functional to functional logic languages in a meaningful way. In this pa-
per we propose a new concept of default rules for Curry that supports a programming style
similar to functional programming while preserving the core properties of functional logic
programming, i.e., completeness, non-determinism, and logic-oriented use of functions. We
discuss the basic concept and propose an implementation which exploits advanced features
of functional logic languages.

KEYWORDS: functional logic programming, semantics, program transformation

1 Motivation

Functional logic languages combine the most important features of functional and

logic programming in a single language (see (Antoy and Hanus 2010; Hanus 2013)

for recent surveys). In particular, the functional logic language Curry (Hanus (ed.)

2016) conceptually extends Haskell with common features of logic programming,

i.e., non-determinism, free variables, and constraint solving. Moreover, the amalga-

mated features of Curry support new programming techniques, like deep pattern

matching through the use of functional patterns, i.e., evaluable functions at pattern

positions (Antoy and Hanus 2005).

For example, suppose that we want to compute two elements x and y in a list l

∗ This is an extended version of a paper presented at the international symposium on Practical
Aspects of Declarative Languages (PADL 2016), invited as a rapid communication in TPLP.
The authors acknowledge the assistance of the conference program chairs Marco Gavanelli and
John Reppy.

2 Sergio Antoy and Michael Hanus

with the property that the distance between the two elements is n, i.e., in l there

are n − 1 elements between x and y . We will use this condition in the n-queens

program discussed later. Of course, there may be many pairs of elements in a list

satisfying the given condition (“++” denotes the concatenation of lists):

dist n (_++[x]++zs++[y]++_) | n == length zs + 1 = (x,y)

Defining functions by case distinction through pattern matching is a very use-

ful feature. Functional patterns make this feature even more convenient. However,

in functional logic languages, this feature is slightly more delicate because of the

possibility of functional patterns, which typically stand for an infinite number of

standard patterns, and because there is no textual order among the rules defining

an operation. The variables in a functional pattern are bound like the variables in

ordinary patterns.

As a simple example, consider an operation isSet intended to check whether a

given list represents a set, i.e., does not contain duplicates. In Curry, we might

think to implement it as follows:

isSet (_++[x]++_++[x]++_) = False

isSet _ = True

The first rule uses a functional pattern: it returns False if the argument matches a

list where two identical elements occur. The intent of the second rule is to return

True if no identical elements occur in the argument. However, according to the

semantics of Curry, which ensures completeness w.r.t. finding solutions or values,

all rules are tried to evaluate an expression. Therefore, the second rule is always

applicable to calls of isSet so that the expression isSet [1,1] will be evaluated to

False and True.

The unintended application of the second rule can be avoided by the additional

requirement that this rule should be applied only if no other rule is applicable.

We call such a rule a default rule and mark it by adding the suffix ’default to

the function’s name (in order to avoid a syntactic extension of the base language).

Thus, if we define isSet with the rules

isSet (_++[x]++_++[x]++_) = False

isSet’default _ = True

then isSet [1,1] evaluates only to False and isSet [0,1] only to True.

In this paper we propose a concept for default rules for Curry, define its precise

semantics, and discuss implementation options. In the next section, we review the

main concepts of functional logic programming and Curry. Our intended concept

of default rules is informally introduced in Sect. 3. Some examples showing the

convenience of default rules for programming are presented in Sect. 4. In order to

avoid the introduction of a new semantics specific to default rules, we define the

precise meaning of default rules by transforming them into already known concepts

in Sect. 5. Options to implement default rules efficiently are discussed and evaluated

in Sect. 6. Some benchmarking of alternative implementations of default rules are

shown in Sect. 7 before we relate our proposal to other work and conclude.

Default Rules for Curry 3

2 Functional Logic Programming and Curry

Before presenting the concept and implementation of default rules in more detail,

we briefly review those elements of functional logic languages and Curry that are

necessary to understand the contents of this paper. More details can be found in

recent surveys on functional logic programming (Antoy and Hanus 2010; Hanus

2013) and in the language report (Hanus (ed.) 2016).

Curry is a declarative multi-paradigm language combining in a seamless way fea-

tures from functional, logic, and concurrent programming (concurrency is irrelevant

as our work goes, hence it is ignored in this paper). The syntax of Curry is close to

Haskell (Peyton Jones 2003), i.e., type variables and names of defined operations

usually start with lowercase letters and the names of type and data constructors

start with an uppercase letter. α → β denotes the type of all functions mapping

elements of type α into elements of type β (where β can also be a functional type,

i.e., functional types are “curried”), and the application of an operation f to an ar-

gument e is denoted by juxtaposition (“f e”). In addition to Haskell, Curry allows

free (logic) variables in conditions and right-hand sides of rules and expressions

evaluated by an interpreter. Moreover, the patterns of a defining rule can be non-

linear, i.e., they might contain multiple occurrences of some variable, which is an

abbreviation for equalities between these occurrences.

Example 1

The following simple program shows the functional and logic features of Curry. It

defines an operation “++” to concatenate two lists, which is identical to the Haskell

encoding. The second operation, dup, returns some list element having at least two

occurrences:1

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

dup :: [a] → a

dup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

= x

where x free

Operation applications can contain free variables. They are evaluated lazily where

free variables as demanded arguments are non-deterministically instantiated. Hence,

the condition of the rule defining dup is solved by instantiating x and the anonymous

free variables “-”. This evaluation method corresponds to narrowing (Slagle 1974;

Reddy 1985), but Curry narrows with possibly non-most-general unifiers to ensure

the optimality of computations (Antoy et al. 2000).

Note that dup is a non-deterministic operation since it might deliver more than

one result for a given argument, e.g., the evaluation of dup [1,2,2,1] yields the

values 1 and 2. Non-deterministic operations, which are interpreted as mappings

1 Note that Curry requires the explicit declaration of free variables, as x in the rule of dup, to
ensure checkable redundancy.

4 Sergio Antoy and Michael Hanus

from values into sets of values (González-Moreno et al. 1999), are an important

feature of contemporary functional logic languages. Hence, there is also a predefined

choice operation:

x ? _ = x

_ ? y = y

Thus, the expression “0?1” evaluates to 0 and 1 with the value non-deterministically

chosen.

Some operations can be defined more easily and directly using functional patterns

(Antoy and Hanus 2005). A functional pattern is a pattern occurring in an argument

of the left-hand side of a rule containing defined operations (and not only data

constructors and variables). Such a pattern abbreviates the set of all standard

patterns to which the functional pattern can be evaluated (by narrowing). For

instance, we can rewrite the definition of dup as

dup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree

structures, e.g., in XML documents (Hanus 2011). Details about their semantics

and a constructive implementation of functional patterns by a demand-driven uni-

fication procedure can be found in (Antoy and Hanus 2005).

Set functions (Antoy and Hanus 2009) allow the encapsulation of non-determi-

nistic computations in a strategy-independent manner. For each defined operation

f , fS denotes the corresponding set function. fS encapsulates the non-determinism

caused by evaluating f except for the non-determinism caused by evaluating the

arguments to which f is applied. For instance, consider the operation decOrInc

defined by

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the non-determinism caused by decOrInc is encapsulated into a set. However,

“decOrIncS (2 ? 5)” evaluates to two different sets {1, 3} and {4, 6} due to its non-

deterministic argument, i.e., the non-determinism caused by the argument is not

encapsulated. This property is desirable and essential to define and implement

default rules by a transformational approach, as shown in Sect. 5. In the following

section, we discuss default rules and their intended semantics.

3 Default Rules: Concept and Informal Semantics

Default rules are often used in both functional and logic programming. In languages

in which rules are applied in textual order, such as Haskell and Prolog, loosely speak-

ing every rule is a default rule of all the preceding rules. For instance, the following

standard Haskell function takes two lists and returns the list of corresponding pairs,

where excess elements of a longer list are discarded:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []

Default Rules for Curry 5

The second rule is applied only if the first rule is not applicable, i.e., if one of

the argument lists is empty. We can avoid the consideration of rule orderings by

replacing the second rule with rules for the patterns not matching the first rule:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip (_:_) [] = []

zip [] _ = []

In general, this coding is cumbersome since the number of additional rules increases

if the patterns of the first rule are more complex (e.g., we need three additional

rules for the operation zip3 combining three lists). Moreover, this coding might

be impossible in conjunction with some functional patterns, as in the first rule

of isSet above. Some functional patterns conceptually denote an infinite set of

standard patterns (e.g., [x,x], [x,-,x], [-,x,-,x], . . .) and the complement of this

set is infinite too.

In Prolog, one often uses the “cut” operator to implement the behavior of default

rules. For instance, zip can be defined as a Prolog predicate as follows:

zip([X|Xs],[Y|Ys],[(X,Y)|Zs]) :- !, zip(Xs,Ys,Zs).

zip(_,_,[]).

Although this definition behaves as intended for instantiated lists, the complete-

ness of logic programming is destroyed by the cut operator. For instance, the goal

zip([],[],[]) is provable, but Prolog does not compute the answer {Xs=[],Ys=[],
Zs=[]} for the goal zip(Xs,Ys,Zs).

These examples show that neither the functional style nor the logic style of default

rules is suitable for functional logic programming. The functional style, based on

textual order, curtails non-determinism. The logic style, based on the cut operator,

destroys the completeness of some computations. Thus, a new concept of default

rules is required for functional logic programming if we want to keep the strong

properties of the base language, in particular, a simple-to-use non-determinism and

the completeness of logic-oriented evaluations. Before presenting the exact definition

of default rules, we introduce them informally and discuss their intended semantics.

We intend to extend a “standard” operation definition by one default rule. Hence,

an operation definition with a default rule has the following form (ok denotes a

sequence of objects o1 . . . ok):2

f t1k | c1 = e1
...

f tnk | cn = en

f ’default tn+1
k | cn+1 = en+1

We call the first n rules standard rules and the final rule the default rule of f .

Informally, the default rule is applied only if no standard rule is applicable, where

2 We consider only conditional rules since an unconditional rule can be regarded as a conditional
rule with condition True.

6 Sergio Antoy and Michael Hanus

a rule is applicable if the pattern matches and the condition is satisfied. Hence, an

expression e = f sk , where sk are expressions, is evaluated as follows:

1. The arguments sk are evaluated enough to determine whether a standard rule

of f is applicable, i.e., whether there exists a standard rule whose left-hand

side matches the evaluated e and the condition is satisfied (i.e., evaluable to

True).

2. If a standard rule is applicable, it is applied; otherwise the default rule is

applied.

3. If some argument is non-deterministic, the previous points apply indepen-

dently for each non-deterministic choice of the combination of arguments. In

particular, if an argument is a free variable, it is non-deterministically instan-

tiated so that every potentially applicable rule can be used.

As usual in a non-strict language like Curry, arguments of an operation applica-

tion are evaluated as they are demanded by the operation’s pattern matching and

condition. However, any non-determinism or failure during argument evaluation is

not passed inside the condition evaluation. A precise definition of “inside” is in

(Antoy and Hanus 2009, Def. 3). This behavior is quite similar to set functions to

encapsulate internal non-determinism. Therefore, we will exploit set functions to

implement default rules.

Before discussing the advantages and implementation of default rules, we explain

and motivate the intended semantics of our proposal. First, it should be noted

that this concept distinguishes non-determinism outside and inside a rule applica-

tion. This difference is irrelevant in purely functional programming but essential in

functional logic programming.

Example 2

Consider the operation zip defined with a default rule:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip’default _ _ = []

Since the standard rule is applicable to zip [1] [2], the default rule is ignored so

that this expression is solely reduced to (1,2):zip [] []. Since the standard rule

is not applicable to zip [] [], the default rule is applied and yields the value [].

Altogether, the only value of zip [1] [2] is [(1,2)]. However, if some argument has

more than one value, we use the evaluation principle above for each combination.

Thus, the call zip ([1] ? []) [2] yields the two values [(1,2)] and [].

These considerations are even more relevant if the evaluation of the condition might

be non-deterministic, as the following example shows.

Example 3

Consider an operation to look up values for keys in an association list:

lookup key assoc | assoc == (_ ++ [(key,val)] ++ _)

= Just val

where val free

lookup’default _ _ = Nothing

Default Rules for Curry 7

Note that the condition of the standard rule can be evaluated in various ways. In

particular, it can be evaluated (non-deterministically) to True and False for a fixed

association list and key. Therefore, using if-then-else (or an otherwise branch as in

Haskell) instead of the default rule might lead to unintended results.

If we evaluate lookup 2 [(2,14),(3,17),(2,18)], the condition of the standard

rule is satisfiable so that the default rule is ignored. Since the condition has the two

solutions {val 7→ 14} and {val 7→ 18}, we yield the values Just 14 and Just 18. If

we evaluate lookup 2 [(3,17)], the condition of the standard rule is not satisfiable

but the default rule is applicable so that we obtain the result Nothing.

On the other hand, non-deterministic arguments might trigger different rules to

be applied. Consider the expression lookup (2 ? 3) [(3,17)]. Since the non-determin-

ism in the arguments leads to independent evaluations of the expressions lookup 2

[(3,17)] and lookup 3 [(3,17)], we obtain the results Nothing and Just 17.

Similarly, free variables as arguments might lead to independent results since

free variables are equivalent to non-deterministic values (Antoy and Hanus 2006).

For instance, the expression lookup 2 xs yields the value Just v with the binding

{xs 7→ (2,v): }, but also the value Nothing with the binding {xs 7→ []} (as well as

many other solutions).

The latter desirable property also has implications for the handling of failures

occurring when arguments are evaluated. For instance, consider the expression

lookup 2 failed (where failed is a predefined operation which always fails when-

ever it is evaluated). Because the evaluation of the condition of the standard rule

demands the evaluation of failed and the subsequent failure comes from “outside”

the condition, the entire expression evaluation fails instead of returning the value

Nothing. This is motivated by the fact that we need the value of the association

list in order to check the satisfiability of the condition and, thus, to decide the

applicability of the standard rule, but this value is not available.

Example 4

To see why our design decision is reasonable, consider the following contrived defi-

nition of an operation that checks whether its argument is the unit value () (which

is the only value of the unit type):

isUnit x | x == () = True

isUnit’default _ = False

In our proposal, the evaluation of “isUnit failed” fails. In an alternative design (like

Prolog’s if-then-else construct), one might skip any failure during condition checking

and proceed with the next rule. In this case, we would return the value False for

the expression isUnit failed. This is quite disturbing since the (deterministic!)

operation isUnit, which has only one possible input value, could return two values:

True for the call isUnit () and False for the call isUnit failed. Moreover, if we

call this operation with a free variable, like isUnit x, we obtain the single binding

{x 7→ ()} and value True (since free variables are never bound to failures). Thus,

either our semantics would be incomplete for logic computations or we compute

8 Sergio Antoy and Michael Hanus

too many values. In order to get a consistent behavior, we require that failures of

arguments demanded for condition checking lead to failures of evaluations.

4 Examples

To show the applicability and convenience of default rules for functional logic pro-

gramming, we sketch a few more examples in this section.

Example 5

Default rules are important in combination with functional patterns, since func-

tional patterns denote an infinite set of standard patterns which often has no finite

complement. Consider again the operation lookup as introduced in Example 3. With

functional patterns and default rules, this operation can be conveniently defined:

lookup key (_ ++ [(key,val)] ++ _) = Just val

lookup’default _ _ = Nothing

Example 6

Functional patterns are also useful to check the deep structure of arguments. In

this case, default rules are useful to express in an easy manner that the check is

not successful. For instance, consider an operation that checks whether a string

contains a float number (without an exponent but with an optional minus sign).

With functional patterns and default rules, the definition of this predicate is easy:

isFloat (("-" ? "") ++ n1 ++ "." ++ n2)

| (all isDigit n1 && all isDigit n2) = True

isFloat’default _ = False

Example 7

In the classical n-queens puzzle, one must place n queens on a chess board so

that no queen can attack another queen. This can be solved by computing some

permutation of the list [1..n], where the i -th element denotes the row of the

queen placed in column i , and check whether this permutation is a safe placement

so that no queen can attack another in a diagonal. The latter property can easily

be expressed with functional patterns and default rules where the non-default rule

fails on a non-safe placement:

safeDiag (_++[x]++zs++[y]++_) | abs (x-y) == length zs + 1 = failed

safeDiag’default xs = xs

Hence, a solution can be obtained by computing a safe permutation:

queens n = safeDiag (permute [1..n])

This example shows that default rules are a convenient way to express negation-as-

failure from logic programming.

Default Rules for Curry 9

Example 8

This programming pattern can also be applied to solve the map coloring problem.

Our map consists of the states of the Pacific Northwest and a list of adjacent states:

data State = WA | OR | ID | BC

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

Furthermore, we define the available colors and an operation that associates (non-

deterministically) some color to a state:

data Color = Red | Green | Blue

color x = (x, Red ? Green ? Blue)

A map coloring can be computed by an operation solve that takes the information

about potential colorings and adjacent states as arguments, i.e., we compute correct

colorings by evaluating the initial expression

solve (map color [WA,OR,ID,BC]) adjacent

The operation solve fails on a coloring where two states have an identical color and

are adjacent, otherwise it returns the coloring:

solve (_++[(s1,c)]++_++[(s2,c)]++_) (_++[(s1,s2)]++_) = failed

solve’default cs _ = cs

Note that the compact definition of the standard rule of solve exploits the ordering

in the definition of adjacent. For arbitrarily ordered adjacency lists, we have to

extend the standard rule as follows:

solve (_++[(s1,c)]++_++[(s2,c)]++_) (_++[(s1,s2) ? (s2,s1)]++_)

= failed

5 Transformational Semantics

In order to define a precise semantics of default rules, one could extend an exist-

ing logic foundation of functional logic programming (e.g., (González-Moreno et al.

1999)) to include a meaning of default rules. This approach has been partially done

in (López-Fraguas and Sánchez-Hernández 2004) but without considering the dif-

ferent sources of non-determinism (inside vs. outside) which is important for our

intended semantics, as discussed in Sect. 3. Fortunately, the semantic aspects of

these issues have already been discussed in the context of encapsulated search (An-

toy and Hanus 2009; Christiansen et al. 2013) so that we can put our proposal on

these foundations. Hence, we do not develop a new logic foundation of functional

logic programming with default rules, but we provide a transformational seman-

tics, i.e., we specify the meaning of default rules by a transformation into existing

constructs of functional logic programming.

We start the description of our transformational approach by explaining the

translation of the default rule for zip. A default rule is applied only if no standard

rule is applicable (because the rule’s pattern does not match the argument or the

rule’s condition is not satisfiable). Hence, we translate a default rule into a regular

10 Sergio Antoy and Michael Hanus

rule by adding the condition that no other rule is applicable. For this purpose, we

generate from the original standard rules a set of “test applicability only” rules

where the right-hand side is replaced by a constant (here: the unit value “()”).

Thus, the single standard rule of zip produces the following new rule:

zip’TEST (x:xs) (y:ys) = ()

Now we have to add to the default rule the condition that zip’TEST is not appli-

cable. Since we are interested in the failure of attempts to apply zip’TEST to the

actual argument, we have to check that this application has no value. Further-

more, non-determinism and failures in the evaluation of actual arguments must be

distinguished from similar outcomes caused by the evaluation of the condition.

All these requirements call for the encapsulation of a search for values of zip’TEST

where “inside” and “outside” non-determinism are distinguished and handled dif-

ferently. Fortunately, set functions (Antoy and Hanus 2009) (as sketched in Sect. 2)

provide an appropriate solution to this problem. Since set functions have a strategy-

independent denotational semantics (Christiansen et al. 2013), we will use them to

specify and implement default rules. Using set functions, one could translate the

default rule into

zip xs ys | isEmpty (zip’TESTS xs ys) = []

Hence, this rule can be applied only if all attempts to apply the standard rule fail.

To complete our example, we add this translated default rule as a further alternative

to the standard rule so that we obtain the transformed program

zip’TEST (x:xs) (y:ys) = ()

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip xs ys | isEmpty (zip’TESTS xs ys) = []

Thanks to the logic features of Curry, one can also use this definition to gener-

ate appropriate argument values for zip. For instance, if we evaluate the equa-

tion zip xs ys == [] with the Curry implementation KiCS2 (Braßel et al. 2011), the

search space is finite and computes, among others, the solution {xs=[]}.

Unfortunately, this scheme does not yield the best code to ensure optimal com-

putations. To understand the potential problem, consider the following operation:

f 0 1 = 1

f _ 2 = 2

Intuitively, the best strategy to evaluate a call to f starts with a case distinction

on the second argument, since its value determines which rule to apply. If the value

is 1, and only in this case, the strategy checks the first argument, since its value

determines whether to apply the first rule. A formal characterization of operations

that allow this strategy (Antoy 1992) and a discussion of the strategy itself will be

presented in Sect. 6.2. In this example, the pattern matching strategy is as follows:

1. Evaluate the second argument (to head normal form).

2. If its value is 2, apply the second rule.

3. If its value is 1, evaluate the first argument and try to apply the first rule.

Default Rules for Curry 11

4. Otherwise, no rule is applicable.

In particular, if loop denotes a non-terminating operation, the call f loop 2 evaluates

to 2. This is in contrast to Haskell (Peyton Jones 2003) which performs pattern

matching from left to right so that Haskell loops on this call. This strategy, which

is optimal for the class of programs referred to as inductively sequential (Antoy

1992) for which it is intended, has been extended to functional logic computations

(needed narrowing (Antoy et al. 2000)) and to overlapping rules (Antoy 1997) in

order to cover general functional logic programs.

Now consider the following default rule for f:

f’default _ x = x

If we apply our transformation scheme sketched above, we obtain the following

Curry program:

f’TEST 0 1 = ()

f’TEST _ 2 = ()

f 0 1 = 1

f _ 2 = 2

f x y | isEmpty (f’TESTS x y) = y

As a result, the definition of f is no longer inductively sequential since the left-hand

sides of the first and third rule overlap. Since there is no argument demanded by

all rules of f, the rules could be applied independently. In fact, the Curry imple-

mentation KiCS2 (Braßel et al. 2011) loops on the call f loop 2 (since it tries to

evaluate the first argument in order to apply the first rule), whereas it yields the

result 2 without the default rule.

To avoid this undesirable behavior when adding default rules, we could try to

use the same strategy for the standard rules and the test in the default rule. This

can be done by translating the original standard rules into an auxiliary operation

and redefining the original operation into one that either applies the standard rules

or the default rules. For our example, we transform the definition of f (with the

default rule) into the following functions:

f’TEST 0 1 = ()

f’TEST _ 2 = ()

f’INIT 0 1 = 1

f’INIT _ 2 = 2

f’DFLT x y | isEmpty (f’TESTS x y) = y

f x y = f’INIT x y ? f’DFLT x y

Now, both f’TEST and f’INIT are inductively sequential so that the optimal needed

narrowing strategy can be applied, and f simply denotes a choice (without an ar-

gument evaluation) between two expressions that are evaluated optimally. Observe

that at most one of these expressions is reducible. As a result, the Curry implemen-

tation KiCS2 evaluates f loop 2 to 2 and does not run into a loop.

The overall transformation of default rules can be described by the following

12 Sergio Antoy and Michael Hanus

scheme (its simplicity is advantageous to obtain a comprehensible definition of the

semantics of default rules). The operation definition

f t1k | c1 = e1
...

f tnk | cn = en

f ’default tn+1
k | cn+1 = en+1

is transformed into (where f ’TEST, f ’INIT, f ’DFLT are new operation identifiers):

f ’TEST t1k | c1 = ()

...

f ’TEST tnk | cn = ()

f ’INIT t1k | c1 = e1
...

f ’INIT tnk | cn = en

f ’DFLT tn+1
k | isEmpty (f ’TESTS tn+1

k) && cn+1 = en+1

f xk = f ’INIT xk ? f ’DFLT xk

Note that the patterns and conditions of the original rules are not changed. Hence,

this transformation is also compatible with other advanced features of Curry, like

functional patterns, “as” patterns, non-linear patterns, local declarations, etc. Fur-

thermore, if an efficient strategy exists for the original standard rules, the same

strategy can be applied in the presence of default rules. This property can be for-

mally stated as follows:

Proposition 1

Let R be a program without default rules, and R′ be the same program except that

default rules are added to some operations of R. If R is overlapping inductively

sequential, so is R′.

Proof

Let f be an operation of R. The only interesting case is when a default rule of f is

in R′. Operation f of R produces four different operations of R′: f , f ’DFLT, f ’INIT,

and f ’TEST. The first two are overlapping inductively sequential since they are

defined by a single rule. The last two are overlapping inductively sequential when

f of R is overlapping inductively sequential since they have the same definitional

tree as f modulo a renaming of symbols.

The above proposition could be tightened a little when operation f is non-overlap-

ping. In this case three of the four operations produced by the transformation are

non-overlapping as well. Prop. 1 is important for the efficiency of computations. In

overlapping inductively sequential systems, needed redexes exist and can be easily

and efficiently computed (Antoy 1997). If the original system has a strategy that

reduces only needed redexes, the transformed system has a strategy that reduces

Default Rules for Curry 13

only needed redexes. This ensures that optimal computations are preserved by the

transformation regardless of non-determinism.

This result is in contrast to Haskell (or Prolog), where the concept of default

rules is based on a sequential testing of rules, which might inhibit optimal evalua-

tion and prevent or limit non-determinism. Hence, our concept of default rules is

more powerful than existing concepts in functional or logic programming (see also

Sect. 8).

We now relate values computed in the original system to those computed in the

transformed system and vice versa. As expected, extending an operation with a

default rule preserves the values computed without the default rule.

Proposition 2

Let R be a program without default rules, and R′ be the same program except that

default rules are added to some operations of R. If e is an expression of R that

evaluates to the value t w.r.t. R, then e evaluates to t w.r.t. R′.

Proof

Let f tk → u w.r.t. R, for some expression u, a step of the evaluation of e. The

only interesting case is when a default rule of f is in R′. By the definitions of f and

f ’INIT in R′, f tk → f ’INIT tk → u w.r.t. R′. A trivial induction on the length of

the evaluation of e completes the proof.

The converse of Prop. 2 does not hold because R′ typically computes more values

than R—that is the reason why there are default rules. The following statement

relates values computed in R′ to values computed in R.

Proposition 3

Let R be a program without default rules, and R′ be the same program except

that default rules are added to some operations of R. If e is an expression of R
that evaluates to the value t w.r.t. R′, then either e evaluates to t w.r.t. R or some

default rule of R′ is applied in e
∗→ t in R′.

Proof

Let A denote an evaluation e
∗→ t in R′ that never applies default rules. For any

operation f of R, the steps of A are of two kinds: (1) f tk → f ’INIT tk or (2)

f ’INIT tk → t ′, for some expressions tk and t ′. If we remove from A the steps of

kind (1) and replace f ’INIT with f , we obtain an evaluation of e to t in R.

In Curry, by design, the textual order of the rules is irrelevant. A default rule is

a constructive alternative to a certain kind of failure. For these reasons, a single

default rule, as opposed to multiple default rules without any order, is conceptually

simpler and adequate in practical situations. Nevertheless, a default rule of an

operation f may invoke an auxiliary operation with multiple ordinary rules, thus,

producing the same behavior of multiple default rules of f .

14 Sergio Antoy and Michael Hanus

6 Implementation

The implementation of default rules for Curry based on the transformational ap-

proach is available as a preprocessor. The preprocessor is integrated into the com-

pilation chain of the Curry systems PAKCS (Hanus et al. 2016) and KiCS2 (Braßel

et al. 2011). In some future version of Curry, one could also add a specific syntax

for default rules and transform them in the front end of the Curry system.

The transformation scheme shown in the previous section is mainly intended to

specify the precise meaning of default rules (similarly to the specification of the

meaning of guards in Haskell (Peyton Jones 2003)). Although this transformation

scheme leads to a reasonably efficient implementation, the actual implementation

can be improved in various ways. In the following, we present two approaches to

improve the implementation of default rules.

6.1 Avoiding Duplicated Condition Checking

Our transformation scheme for default rules generates from a set of standard rules

the auxiliary operations f ’TEST and f ’INIT. f ’TEST is used in the condition of the

translated default rule to check the applicability of a standard rule, whereas f ’INIT

actually applies a standard rule. Since both alternatives (standard rules or default

rule) are eventually tried for application, the pattern matching and condition check-

ing of some standard rule might be duplicated. For instance, if a standard rule is

applicable to some call and the same call matches the pattern of the default rule, it

might be tried twice: (1) the standard rule is applied by f ’INIT, and (2) its pattern

and condition is tested by f ’TEST in order to test the (non-)emptiness of the set of

all results. Although the amount of duplicated work is difficult to assess accurately

due to Curry’s lazy evaluation strategy (e.g., to check the non-emptiness in the

condition of f ’DFLT, it suffices to compute at most one element of the set), there is

some risk for operationally complex conditions or patterns, e.g., functional patterns.

This kind of duplicated work can be avoided by a more sophisticated transfor-

mation scheme where the common parts of the definitions of f ’TEST and f ’INIT

are joined into a single operation. This operation first tests the application of a

standard rule and, in case of a successful test, returns a continuation to proceed

with the corresponding rule. For instance, consider the rules for zip presented in

Example 2. The operations zip’TEST and zip’INIT generated by our first transfor-

mation scheme can be joined into a single operation zip’TESTC by the following

transformation:

zip’TESTC (x:xs) (y:ys) = _ → (x,y) : zip xs ys

zip’DFLT _ _ = []

zip xs ys = let cs = zip’TESTCS xs ys

in if isEmpty cs then zip’DFLT xs ys

else (chooseValue cs) ()

Now, the standard rule is translated into a rule for the new operation zip’TESTC

where the rule’s right-hand side is encapsulated into a lambda abstraction to avoid

Default Rules for Curry 15

its immediate evaluation if this rule is applied. The actual implementation of zip

first checks whether the set of all such lambda abstractions is empty. If this is

the case, the standard rule is not applicable so that the default rule is applied.

Otherwise, we continue with the right-hand sides of all applicable standard rules

collected as lambda abstractions in the set cs.3

The general transformation scheme to obtain this behavior is defined as follows.

An operation definition of the form

f t1k | c1 = e1
...

f tnk | cn = en

f ’default tn+1
k | cn+1 = en+1

is transformed into:

f ’TESTC t1k | c1 = _ → e1
...

f ’TESTC tnk | cn = _ → en

f ’DFLT tn+1
k | cn+1 = en+1

f xk = let cs = f ’TESTCS xk
in if isEmpty cs then f ’DFLT xk

else (chooseValue cs) ()

Obviously, this modified scheme avoids the potentially duplicated condition check-

ing in standard rules, but it is more sophisticated since it requires the handling of

sets of continuations. Depending on the implementation of set functions, this might

be impossible if the values are operations. If the results computed by set functions

are actually sets (and not multi-sets), this scheme cannot be applied since sets re-

quire an equality operation on elements in order to eliminate duplicated elements.

Fortunately, this scheme is applicable with PAKCS (Hanus et al. 2016), which

computes multi-sets as results of set functions so that it does not require equality

on elements. Thus, we compare the run times of both schemes for some of the

operations shown above which contain complex applicability conditions (functional

patterns). All benchmarks were executed on a Linux machine (Debian Jessie) with

an Intel Core i7-4790 (3.60Ghz) processor and 8GB of memory. Figure 1 shows

the run times (in seconds) to evaluate some operations with both schemes. These

benchmarks indicate that the new scheme might yield a reasonable performance

gain, although this clearly depends on the particular example. A further alternative

transformation scheme is discussed in the following section.

3 The operation chooseValue non-deterministically chooses some value of the given set.

16 Sergio Antoy and Michael Hanus

System: PAKCS 1.14.0 (Hanus et al. 2016)

Operation: isSet isSet lookup lookup queens

Arguments: [1..1000] [1000,1..1000] 5001 5000 6
[(1,.)..(5000,.)] [(1,.)..(5000,.)]

Sect. 5: 7.04 4.78 3.56 3.54 0.23

Sect. 6.1: 2.27 2.28 1.81 3.57 0.23

Fig. 1. Performance comparison of different transformation schemes.

6.2 Transforming Default Rules into Standard Rules

In some situations, the behavior of a default rule can be provided by a set of stan-

dard rules. Almost universally, standard rules are more efficient. An example of this

situation is provided with the operation zip. In Example 2 this operation is defined

with a default rule. A definition using standard rules is shown at the beginning

of Sect. 3. The input/output relations of the two definitions are identical. In this

section, we introduce a few concepts to describe how to obtain, under sufficient

conditions, a set of standard rules that behave as a default rule.

The programs considered in this section are constructor-based (O’Donnell 1977)

(the extension to functional patterns is discussed later). Thus, there are disjoint

sets of operation symbols, denoted by f , g , . . ., and constructor symbols, denoted

by c, d , . . . An f -rooted pattern is an expression of the form f tn where f is an

operation symbol of arity n, each ti is an expression consisting of variables and/or

constructor symbols only, and f tn is linear, i.e., there are no repeated occurrences

of some variable. A pattern is an f -rooted pattern for some operation f . A pattern

is ground if it does not contain any variable. A program rule has the form l = r

where the left-hand side l is a pattern (the extension to conditional rules is discussed

later). Given a redex t and a step t → u, u is called a contractum (of t). Although

Curry allows non-linear patterns for the convenience of the programmer, they are

transformed into linear ones through a simple syntactic transformation.

In the following, we first consider a specific class of programs, called inductively

sequential, where the rules of each operation can be organized in a definitional tree

(Antoy 1992).

Definition 1 (Definitional tree)

The symbols rule, exempt, and branch, appearing below, are uninterpreted func-

tions for classifying the nodes of a tree. A partial definitional tree with an f -rooted

pattern p is either a rule node rule(p = r), an exempt node exempt(p), or a branch

node branch(p, x , Tk), where x is a variable in p (also called the inductive variable),

{c1, . . . , ck} is the set of all the constructors of the type of x , the substitution σi
maps x to ci xai

(where xai
are all fresh variables and ai is the arity of ci), and

Ti is a partial definitional tree with pattern σi(p) (for i = 1, . . . , k). A definitional

tree T of an operation f is a finite partial definitional tree with pattern f xn , where

Default Rules for Curry 17

n is the arity of f and xn are pairwise different variables, such that T contains

all and only the rules defining f (up to variable renaming). In this case, we call f

inductively sequential.

Definitional trees have a comprehensible graphical representation. For instance, the

definitional tree of the operation “++” defined in Example 1 is shown in Fig. 2. In

this graphical representation, the pattern of each node is shown. The root node is a

branch and its children are rule nodes. The inductive variable of the branch is the

left operand of “++”. Referring to Def. 1, σ1 maps this variable to “[]” and σ2 to

(x : xs). For rule nodes, the right-hand side of the rule is shown below the arrow.

Exempt nodes are marked by the keyword exempt, as shown in Figures 3 and 4.

- ++ ys

[] ++ ys

��

(x:xs) ++ ys

��
ys x : (xs ++ ys)

Fig. 2. A definitional tree of the operation “++”
.

For the sake of completeness, we sketch how definitional trees are used by the

evaluation strategy. The details can be found in (Antoy 1997). We discuss how to

compute a rewrite of an expression rooted by an operation. More general cases are

reduced to that. It can be shown that any step so computed is needed. Thus, let t

be an expression rooted by an operation f and T a definitional tree of f . A traversal

of T finds the deepest node N in T whose pattern p matches t . Such a node, and

pattern, exist for every t . If N is a rule node, then t is a redex and is reduced. If

N is an exempt node, then the computation is aborted because t has no value as

in, e.g., head [], the head of an empty list. If N is a branch node, then the match

of the inductive variable of p is an expression t ′ rooted by some operation and the

strategy recursively seeks to compute a step of t ′.

Before presenting our transformation, we state an important property of defini-

tional trees.

Definition 2 (Mutually exclusive and exhaustive patterns)

Let f be an operation symbol and S a set of f -rooted patterns. We say that the

patterns of S are mutually exclusive iff for any ground f -rooted pattern p, no two

distinct patterns of S match p, and we say that the patterns of S are exhaustive

iff for any ground f -rooted pattern p, there exists a pattern in S that matches p.

Lemma 1 (Uniqueness)

Let f be an operation defined by a set of standard rules. If T is a definitional tree

of the rules of f , then the patterns in the leaves of T are exhaustive and mutually

exclusive.

18 Sergio Antoy and Michael Hanus

Proof

Let p be any ground f -rooted pattern, π the pattern in a node N of T , and suppose

that π matches p. Initially, we show that if N is not a leaf of T , there is exactly

one child N ′ of N such the pattern π′ of N ′ matches p. Let x be the inductive

variable of π and q the subexpression of p matched by x . Since p is ground and

q is a proper subexpression of p, q is rooted by some constructor symbol c. Let

{c1, . . . ck} be the set of all the constructors of the type defining c and let ai be the

arity of ci , for all appropriate i . By Def. 1, N has k children with patterns σi(π),

where σi = {x 7→ ci xai} and xai is a fresh variable, for all appropriate i . Hence,

exactly one of these patterns matches p since ci xai
matches q iff ci = c. Going

back to the proposition’s claim, since the pattern in the root of T matches p, by

induction on the depth of T , there is exactly one leaf whose pattern matches p.

Inductive sequentiality is sufficient, but not necessary for a set of exhaustive and

mutually exclusive patterns. We will later show a non-inductively sequential op-

eration with exhaustive and mutually exclusive patterns. Nevertheless, inductive

sequentiality supports a constructive method to transform default rules. Since not

every definitional tree is useful to define our transformation, we first restrict the

set of definitional trees.

Definition 3 (Minimal definitional tree)

A definitional tree is minimal iff there is some rule node below any branch node of

the tree.

For example, consider the operation isEmpty defined by the single rule

isEmpty [] = True

Fig. 3 shows a non-minimal tree of the rules defining isEmpty. The right child of

the root is a branch node that has no rule node below it. In a minimal tree of the

rules defining isEmpty, the right child would be an exempt node.

isEmpty -

isEmpty []

��

isEmpty (-:-)

True
isEmpty (-:[])

(exempt)
isEmpty (-:(-:-))

(exempt)

Fig. 3. A non-minimal definitional tree of the operation isEmpty

.

We now investigate sufficient conditions for the equivalence between an operation

defined with a default rule and an operation defined by standard rules only.

Definition 4 (Replacement of a default rule)

Let f be an operation defined by a set of standard rules and a default rule f xk = t ,

where xk are pairwise different variables and t some expression, and let T be a

minimal definitional tree of the standard rules of f . Let N1,N2, . . .Nn be the exempt

Default Rules for Curry 19

nodes of T , t ik the pattern of node Ni and σi the substitution {xk 7→ t ik}, for

1 6 i 6 n. The following set of standard rules of f is called a replacement of the

default rule of f :

σi(f xk = t), for 1 6 i 6 n (1)

Fig. 4 shows a minimal definitional tree of the single standard rule of operation

zip defined at the beginning of Sect. 3. The right-most leaf of this tree holds this

rule. Since this leaf is below both branch nodes, the definitional tree is minimal

according to Def. 3. The remaining two leaves hold the patterns that match all and

only the combinations of arguments to which the default rule would be applicable.

These patterns are more instantiated than that of the default rule, but we will see

that any expression reduced by these rules does not need any additional evaluation

with respect to the default rule.

zip - -

zip [] -
(exempt) zip (x:xs) -

zip (x:xs) []

(exempt) zip (x:xs) (y:ys)

��
(x,y) : zip xs ys

Fig. 4. A definitional tree of the standard rule of operation zip defined in Sect. 3
.

Lemma 2 (Correctness)

Let f be an operation defined by a set S of standard rules and a default rule r

of the form f xk = t , where each xi is a variable, for all appropriate i , and some

expression t , and let R be the replacement of r . For any ground f -rooted pattern

p, p is reduced at the root to some q by the default rule r iff p is reduced at the

root to q by some rule of R.

Proof

The proof is done in two steps. First, we prove that p is reduced by r iff p is

reduced by some rule of R. Then we prove that the contracta by the two rules

are the same. By Lemma 1, the patterns in the rules of S ∪ R are exhaustive and

mutually exclusive. Therefore, p is reduced by r if and only if p is not reduced by

any rule of S if and only if p is reduced by some rule of R. We now prove the equality

of the contracta. In the remainder of this proof, all the substitutions are restricted

to xk , the argument variables of r . If p is reduced by r with some match σ, then

p = σ(f xk) and q = σ(t). Pattern p is also reduced by some rule of R which, by

Def. 4, is of the form σi(r), for some substitution σi . Consequently, p = σ′(σi(f xk))

for some match σ′. Since p is ground, σ = σ′ ◦ σi . Thus, the contractum of p by

the rule of R is σ′(σi(t)) = σ(t) = q .

20 Sergio Antoy and Michael Hanus

In Def. 4, the replacement of a default rule is constructed for a minimal definitional

tree. The hypothesis of minimality is not used in the proof of Lemma 2. The reason is

that the lemma claims a property of f -rooted ground patterns. During the execution

of a program, the default rule may be applied to some f -rooted expression e that

may neither be a pattern nor ground. The hypothesis of minimality ensures that,

in this case, no additional evaluation of e is required when a replacement rule is

applied instead of the default rule. This fact is counter intuitive and non-trivial

since the pattern of the default rule matches any f -rooted expression, whereas the

patterns in the replacement rules do not, except in the degenerate case in which

the set of standard rules is empty. However, a default rule is applicable only if

no standard rule is applicable. Therefore, expression e must have been evaluated

“enough” to determine that no standard rule is applicable. The following lemma

shows that this evaluation is just right for the application of a replacement rule.

Lemma 3 (Evaluation)
Let e be an f -rooted expression reduced by the default rule of f according to the

transformational semantics of Sect. 5. Let T be a minimal definitional tree of (the

standard rules of) f . There exists an exempt node of T whose pattern matches e.

Proof
First note that the standard rules of f and the rules of f ’TEST, as defined in Sect. 5,

have identical left-hand sides. Hence T is also a minimal definitional tree of the

rules of f ’TEST, which are used to check the applicability of the default rule.

To prove the claim, we construct a path N0,N1, . . .Np in the definitional tree T of

f with the following invariant properties: (a) the pattern πi of each Ni unifies with

e, and, (b) if the last node Np is a leaf of T , Np is an exempt node. Establishing

the invariant: N0 is the root node of T . By definition, its pattern π0 is f xk , where

xk are fresh distinct variables. Hence π0 unifies with e so that invariant (a) holds.

Furthermore, if N0 is a leaf of T , then it cannot be a rule node, otherwise e would

never be reduced by a default rule. Hence N0 is an exempt node, i.e., invariant (b)

holds. Maintaining the invariant: We assume that the invariant (a) holds for node

Nk , for some k > 0. If Nk is a leaf of T , then, as in the base case, Nk must be

an exempt node. Hence we assume Nk is a branch of T and show that invariant

(a) can be extended to some child Nk+1 of Nk . Since Nk is a branch node, e and

πk unify. For each child N ′ of Nk , let π′ be the pattern of N ′, and let v be the

inductive variable of the branch node Nk . By the definition of T , π′ = σ′(πk),

where σ′ = {v 7→ c xac
}, c is a constructor symbol of arity ac , and xi is a fresh

variable for any appropriate i . Let σ be the match of πk to e and t = σ(v). If t is a

variable, then any child of Nk satisfies invariant (a). Otherwise, t must be rooted by

some constructor symbol, say d , for the following reasons. Because T is minimal,

there are one or more rule nodes below Nk . The pattern in any of these rules is

an instance of πk that has some constructor symbol in the position matched by v .

Hence, unless t is constructor-rooted, it would be impossible to tell which, if any,

of these rules reduces e, hence it would be impossible to say whether e must be

reduced by a standard rule or the default rule. Hence, Nk+1 is the child in which v

is mapped to d xad
so that invariant (a) also holds for Nk+1.

Default Rules for Curry 21

We define the replacement of a default rule by a set of standard rules under four

assumptions. We assess the significance of these assumptions below.

Inductive sequentiality. The standard rules are inductively sequential. This is a

very mild requirement in practice. For instance, every operation of the Curry Pre-

lude, except for the non-deterministic choice operator “?” shown in Sect. 2, is induc-

tively sequential. Non-inductively sequential operations are problematic to evaluate

efficiently. E.g., the following operation, adapted from (Berry 1976, Prop. II.2.2),

is defined by rules that do not admit a definitional tree:

f False True x = ...

f x False True = ...

f True x False = ...

To apply f , the evaluation to constructor normal form of two out of the three

arguments is both necessary and sufficient. No practical way is known to determine

which these two arguments are without evaluating all three. Furthermore, since

the evaluation of an argument may not terminate, the three arguments must be

evaluated concurrently (but see (Antoy and Middeldorp 1996)).

Most general pattern. We assumed in our transformation that the pattern of the

default rule is most general, i.e., the arguments of the operation are all variables.

Choosing the most general pattern keeps the statement of Lemma 3 simple and

direct. With this assumption, no extra evaluation of the arguments is needed for

the application of a replacement rule. To relax this assumption, we can modify

Def. 4 as follows. If the left-hand side of the default rule is f uk , we look for a most

general unifier, say σi , of uk and t ik . Then rule σi(f uk → t) is in the replacement

of the default rule iff such a σi exists.

Unconditional rules. Both standard rules and the default rule are unconditional.

Adding a condition to the default rule is straightforward, similar to the transforma-

tion shown in Sect. 5. The condition of a default rule is directly transferred to each

replacement rule by extending display (1) in Def. 4 with the condition. By contrast,

conditions in standard rules require some care. With a modest loss of generality,

assume that the standard rules have a definitional tree where each leaf node has a

conditional rule of the form:

f tk | c = t (2)

where c is a Boolean expression and t is any expression. Lemma 1 proves that if p

is any f -rooted ground pattern matched by f tk no other standard rule matches p.

Hence, p is reduced at the root by the default rule of f iff c is not satisfied by p.

Therefore, we need the following rule in the replacement of the default rule

f tk | ¬c = t (3)

where ¬c denotes the “negation” of c, i.e., the condition satisfied by all the patterns

matched by f tk that do not satisfy c. In the spirit of functional logic programming,

c is evaluated non-deterministically. For example, consider an operation that takes

a list of colors, say Red, Green and Blue, and removes all Red occurrences from the

list:

22 Sergio Antoy and Michael Hanus

data Color = Red | Green | Blue

remred cs | cs == x++[Red]++y

= remred (x++y)

where x,y free

remred’default cs = cs

The first rule is applied if there exist x and y that satisfy the condition. E.g., for

the list [Red,Green,Red,Blue] there are two such combinations of x and y. Thus, the

“negation” of this condition must negate the existence of any such x and y. This

can be automatically done according to the transformational semantics presented

in Sec. 5, but applied to a single rule. This example’s replacement of the default

rule is shown below:

remred cs | isEmpty (remred’TESTS cs) = cs

remred’TEST cs | _++[Red]++_ == cs = ()

Constructor patterns. The standard rules defining an operation have constructor

patterns. Curry also provides functional patterns, presented in Sec. 2. Rules defined

by functional patterns can be transformed into ordinary rules (Antoy and Hanus

2005, Def. 4) by moving the functional pattern matching into the condition of a

rule. Hence, the absence of functional patterns from our discussion is not an intrinsic

limitation. Since functional patterns are quite expressive, operations defined with

functional patterns often consist of a single program rule and a default rule (as in

all examples shown in in Sect. 4). For instance, the previous operation remred can

be defined with a functional pattern as follows:

remred (x++[Red]++y) = remred (x++y)

remred’default cs = cs

Hence, the improved transformation scheme presented in Sect. 6.1 is still useful and

should be applied in combination with the transformation shown in this section.

7 Benchmarking

To show the practical advantage of the transformation described in the previous

section, we evaluated a few simple operations defined in a typical functional pro-

gramming style with default rules. For instance, the Boolean conjunction can be

defined with a default rule:

and True True = True

and’default _ _ = False

The replacement of the default rule consists of two rules so that the transformation

yields the following standard rules:

and True True = True

and True False = False

and False _ = False

Similarly, the computation of the last element of a list can be defined with a default

rule:

Default Rules for Curry 23

last [x] = x

last’default (_:xs) = last xs

Our final example extracts all values in a list of optional (“Maybe”) values:

catMaybes [] = []

catMaybes (Just x : xs) = x : catMaybes xs

catMaybes’default (_:xs) = catMaybes xs

With the introduction of default rules, the order of evaluation may become more

arbitrary, even though only needed steps are executed. For example, in the first

definition of operation and both arguments must be evaluated, in any order, for the

application of the standard rule. If the evaluation of one argument does not termi-

nate and the other one evaluates to False, the order in which the two arguments are

evaluated becomes observable. This situation is not directly related to the presence

of a default rule. There are two “natural” inductive definitions of operation and, one

evaluates the first argument first, as in the second definition of and, and another

evaluates the second argument first. From the single standard rule of and, we can-

not say which of the two definitions was intended. If the default rule of operation

and is replaced by a set of standard rules, as per Sec. 6.2, the resulting definition,

which is inductively sequential, will explicitly and arbitrarily encode which of the

two arguments is to be evaluated first.

As discussed earlier, functional logic computations execute narrowing steps, i.e.,

steps in which some variable of an expression is instantiated and the rule reducing

the expression depends on the instantiation of the variable. For example, consider

again the and operation for its simplicity. The evaluation of and x True, where x

is a free variable, narrows x to True to apply the standard rule and narrows x to

False to apply the default rule. In a narrowing step, a variable is instantiated by

the unification of the expression being evaluated and the left-hand side of a rule.

This does not work with a default rule, since the arguments in the left-hand side

are themselves variables. In particular, the transformational semantics of and has

no rule to unify x with False. To obtain the intended behavior in narrowing steps

variables are instantiated by generators (Antoy and Hanus 2006). In the example

being discussed, the Boolean generator is True ? False.

Figure 5 shows the run times (in seconds) to evaluate the operations discussed

in this section with the different transformation schemes (i.e., the scheme of Sect. 5

and the replacement of default rules presented in this section) and different Curry

implementations (where “call size” denotes the number of calls to and and the

lengths of the input lists for the other examples). The benchmarks were executed

on the same machine as the benchmarks in Sect. 6.1. The results clearly indicate

the advantage of replacing default rules by standard rules, in particular for PAKCS,

which has a less sophisticated implementation of set functions than KiCS2.

8 Related Work

In this section, we compare our proposal of default rules for Curry with existing

proposals for other rule-based languages.

24 Sergio Antoy and Michael Hanus

System: PAKCS 1.14.0 (Hanus et al. 2016)

Operation / call size: zip / 1000 and / 100000 last / 2000 catMaybes / 2000

Sect. 5: 3.66 8.46 2.53 2.45

Sect. 6.2: 0.01 0.25 0.01 0.01

System: KiCS2 0.5.0 (Braßel et al. 2011)

Operation / call size: zip / 106 and / 106 last / 105 catMaybes / 106

Sect. 5: 2.72 1.35 0.38 0.40

Sect. 6.2: 0.04 0.08 0.01 0.01

Fig. 5. Performance comparison of different schemes for different compilers for some
operations discussed in this section.

The functional programming language Haskell (Peyton Jones 2003) has no ex-

plicit concept of default rules. Since Haskell applies the rules defining a function

sequentially from top to bottom, it is a common practice in Haskell to write a “catch

all” rule as a final rule to avoid writing several nearly identical rules (see example

zip at the beginning of Sect. 3). Thus, our proposal for default rules increases the

similarities between Curry and Haskell. However, our approach is more general,

since it also supports logic-oriented computations, and it is more powerful, since it

ensures optimal evaluation for inductively sequential standard rules, in contrast to

Haskell (as shown in Sect. 5).

Since Haskell applies rules in a sequential manner, it is also possible to define

more than one default rule for a function, e.g., where each rule has a different speci-

ficity. This cannot be directly expressed with our default rules where at most one

default rule is allowed. However, one can obtain the same behavior by introducing

a sequence of auxiliary operations where each operation has one default rule.

The logic programming language Prolog (Deransart et al. 1996) is based on back-

tracking where the rules defining a predicate are sequentially applied. Similarly to

Haskell, one can also define “catch all” rules as the final rules of predicate defini-

tions. In order to avoid the unintended application of these rules, one has to put

“cut” operators in the preceding standard rules. As already discussed in Sect. 3,

these cuts are only meaningful for instantiated arguments, otherwise the complete-

ness of logic programming might be destroyed. Hence, this kind of default rules

can be used only if the predicate is called in a particular mode, in contrast to

our approach. The completeness for arbitrary modes might require the addition

of concepts from Curry into Prolog, like the demand-driven instantiation of free

variables.

Various encapsulation operators have been proposed for functional logic programs

Default Rules for Curry 25

(Braßel et al. 2004) to encapsulate non-deterministic computations in some data

structure. Set functions (Antoy and Hanus 2009) have been proposed as a strategy-

independent notion of encapsulating non-determinism to deal with the interactions

of laziness and encapsulation (see (Braßel et al. 2004) for details). One can also use

set functions to distinguish successful and non-successful computations, similarly to

negation-as-failure in logic programming, exploiting the possibility to check result

sets for emptiness. When encapsulated computations are nested and performed

lazily, it turns out that one has to track the encapsulation level in order to obtain

intended results, as discussed in (Christiansen et al. 2013). Thus, it is not surprising

that set functions and related operators fit quite well to our proposal. Actually,

many explicit uses of set functions in functional logic programming to implement

negation-as-failure can be implicitly and more tersely encoded with our concept of

default rules, as shown in Examples 7 and 8.

Default rules and negation-as-failure have been also explored in (López-Fraguas

and Sánchez-Hernández 2004; Sánchez-Hernández 2006) for functional logic pro-

grams. In these works, an operator, fails, is introduced to check whether every

reduction of an expression to a head-normal form is not successful. (López-Fraguas

and Sánchez-Hernández 2004) proposes the use of this operator to define default

rules for functional logic programming. However, the authors propose a scheme

where the default rule is applied if no standard rule was able to compute a head

normal form. This is quite unusual and in contrast to functional programming (and

our proposal) where default rules are applied if pattern matching and/or conditions

of standard rules fail, but the computations of the rules’ right-hand sides are not

taken into account to decide whether a default rule should be applied. The same

applies to an early proposal for default rules in an eager functional logic language

(Moreno-Navarro 1994). Since the treatment of different sources of non-determinism

and their interaction were not explored at that time, nested computations with fail-

ures are not considered by these works. As a consequence, the operator fails might

yield unintended results if it is used in nested expressions. For instance, if we use

fails instead of set functions to implement the operation isUnit defined in Ex-

ample 4, the evaluation of isUnit failed yields the value False in contrast to our

intended semantics.

Finally, we proposed in (Antoy and Hanus 2014) to change Curry’s rule selection

strategy to a sequential one. However, it turned out that this change has drawbacks

w.r.t. the evaluation strategy, since formerly optimal reductions are no longer pos-

sible in particular cases. For instance, consider the operation f defined in Sect. 5

and the call f loop 2. In a sequential rule selection strategy, one starts by testing

whether the first rule is applicable. Since both arguments are demanded by this

rule, one might evaluate them from left to right (as done in the implementation

(Antoy and Hanus 2014)) so that this evaluation does not terminate. This prob-

lem is avoided with our proposal which returns 2 even in the presence of a default

rule for f. Moreover, the examples presented in (Antoy and Hanus 2014) can be

expressed with default rules in a similar way.

26 Sergio Antoy and Michael Hanus

9 Conclusions

We proposed a new concept of default rules for Curry. Default rules are available

in many rule-based languages, but a sensible inclusion into a functional logic lan-

guage is demanding. Therefore, we used advanced features for encapsulating search

to define and implement default rules. Thanks to this approach, typical logic pro-

gramming features, like non-determinism and evaluating operations with unknown

arguments, are still applicable with our new semantics. This distinguishes our ap-

proach from similar concepts in logic programming which simply cut alternatives.

Our approach can lead to more elegant and comprehensible declarative programs,

as shown by several examples in this paper. Moreover, many uses of negation-

as-failure, which are often implemented in functional logic programs by complex

applications of encapsulation operators, can easily be expressed with default rules.

Since encapsulated search is more costly than simple pattern matching, we have

also shown some opportunities to implement default rules more efficiently. In par-

ticular, if the standard rules are inductively sequential and unconditional, one can

replace the default rules by a set of standard rules so that the usage of encapsulated

search can be completely avoided.

Acknowledgments. The authors are grateful to Sandra Dylus and the anonymous

reviewers for their suggestions to improve a previous version of this paper. This

material is based in part upon work supported by the National Science Foundation

under Grant No. 1317249.

References

Antoy, S. 1992. Definitional trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming. Springer LNCS 632, 143–157.

Antoy, S. 1997. Optimal non-deterministic functional logic computations. In 6th Int’l
Conf. on Algebraic and Logic Programming (ALP’97). Vol. 1298. Springer LNCS,
Southampton, UK, 16–30.

Antoy, S., Echahed, R., and Hanus, M. 2000. A needed narrowing strategy. Journal
of the ACM 47, 4, 776–822.

Antoy, S. and Hanus, M. 2005. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05). Springer LNCS 3901, 6–22.

Antoy, S. and Hanus, M. 2006. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Programming
(ICLP 2006). Springer LNCS 4079, 87–101.

Antoy, S. and Hanus, M. 2009. Set functions for functional logic programming. In
Proceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09). ACM Press, 73–82.

Antoy, S. and Hanus, M. 2010. Functional logic programming. Communications of the
ACM 53, 4, 74–85.

Antoy, S. and Hanus, M. 2014. Curry without Success. In Proc. of the 23rd International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2014). CEUR
Workshop Proceedings, vol. 1335. CEUR-WS.org, 140–154.

Default Rules for Curry 27

Antoy, S. and Middeldorp, A. 1996. A sequential strategy. Theoretical Computer
Science 165, 75–95.

Berry, G. 1976. Bottom-up computation of recursive programs.

Braßel, B., Hanus, M., and Huch, F. 2004. Encapsulating non-determinism in func-
tional logic computations. Journal of Functional and Logic Programming 2004, 6.

Braßel, B., Hanus, M., Peemöller, B., and Reck, F. 2011. KiCS2: A new compiler
from Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011). Springer LNCS 6816, 1–18.

Christiansen, J., Hanus, M., Reck, F., and Seidel, D. 2013. A semantics for weakly
encapsulated search in functional logic programs. In Proc. of the 15th International
Symposium on Principle and Practice of Declarative Programming (PPDP’13). ACM
Press, 49–60.

Deransart, P., Ed-Dbali, A., and Cervoni, L. 1996. Prolog - the standard: reference
manual. Springer.

González-Moreno, J., Hortalá-González, M., López-Fraguas, F., and
Rodŕıguez-Artalejo, M. 1999. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming 40, 47–87.

Hanus, M. 2011. Declarative processing of semistructured web data. In Technical Commu-
nications of the 27th International Conference on Logic Programming. Vol. 11. Leibniz
International Proceedings in Informatics (LIPIcs), 198–208.

Hanus, M. 2013. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger. Springer LNCS 7797, 123–168.

Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau,
P., Sadre, R., and Steiner, F. 2016. PAKCS: The Portland Aachen Kiel Curry
System. Available at http://www.informatik.uni-kiel.de/∼pakcs/.

Hanus (ed.), M. 2016. Curry: An integrated functional logic language (vers. 0.9.0).
Available at http://www.curry-language.org.

López-Fraguas, F. and Sánchez-Hernández, J. 2004. A proof theoretic approach to
failure in functional logic programming. Theory and Practice of Logic Programming 4, 1,
41–74.

Moreno-Navarro, J. 1994. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. Eleventh International Conference on Logic Pro-
gramming. MIT Press, 535–549.

O’Donnell, M. J. 1977. Computing in Systems Described by Equations. Springer LNCS
58.

Peyton Jones, S., Ed. 2003. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press.

Reddy, U. 1985. Narrowing as the operational semantics of functional languages. In
Proc. IEEE Internat. Symposium on Logic Programming. Boston, 138–151.

Sánchez-Hernández, J. 2006. Constructive failure in functional-logic programming:
From theory to implementation. Journal of Universal Computer Science 12, 11, 1574–
1593.

Slagle, J. 1974. Automated theorem-proving for theories with simplifiers, commutativity,
and associativity. Journal of the ACM 21, 4, 622–642.

