
Needed Computations
Shortcutting Needed Steps

Sergio Antoy

Portland State University

Joint work with Jacob Johannsen and Steven Libby

Termgraph 2014 – Vienna, Austria
Thanks NSF CCF-1317249



Outline

• Part 1: an optimal implementation.

• Part 2: a better one.

What is the meaning of “optimal”?

2/21



A bit of theory

The fundamental result of computations in
Orthogonal Term Rewriting Systems:

Every reducible term has a redex that is
reduced in every computation to its nor-
mal form, if it exists.

Significant consequences and some sub-
tleties ...

3/21



Just do it

• If you discover that a redex is needed,
then reduce it.

• Can’t do any better.

• Basis for optimal computations (in-
cluding non-determinism and narrow-
ing).

4/21



However

Needed redexes:

• can’t always be known,

• move around,

• may be cloned.

5/21



Our Environment

• Graph not term rewriting.

• Inductively sequential systems.

• Needed redexes easily found.

• Redex has identity, no clones.

6/21



Inductive sequentiality

Operations are defined by constructor-based
left-linear rules.

A definition, e.g., the usual list concatenation:

[] ++ y → y

(x : xs) ++ y → x : (xs ++ y)

is like a structural induction case distinction.

7/21



Definitional Trees

A hierarchical structure of the rules of
an operation that captures the structural
induction-like case distinction of a defini-
tion:

x ++y

��
��

��
��

??
??

??
??

[]++y (x:xs)++y

8/21



Compilation

• Data: graphs labeled by signature symbols.

• Two functions: H (head) and N(norm).

• H derives argument to head constructor form.
Generated by a traversal of definitional trees.

• N derives argument to constructor form.
Obtained from signature.

9/21



Object Code (H)

Head function for ++.
Pattern matching is a notational convenience.
Apply rules in textual order.

H([]++[]) = []

H([]++(y:ys)) = (y:ys)

H([]++y) = H(y)

H((x:xs)++y) = x:(xs++y)

H(x++y) = H(H(x)++y)

10/21



Object Code (N)

Norm function for List constructors and ++.
Pattern matching is a notational convenience.

N([]) = []

N(x:xs) = N(x):N(xs)

N(x++y) = N(H(x++y))

11/21



Properties

• Call-by-value (innermost).

• “As if” only needed redexes are reduced.

• Normalizing computations (for values).

• A “very good” implementation/strategy.

- optimal

- no lookahead

- simple

12/21



A more Efficient Implementation

• Transform object code

• Shortcut some rewrite steps

• Fewer allocated nodes

• Fewer (pattern) matched nodes

• “Fewer” may be zero

13/21



Transformation

Two phases:

• Remove application of H to a variable
(specialize the variable).

• Introduce composition of H and symbol
(from the above).

14/21



Phase 1 Example

An earlier rule of H for ++:

H([]++y) = H(y)

specialize y:

H([]++(u++v)) = H(u++v)

do same for every other (list) operation.

15/21



Phase 2 Example

Rule obtained from phase 1:

H([]++(u++v)) = H(u++v)

Introduce H++ as H ◦ ++:

H++([],u++v) = H++(u,v)

do same everywhere in object code.
H is no longer invoked.

16/21



Benchmark Program

Define:

length [] = 0

length (-:xs) = 1 + length xs

Object code:

Hlength([]) = 0

Hlength(-:xs)) = H+(1,length(xs))

· · ·

Integers are built-in, addition defined accordingly.

17/21



Benchmark Results

l1 and l2 are long lists.

length(l1++ l2) CR TR OR

rewrite steps 10 6 6

shortcut steps 0 4 4

node allocations 20 16 12

node matches 40 26 18

Entries are normalized with respect to the number
of rewrite steps of CR.

18/21



Pushing the Idea Further

OR replaces in phase 1 rule:

H(length(-:xs)) = H(1+length(xs))

with:

H(length(-:xs)) = H(1+H(length(xs)))

and then applies phase 2 of the transformation:

Hlength(-:xs)) = H+(1,Hlength(xs))

Can still save the allocations of 1.

19/21



Conclusion

• Two implementations of rewriting.

• One remarkably simple and optimal.

• One shortcuts needed steps (rewriting?).

• Executes with same building blocks.

• Conceptually interesting (optimal strategies).

• Practically useful (fewer resources).

20/21



Thank you


