
A. Middeldorp and F. van Raamsdonk (Eds.): 8th International
Workshop on Computing with Terms and Graphs (TERMGRAPH 2014)
EPTCS 183, 2015, pp. 18–32, doi:10.4204/EPTCS.183.2

c© S. Antoy, J. Johannsen, & S. Libby
This work is licensed under the
Creative Commons Attribution License.

Needed Computations Shortcutting Needed Steps

Sergio Antoy
Computer Science Dept.
Portland State University

Oregon, U.S.A.
antoys@pdx.edu

Jacob Johannsen
Dept. of Computer Science

Aarhus University
Denmark

cnn@cs.au.dk

Steven Libby
Computer Science Dept.
Portland State University

Oregon, U.S.A.
slibby@pdx.edu

We define a compilation scheme for a constructor-based, strongly-sequential, graph rewriting system
which shortcuts some needed steps. The object code is another constructor-based graph rewriting
system. This system is normalizing for the original system when using an innermost strategy. Con-
sequently, the object code can be easily implemented by eager functions in a variety of programming
languages. We modify this object code in a way that avoids total or partial construction of the con-
tracta of some needed steps of a computation. When computing normal forms in this way, both
memory consumption and execution time are reduced compared to ordinary rewriting computations
in the original system.

1 Introduction

Rewrite systems are models of computations that specify the actions, but not the control. The object of
a computation is a graph referred to as an expression. The actions are encoded by rules that define how
to replace (rewrite) one expression with another. The goal of a computation is to reach an expression,
called a normal form, that cannot be further rewritten.

In the computation of an expression, a rewrite system does not tell which subexpression should be
replaced to reach the goal.

Example 1. Consider the following rewrite system. The syntax is Curry [17].

loop = loop

snd (-,y) = y (1)

A computation of snd (loop,0) terminates with 0 if the second rule of (1) is ever applied, but goes on
forever without making any progress if only the first rule is applied.

In a computation a strategy is a policy or algorithm that defines both which subexpression should be
replaced and its replacement. The intended goal of a strategy is to efficiently produce a normal form of
an expression when it exists. A practical strategy, called needed, is known for the class of the strongly
sequential term rewriting systems [18]. This strategy relies on the fact that, in every reducible expression
e, there exists a redex, also called needed, that is reduced in any computation of e to a normal form.

The needed strategy is defined and implemented as follows: given an expression e, while e is re-
ducible, reduce an arbitrarily chosen, needed redex of e. In the systems considered in this paper, finding
a needed redex is easy without look-ahead [3]. This strategy is normalizing: if an expression e has a
normal form, repeatedly reducing arbitrary needed redexes will terminate with that normal form. This
strategy is also optimal in the number of reduced redexes for graph (not term) rewriting.

The above outline shows that implementing a needed strategy is a relatively straightforward task.
Surprisingly, however, it is possible to shortcut some of the needed steps in the computation. This paper
shows how this shortcutting can be introduced into an implementation of a needed strategy.

http://dx.doi.org/10.4204/EPTCS.183.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Antoy, J. Johannsen, & S. Libby 19

Terminology and background information are recalled in Sect. 2. The compilation scheme and its
properties are in Sect. 3 and 4. The transformation that allows shortcutting needed redexes, and its
properties, are in Sect. 5 and 6. Sect. 7 presents two benchmarks and sketches further opportunities to
shortcut needed steps. Sect. 8 discusses the application of our work to the implementation of functional
logic languages. Related work and conclusion are in Sect. 9 and 10, respectively.

2 Preliminaries

A rewrite system is a pair (Σ∪X ,R) in which Σ=C]D is a signature partitioned into constructors and
operations (or functions), X is a denumerable set of variables, and R is a set of rewrite rules defined
below. Without further mention, we assume that the symbols of the signature have a type, and that any
expression over the signature is well typed.

An expression is a single-rooted, directed, acyclic graph defined in the customary way [11, Def. 2].
An expression e is a constructor form (or value) if, and only if, every node of e is labeled by a constructor
symbol. Constructor forms are normal forms, but not vice versa. For example, head([]) where head is the
usual operation that returns the first element of a (non-empty) list, is a normal form, but not a constructor
form. In a constructor-based system, such expressions are regarded as failures or exceptions rather than
results of computations. Likewise, a head-constructor form is an expression whose root node is labeled
by a constructor symbol.

A rule is a graph with two roots abstracting the left- and right-hand sides respectively. The rules
follow the constructor discipline [23]. Each rule’s left-hand side is a pattern, i.e., an operation symbol
applied to zero or more expressions consisting of only constructor symbols and variables. Rules are
left-linear, i.e., the left-hand side is a tree.

The objects of a computation are graphs rather than terms. Sharing some subexpressions of an
expression is a requirement of functional logic programming [13, 14, 15, 21]. Incidentally, this sharing
ensures that needed redexes are never duplicated during a computation. The difference between our
graphs and ordinary terms concerns only the sharing of subexpressions.

A computation of an expression t is a possibly infinite sequence

t = t0→ t1→ . . .

such that ti→ ti+1 is a rewrite step [11, Def. 23]. For all i, ti is a state of the computation of t.
Given a rewrite system R, an expression of R is an expression over the signature of R. When s is

a signature symbol and n is a natural number, s/n denotes that n is the arity of s. When t and u are
expressions and v is a variable, [u/v] is the substitution that maps v to u, and t[u/v] is the application of
[u/v] to t. The reflexive closure of the rewrite relation “→” is denoted “→= ”.

Each operation in D is inductively sequential; that is, its rewrite rules are organized into a hierarchical
structure called a definitional tree [1] which we informally recall below. An example of a definitional tree
is shown in (3). In a definitional tree of an operation f , there are up to 3 kinds of nodes called branch,
rule and exempt. Each kind contains a pattern of f and other items of information depending on the kind.
A rule node with pattern π contains a rule of f whose left-hand side is equal to π modulo renaming nodes
and variables. An exempt node with pattern π contains no other information. There is no rule of f whose
left-hand side is equal to π . A branch node with a pattern π contains children that are subtrees of the
definitional tree. At least one child is a rule node. The children are obtained by “narrowing” pattern π .
Let x be any variable of π , which is called inductive. For each constructor c/m of the type of x, there is
a child whose pattern is obtained from π by instantiating x with c(x1, . . .xm), where xi is a fresh variable.

20 Needed Computations Shortcutting Needed Steps

An operation f/n is inductively sequential [1] if there exists a definitional tree whose root has pattern
f (x1, . . .xn), where xi is a fresh variable, and whose leaves contain all, and only, the rules of f . A rewrite
system is inductively sequential if all of its operations are inductively sequential.

Inductively sequential operations can be thought of as “well designed” with respect to evaluation.
To compute a needed redex of an expression e rooted by an operation f , match to e the pattern π of
a maximal (deepest in the tree) node N of a definitional tree of f . If N is an exempt node, e has no
constructor normal form, and the computation can be aborted. If N is a rule node, e is a redex and can be
reduced by the rule in N. If N is a branch node, let x be the inductive variable of π and t the subexpression
of e to which x is matched. Then, recursively compute a needed redex of t.

The inductively sequential systems are the intersection [16] of the strongly sequential systems [18]
and the constructor-based systems [23]. The following notion [8] for inductively sequential systems is
key to our work. We abuse the word “needed” because we will show that our notion extends the classic
one [18]. Our notion is a binary relation on nodes, or equivalently on the subexpressions rooted by these
nodes, since they are in a bijection.

Definition 1. Let R be an inductively sequential system, e an expression of R rooted by a node p, and n
a node of e. Node n is needed for e, and similarly is needed for p, if, and only if, in any computation of e
to a head-constructor form, the subexpression of e at n is derived to a head-constructor form. A node n
(and the redex rooted by n, if any) of a state e of a computation in R is needed if, and only if, it is needed
for some outermost operation-rooted subexpression of e.

Our “needed” relation is interesting only when both nodes are labeled by operation symbols. If e is
an expression whose root node p is labeled by an operation symbol, then p is trivially needed for p. This
holds whether or not e is a redex and even when e is already a normal form, e.g., head([]). In particular,
any expression that is not a value has pairs of nodes in the needed relation. Finally, our definition is
concerned with reaching a head-constructor form, not a normal form.

Our notion of need generalizes the classic notion [18]. Also, since our systems follow the constructor
discipline [23] we are not interested in expressions that do not have a value.

Lemma 1. Let R be an inductively sequential system and e an expression of R derivable to a value. If e′

is an outermost operation-rooted subexpression of e, and n is both a node needed for e′ and the root of a
redex r, then r is a needed redex of e in the sense of [18].

Proof. Since e′ is an outermost operation-rooted subexpression of e, any node in any path from the root
of e to the root of e′, except for the root of e′, is labeled by constructor symbols. Hence, e can be derived
to a value only if e′ is derived to a value and e′ can be derived to a value only if e′ is derived to a head-
constructor form. By assumption, in any derivation of e′ to a head-constructor form r is derived to a
head-constructor form, hence it is reduced. Thus, r is a needed redex of e according to [18].

Lemma 2. Let R be an inductively sequential system, e an expression of R, e1, e2 and e3 subexpressions
of e such that ni is the root of ei and the label of ni is an operation, for i = 1,2,3. If n3 is needed for n2
and n2 is needed for n1, then n3 is needed for n1.

Proof. By hypothesis, if e3 is not derived to a constructor-rooted form, e2 cannot be derived to a
constructor-rooted form, and if e2 is not derived to a constructor-rooted form, e1 cannot be derived
to a constructor-rooted form. Thus, if e3 is not derived to a constructor-rooted form, e1 cannot be derived
to a constructor-rooted form.

S. Antoy, J. Johannsen, & S. Libby 21

compile T
01 case T of

02 when branch(π,o,T̄) then

03 ∀Ti ∈ T̄ compile Ti

04 output “H(${π}) = H(${π[H(π|o)]o})”
05 when rule(π, l→ r) then

06 case r of

07 when operation-rooted then

08 output “H(${l}) = H(${r})”
09 when constructor-rooted then

10 output “H(${l}) = ${r}”
11 when variable then

12 for each constructor c/n of the sort of r
13 let l′→ r′ = (l→ r)[c(x1, . . .xn)/r]
14 output “H(${l′}) = ${r′}”
15 output “H(${l}) = H(${r})”
16 when exempt(π) then

17 output “H(${π}) = abort”

Figure 1: Procedure compile takes a definitional tree of an operation f of R and produces the set of
rules of H that pattern match f -rooted expressions.

3 Compilation

For simplicity and abstraction, we present the object code, CR, of R as a constructor-based graph rewriting
system as well. CR has only two operations called head and norm, and denoted H and N, respectively.
The constructor symbols of CR are all, and only, the symbols of R. The rules of CR have a priority
established by the textual order. A rule reduces an expression t only if no other preceding rule could
be applied to reduce t. These semantics are subtle, since t could become reducible by the preceding
rule only after some internal reduction. However, all our claims about computations in CR are stated
for an innermost strategy. In this case, when a rule is applied, no internal reduction is possible, and the
semantics of the priority are straightforward.

Operation H is defined piecemeal for each operation of R. Each operation of R contributes a number
of rules dispatched by pattern matching with textual priority. The rules of H contributed by an operation
with definitional tree T are generated by the procedure compile defined in Fig. 1. The intent of H is to
take an expression of R rooted by an operation and derive an expression of R rooted by a constructor by
performing only needed steps.

The expression “${x}” embedded in a string, denotes interpolation as in modern programming lan-
guages, i.e., the argument x is replaced by a string representation of its value. The notation t[u]p stands
for an expression equal to t, in which the subexpression identified by p is replaced by u. In procedure
compile, the notation is used to “wrap” an application of H around the subexpression of the pattern
at o, the inductive node. An example is the last rule of (4). The loop at statement 12 is for collapsing
rules, i.e., rules whose right-hand side is a variable. When this variable matches an expression rooted by
a constructor of R, no further application of H is required; Otherwise, H is applied to the contractum.
Symbol “abort” is not considered an element of the signature of CR. If any redex is reduced to “abort”,

22 Needed Computations Shortcutting Needed Steps

the computation is aborted since it can be proved that the expression object of the computation has no
constructor normal form.

Example 2. Consider the rules defining the operation that concatenates two lists, denoted by the infix
identifier “++”:

[]++y = y

(x:xs)++y = x:(xs++y)
(2)

The definitional tree of operation “++” is pictorially represented below. The only branch node of this
tree is the root. The inductive variable of this branch, boxed in the representation, is x. The rule nodes of
this tree are the two leaves. There are no exempt nodes in this tree since operation “++” is completely
defined.

x ++y

[]++y

��

(x:xs)++y

��
y x:(xs++y)

(3)

Applying procedure compile to this tree produces the following output:

H([]++[]) = [] compile line #14
H([]++(y:ys)) = (y:ys) compile line #14
H([]++y) = H(y) compile line #15
H((x:xs)++y) = x:(xs++y) compile line #10
H(x++y) = H(H(x)++y) compile line #04

(4)

Operation N of the object code is defined by one rule for each symbol of R. In the following metarules,
c/m stands for a constructor of R, f/n stands for an operation of R, and xi is a fresh variable for every i.

N(c(x1, . . .xm)) = c(N(x1), . . .N(xm))
N(f (x1, . . .xn)) = N(H(f (x1, . . .xn)))

(5)

Example 3. The rules of N for the list constructors and the operation “++” defined earlier are:

N([]) = []

N(x:xs) = N(x):N(xs)

N(x++y) = N(H(x++y))
(6)

Definition 2. The rewrite system consisting of the H rules generated by procedure compile for the
operations of R and the N rules generated according to (5) for all the symbols of R is the object code of
R and is denoted CR.

Example 4. We show the computation of [1]++[2] in both R and CR. We use the desugared notation
for list expressions to more easily match the patterns of the rules of “++”.

(1:[])++(2:[]) → 1:([]++(2:[])) → 1:2:[] (7)

and

S. Antoy, J. Johannsen, & S. Libby 23

N((1:[])++(2:[]))

→ N(H((1:[])++(2:[])))

→ N(1:([]++(2:[]))

→ N(1):N([]++(2:[]))

→ 1:N(H([]++(2:[])))

→ 1:N(2:[])

→ 1:N(2):N([])

→ 1:2:[]

(8)

Computation (8) is longer than (7). If all the occurrences of N and H are ”erased” from the states of (8),
a concept formalized shortly, and repeated states of the computation are removed, the remaining steps
are the same as in (7). The introduction and removal of occurrences of N and H in (8), which lengthen
the computation, represent the control, what to rewrite and when to stop. These activities occur in (7)
too, but are in the mind of the reader rather than explicitly represented in the computation.

4 Compilation Properties

CR, the object code of R, correctly implements R. Computations performed by CR produce the results of
corresponding computations in R as formalized below. Furthermore, CR implements a needed strategy,
because every reduction performed by CR is a needed reduction in R. In this section, we prove these
properties of the object code.

Let Expr be the set of expressions over the signature of CR output by compile on input a rewrite
system R. The erasure function E : Expr→ Expr is inductively defined by:

E (H(t)) = E (t)
E (N(t)) = E (t)
E (s(t1, . . . tn)) = s(E (t1), . . .E (tn)) for s/n ∈ ΣR

(9)

Intuitively, the erasure of an expression t removes all the occurrences of H and N from t. The result is an
expression over the signature of R.

Lemma 3. Let R be an inductively sequential system and H the head function of CR. For any operation-
rooted expression t of R, H(t) is a redex.

Proof. Let f/n be the root of t, and T the definitional tree of f input to procedure compile. The pattern
at the root of T is f (x1, . . .xn), where each xi is a variable. Procedure compile outputs a rule of H with
left-hand side H(f (x1, . . .xn)). Hence this rule, or a more specific one, reduces t.

Comparing graphs modulo a renaming of nodes, as in the next proof, is a standard technique [11] due to
the fact that any node created by a rewrite is fresh.

Lemma 4. Let R be an inductively sequential system and H the head function of CR. Let t be an
operation-rooted expression of R, and H(t) be reduced by a step resulting from the application of a
rule r originating from statement 04 of procedure compile. The argument of the inner application of H
in the contractum is both operation-rooted and needed for t.

Proof. Let T be a definitional tree of the root of t. Let π be the pattern of the branch node n of T from
which rule r originates and let o be the inductive node of π . Since r rewrites t and π is the left-hand
side of r modulo a renaming of variables and nodes, there exists a graph homomorphism σ such that
t = σ(π). Our convention on the specificity of the rules defining H establishes that no rule textually

24 Needed Computations Shortcutting Needed Steps

preceding r in the definition of H rewrites t. Since procedure compile traverses T in post-order, every
rule of H originating from a node descendant of n in T textually precedes r in the definition of H. Let
q = σ(π|o). For each constructor symbol c/n of R of the sort of π|o, there is a rule of H with argument
π[c(x1, . . . ,xn)]|o, where x1, . . . ,xn are fresh variables, and this rule textually precedes r in the definition
of H. Therefore, the label of q is not a constructor symbol, otherwise this rule would be applied to t
instead of r. Since the step of t is innermost, q cannot be labeled by H either. Thus, the only remaining
possibility is that q is labeled by an operation. We now prove that q is needed for t. If n1 and n2 are disjoint
nodes (neither is an ancestor of the other) of T , then the patterns of n1 and n2 are not unifiable. This
is because they have different constructors symbols at the node of the inductive variable of the closest
(deepest) common ancestor. Thus, since t = σ(π), only a rule of R stored in a rule node of T below n can
rewrite (a descendant of) t at the root, if any such a rule exists. All these rules have a constructor symbol
at the node matched by o, whereas t has an operation symbol at q, the node matched by o. Therefore, t
cannot be reduced (hence reduced to a head-constructor form) unless t|q is reduced to a head-constructor
form. Thus, q is needed for t.

Example 5. The situation depicted by the previous lemma can be seen in the evaluation of
t = ([1]++[2])++[3]. According to (4), H(t)→ H(H([1]++[2])++[3]). The argument of the in-
ner application of H is both operation-rooted and needed for t.

Lemma 5. Let R be an inductively sequential system and H the head function of CR. Let t be an
operation-rooted expression of R and let A denote an innermost finite or infinite computation H(t) =
e0→ e1→ . . . in CR.

1. For every index i in A, E (ei)→
=

E (ei+1) in R.

2. If A terminates (it neither aborts nor is infinite) in an expression u, then u is a head-constructor
form of R.

Proof. Claim 1: Let l→ r be the rule of H applied in the step ei→ ei+1. There are 3 cases for the origin
of l→ r. If l→ r originates from statement 04 of compile, then E (ei) = E (ei+1) and the claim holds.
Otherwise l→ r originates from one of statements 08, 10, 14 or 15. In all these cases, a subexpression
of ei of the form H(w) is replaced by either H(u) (statements 08 and 15) or u (statements 10 and 14),
in which w is an instance of the left-hand side of a rule of R and u is the corresponding right-hand side.
Thus, in this case too, the claim holds.
Claim 2: If A aborts or does not terminate, the claim is vacuously true. So, consider the last step of A.
This step cannot originate from the application of a rule that places H at the root of the contractum, since
another step would become available. Hence the rule of the last step is generated by statement 10 or 14
of procedure compile. In both cases, the contractum is a head constructor form.

If A denotes a computation H(t) = e0→ e1→ . . . in CR, then, by Lemma 5, we denote E (e0)→
=

E (e1)→
=

. . . with E (A) and—with a slight abuse—we regard it as a computation in R. Some expression of E (A)
may be a repetition of the previous one, rather than the result of a rewrite step. However, it is more
practical to silently ignore these duplicates than filtering them out at the expenses of a more complicated
definition. We will be careful to avoid an infinite repetition of the same expression. We extend the above
viewpoint to computations of N(t) in CR, where t is any expression of R.

Theorem 1. Let R be an inductively sequential system and H the head function of CR. Let t be an
operation-rooted expression of R and let A denote an innermost finite or infinite computation H(t) =
e0→ e1→ . . . in CR. Every step of E (A) is needed.

S. Antoy, J. Johannsen, & S. Libby 25

Proof. We prove that for every index i such that ei is a state of A, every argument of an application of
H in ei is needed for E (ei). Preliminarily, we define a relation “≺” on the nodes of the states of E (A) as
follows. Let p and q be nodes of states E (ei) and E (e j) of E (A) respectively. We define p≺ q iff i < j or
i = j and the expression at q is a proper subexpression of the expression at p in E (ei). Relation “≺” is a
well-founded ordering with minimum element the root of t. The proof of the theorem is by induction on
“≺”. Base case: Directly from the definition of “need”, since t is rooted by an operation of R. Induction
case: Let q be the root of the argument of an application of H in e j for j > 0. We distinguish whether q
is the root of the argument of an application of H in e j−1. If it is, then the claim is a direct consequence
of the induction hypothesis. If it is not, e j−1 → e j is an application of a rule r generated by one of the
statements 04, 08 or 15 of procedure compile. For statement 04, there is a node p of E (e j) that by the
induction hypothesis is needed for E (e j) and matches the pattern π of the branch node of a definitional
tree from which rule r originates. Let q be the node of the subexpression of e j rooted by p matched by
π at o. By Lemma 4, q is needed for p. Since p is needed for E (e j), by Lemma 2, q is needed for E (e j)
and the claim holds. For statements 08 and 15, q is the root of the contractum of the redex matched by r
which by the induction hypothesis is needed for E (e j−1). Node q is still labeled by an operation, hence
it is needed for E (e j) directly by the definition of “need”.

Corollary 1. Let R be an inductively sequential system. Let t be an expression of R and let A denote an
innermost finite or infinite computation N(t) = e0→ e1→ . . . in CR. Every step of E (A) is needed.

Proof. Operation N of CR applied to an expression t of R applies operation H to every outermost
operation-rooted subexpression of t. All these expressions are needed by Def. 1. The claim is therefore a
direct consequence of Th. 1.

Corollary 2. Let R be an inductively sequential system. For all expressions t and constructor forms u of
R, t ∗→ u in R if, and only if, N(t) ∗→ u in CR modulo a renaming of nodes.

Proof. Let A denote some innermost computation of N(t). Observe that if A terminates in a constructor
form u of R, then every innermost computation of N(t) terminates in u because the order of the reductions
is irrelevant. Therefore, we consider whether A terminates normally. Case 1: A terminates normally. If
N(t) ∗→ u, then by Lemma 5, point 1, t ∗→ u. Case 2: A does not terminate normally. We consider whether
A aborts. Case 2a: A aborts. Suppose N(t) = e0 → e1 → . . .→ ei, and the step of ei reduces a redex
r to “abort”. By Theorem 1, r is needed for ei, but there is no rule in R that reduces r, hence t has
no constructor form. Case 2b: A does not terminates. Every step of E (A) is needed. The complete tree
unraveling [9, Def. 13.2.9] of the rules of R and the states of E (A), gives an orthogonal term rewriting
system and a computation of the unraveled t. Since redexes are innermost, in this computation an infinite
number of needed redexes are reduced. The hypernormalization of the needed strategy [9, Sect. 9.2.2]
shows that hence t has no constructor form.

The object code CR for a rewrite system R is subjectively simple. Since innermost reductions suffice for
the execution, operations H and N can be coded as functions that take their argument by-value. This is
efficient in most programming languages. Corollary 2, in conjunction with Theorem 1, shows that CR is
a good object code: it produces the value of an expression t when t has such value, and it produces this
value making only steps that must be made by any rewrite computation. One could infer that there cannot
be a substantially better object code, but this is not true. The next section discusses why.

26 Needed Computations Shortcutting Needed Steps

5 Transformation

We transform the object code to avoid totally, or partially, constructing certain contracta. The transfor-
mation consists of two phases.

The first phase replaces certain rules of H. Let r be a rule of H in which H is recursively applied to a
variable, say x, as in the third rule of (4). Rule r is replaced by the set Sr of rules obtained as follows. A
rule rf is in Sr, iff rf is obtained from r by instantiating x with f (x1, . . .xn), where f/n is an operation of
R, x1, . . .xn are fresh variables, and the sorts of f (x1, . . .xn) and x are the same. If a rule in Sr still applies
H to another variable, it is again replaced in the same way.

Example 6. The following rule originates from instantiating y for “++” in the third rule of (4).

H([]++(u++v)) = H(u++v) (10)

The first phase of the transformation ensures that H is always applied to an expression rooted by some
operation f of R. The second phase introduces, for each operation f of R, a new operation, denoted H f .
This operation is the composition of H with f , and then replaces every occurrence of the composition of
H with f with H f .

Example 7. The second phase transforms (10) into:

H++([],u++v) = H++(u,v) (11)

After the second phase, operation H can be eliminated from the object code since it is no longer invoked.
We denote the transformed CR with TR and the outcome of the first phase on CR with C′R. The mapping τ ,
from expressions of CR to expressions of TR, formally defines the transformation:

τ(t) =

H f (τ(t1), . . .τ(tn)), if t = H(f (t1, . . . tn));
s(τ(t1), . . .τ(tn)), if t = s(t1, . . . tn), with s symbol of R;
v, if t = v, with v variable.

(12)

TR is more efficient than CR because, for any operation f of R, the application of H f avoids the allocation
of a node labeled by f . This node is also likely to be pattern matched later.

Example 8. Consider the usual length–of–a–list operation:

length [] = 0

length (-:xs) = 1+length xs (13)

The compilation of (13), where we omit rules irrelevant to the point we are making, produces:

H(length([])) = 0

H(length(-:xs)) = H(1+length(xs))

· · ·
(14)

The transformation of (14), where again we omit rules irrelevant to the point we are making, produces:

Hlength([]) = 0

Hlength(-:xs)) = H+(1,length(xs))

· · ·
(15)

Below, we show the traces of a portion of the computations of N(length [7]) executed by CR (left) and
TR (right), where the number 7 is an irrelevant value. The rules of “+” are not shown. Intuitively, they
evaluate the arguments to numbers, and then perform the addition.

S. Antoy, J. Johannsen, & S. Libby 27

N(H(length [7]) N(Hlength([7])

→ N(H(1+length []) → N(H+(1,length [])

→ N(H(1+H(length [])) → N(H+(1,Hlength([])))

→ N(H(1+0)) → N(H+(1,0))

→ N(1) → N(1)

→ 1 → 1

CR constructs the expression rooted by the underlined occurrence of “+”, and later pattern matches it.
The same expression is neither constructed nor pattern matched by TR.

The transformation increases the size of a program. Certain rules are replaced by sets of rules. The
number of rules in a replacing set is the number of constructors of some type. A coarse upper bound
of the size of the transformed program is a constant factor of the size of the original program. Modern
computers have gigabytes of memory. We believe that the growth in size could become a problem only
in extreme cases, and likely would not be the most serious problem in those cases.

6 Transformation Properties

We show that both phases of the transformation described in the previous section preserve the object
code computations.

Lemma 6. Let R be an inductively sequential system. Every step of CR is a step of C′R and vice versa,
modulo a renaming of nodes.

Proof. Every rule of C′R is an instance of a rule of CR. Hence every step of C′R is a step of CR. For the
converse, let t→ u be a step of CR where some rule r is applied. It suffices to consider the case in which
t is the redex and the rule r applied in the step is not in C′R. Let v be the variable “wrapped” by H in
r. Rule r is output by statement either 04 or 15 of procedure compile. We show that in both cases the
match of v, say s, is an operation-rooted subexpression of t. If r is output by statement 04, this property
is ensured by Lemma 4. If r is output by statement 15, and the match of v were constructor-rooted, then
some rule output by statement 14 of procedure compile, which textually precedes r and is tried first,
would match t. Therefore, let f/n be the root of s. By the definition of phase 1 of the transformation, rule
r[f (x1, . . .xn)/v] is in C′R. Therefore, modulo a renaming of nodes, t→ u in C′R

Corollary 3. Let R be an inductively sequential system. For every operation-rooted expression t and
head-constructor form u of R, H(t) +→ u in C′R if, and only if, τ(H(t)) +→ u in TR modulo a renaming of
nodes.

Proof. Preliminarily, we show that for any s, H(t)→ s in C′R iff τ(H(t))→ τ(s) in TR. Assume H(t)→ s
in C′R. There exists a rule l→ r of C′R and a match (graph homomorphism) σ such that H(t) = σ(l) and
s = σ(r). From the definition of phase 2 of the transformation, τ(l)→ τ(r) is a rule of TR. We show
that this rule reduces τ(H(t)) to τ(s). Since τ is the identity on variables, and σ is the identity on non
variables, σ ◦ τ = τ ◦σ . Thus τ(H(t)) = τ(σ(l)) = σ(τ(l))→ σ(τ(r)) = τ(σ(r)) = τ(s). The converse
is similar because there a bijection between the steps of C′R and TR.

Now, we prove the main claim. First, the claim just proved holds also when H(t) is in a context. Then,
an induction on the length of H(t) +→ u in C′R shows that τ(H(t)) +→ τ(u) in TR. Since by assumption u is
an expression of R, by the definition of τ , τ(u) = u.

28 Needed Computations Shortcutting Needed Steps

Finally, we prove that object code and transformed object code execute the same computations.

Theorem 2. Let R be an inductively sequential system. For all expressions t and u of R, N(t) +→ u in CR

if, and only if, N(t) +→ u in TR.

Proof. In the computation of N(t) in CR, by the definition of τ , each computation of H(s) in CR, for
some expression s, is transformed into a computation of τ(H(s)) in TR. By Lemma 5, the former ends in
a head-constructor form of R. Hence, by Corollary 3, τ(H(s)) ends in the same head-constructor form of
R. Thus, N(t) +→ u in TR produces the same result. The converse is similar.

7 Benchmarking

Our benchmarks use integer values. To accommodate a built-in integer in a graph node, we define a kind
of node whose label is a built-in integer rather than a signature symbol. An arithmetic operation, such as
addition, retrieves the integers labeling its argument nodes, adds them together, and allocates a new node
labeled by the result of the addition.

Our first benchmark evaluates length(l1++ l2), where length is the operation defined in (13). In
the table below, we compare the same rewriting computation executed by CR and TR. We measure the
number of rewrite and shortcut steps executed, the number of nodes allocated, and the number of node
labels compared by pattern matching. The ratio between the execution times of TR and CR varies with the
implementation language, the order of execution of some instructions, and other code details that would
seem irrelevant to the work being performed. Therefore, we measure quantities that are language and
code independent. The tabular entries are in units per 10 rewrite steps of CR, and are constant functions
of this value except for very short lists. For lists of one million elements, the number of rewrite steps of
CR is two million.

length(l1++ l2) CR TR OR

rewrite steps 10 6 6

shortcut steps 0 4 4

node allocations 20 16 12

node matches 40 26 18

The column labeled OR refers to object code that further shortcuts needed steps using the same idea
behind the transformation. For example, in the second rule of (14), both arguments of the addition in the
right-hand side are needed. This information is known at compile-time, therefore the compiler can wrap
an application of H around the right operand of “+” in the right-hand side of the rule.

H(length(-:xs)) = H(1+H(length(xs))) (16)

The composition of H with length is replaced by Hlength during the second phase. The resulting rule
is:

Hlength(-:xs)) = H+(1,Hlength(xs)) (17)

Of course, there is no need to allocate a node for expression 1, the first argument of the addition, every
time rule (15) or (17) is applied. A single node can be shared by the entire computation. However, since
the first argument of the application of H+ is constant, this application can be specialized or partially
evaluated as follows:

S. Antoy, J. Johannsen, & S. Libby 29

Hlength(-:xs)) = H+1(Hlength(xs)) (18)

The application of rule (18) allocates no node of the contractum. In our benchmarks, we ignore any
optimization that is not directly related to shortcutting. Thus CR, TR and OR needlessly allocate this node
every time these rules are applied.

The number of shortcut steps of TR and OR remain the same because, loosely speaking, OR shortcuts
a step that was already shortcut by TR, but the number of nodes allocated and matched further decreases.
The effectiveness of TR to reduce node allocations or pattern matching with respect to CR varies with the
program and the computation.

Our second benchmark computes the n-th Fibonacci number for a relatively large value of n. The
program we compile is:

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)
(19)

To keep the example simple, we assume that pattern matching is performed by scanning the rules in
textual order. Therefore, the last rule is applied only when the argument of fib is neither 0 nor 1.

fib(n) CR TR OR

rewrite steps 10 8 8

shortcut steps 0 2 2

node allocations 24 22 10

node matches 44 26 16

The tabular entries are in units per 10 rewrite steps of CR and are constant functions of this value except
for very small arguments of fib. For n = 32, the number of steps of CR is about 17.5 million. With
respect to CR, TR avoids the construction of the root of the right-hand side of the third rule of (19). OR

transforms the right-hand side of this rule into:

H+(Hfib(H-(n,1)),Hfib(H-(n,2))) (20)

since every node that is not labeled by the variable or the constants 1 and 2 is needed. In this benchmark,
there is also no need to allocate a node for either 1 or 2 every time (20) is constructed/executed. With
this further optimization, the step would allocate no new node for the contractum, and the relative gains
of our approach would be even more striking.

8 Functional Logic Programming

Our work is motivated by the implementation of functional logic languages. The graph rewriting systems
modeling functional logic programs are a superset of the inductively sequential ones. A minimal exten-
sion consists of a single binary operation, called choice, denoted by the infix symbol “?”. An expression
x ? y reduces non-deterministically to x or y. There are approaches [5, 6] for rewriting computations
involving the choice operation that produce all the values of an expression without ever making a non-
deterministic choice. These approaches are ideal candidates to host our compilation scheme.

Popular functional logic languages allow variables, called extra variables, which occur in the right-
hand side of a rewrite rule, but not in the left-hand side. Computations with extra variables are executed
by narrowing instead of rewriting. Narrowing simplifies encoding certain programming problems into

30 Needed Computations Shortcutting Needed Steps

programs [4]. Since our object code selects rules in textual order, and instantiates some variables of the
rewrite system, narrowing with our object code is not straightforward. However, there is a technique [7]
that transforms a rewrite system with extra variables into an equivalent system without extra variables.
Loosely speaking, “equivalent”, in this context, means a system with the same input/output relation. In
conjunction with this technique, our compiler generates code suitable for narrowing computations.

9 Related Work

The redexes that we reduce are needed to obtain a constructor-rooted expression, therefoer they are
closely related to the notion of root-neededness of [22]. However, we are interested only in normal forms
that are constructor forms. In contrast to a computation according to [22], our object code may abort the
computation of an expression e if no constructor normal form of e is reachable, even if e has a needed
redex. This is a very desirable property in our intended domain of application since it saves useless
rewrite steps, and in some cases may lead to the termination of an infinite computation.

Machines for graph reduction have been proposed [10, 20] for the implementation of functional
languages. While there is a commonality of intent, these efforts differ from ours in two fundamental
aspects. Our object code is easily translated into a low-level language like C or assembly, whereas these
machines have instructions that resemble those of an interpreter. There is no explicitly notion of need
in the computations performed by these machines. Optimizations of these machines are directed toward
their internal instructions, rather than the needed steps of a computation by rewriting, a problem less
dependent on any particular mechanism used to compute a normal form.

Our compilation scheme has similaties with deforestation [24], but is complementary to it. Both
anticipate rule application, to avoid the construction of expressions that would be quickly taken apart
and disposed. This occurs when a function producing one of these expressions is nested within a function
consuming the expression. However, our expressions are operation-rooted whereas in deforestation they
are constructor-rooted. These techniques can be used independently of each other and jointly in the same
program.

A compilation scheme similar to ours is described in [2]. This effort makes no claims of correctness,
of executing only needed steps and of shortcutting needed steps. Transformations of rewrite systems for
compilation purposes are described in [12, 19]. These efforts are more operational than ours. A compi-
lation with the same intent as ours is described in [8]. The compilation scheme is different. This effort
does not claim to execute only needed steps, though it shortcuts some of them. Shortcutting is obtained
by defining ad-hoc functions whereas we present a formal systematic way through specializations of the
head function.

10 Conclusion

Our work addresses rewriting computations for the implementation of functional logic languages. We
presented two major results.

The first result is a compilation scheme for inductively sequential graph rewriting systems. The object
code generated by our scheme has very desirable properties: it is simple consisting of only two functions
that take arguments by value, it is theoretically efficient by only executing needed steps, and it is complete
in that it produces the value, when it exists, of any expression. The two functions of the object code are
easily generated from the signature of the rewrite system and a traversal of the definitional trees of its
operations.

S. Antoy, J. Johannsen, & S. Libby 31

The second result is a transformation of the object code that shortcuts some rewrite steps. Shortcut-
ting avoids partial or total construction of the contractum of a step by composing one function of the
object code with one operation symbol of the rewrite system signature. This avoids the construction of a
node and in some cases and its subsequent pattern matching. Benchmarks show that the savings in node
allocation and matching can be substantial.

Future work will rigorously investigate the extension of our compilation technique to rewrite systems
with the choice operation and extra variables, as discussed in Sect. 8, as well as systematic opportunities
to shortcut needed steps in situations similar to that discussed in Sect. 7.

Acknowledgments

This material is based upon work partially supported by the National Science Foundation under Grant
No. CCF-1317249. This work was carried out while the second author was visiting the University of
Oregon. The second author wishes to thank Zena Ariola for hosting this visit. The authors wish to thank
Olivier Danvy for insightful comments and the anonymous reviewers for their careful reviews.

References
[1] S. Antoy (1992): Definitional Trees. In H. Kirchner & G. Levi, editors: Proceedings of the Third Interna-

tional Conference on Algebraic and Logic Programming, Springer LNCS 632, Volterra, Italy, pp. 143–157.
Available at http://dx.doi.org/10.1007/bfb0013825.

[2] S Antoy (1993): Normalization by Leftmost Innermost Rewriting. In: Proceedings of the Third International
Workshop on Conditional Term Rewriting Systems, Springer-Verlag, London, UK, pp. 448–457. Available
at http://dx.doi.org/10.1007/3-540-56393-8_36.

[3] S. Antoy (2005): Evaluation Strategies for Functional Logic Programming. Journal of Symbolic Computa-
tion 40(1), pp. 875–903. Available at http://dx.doi.org/10.1016/j.jsc.2004.12.007.

[4] S. Antoy (2010): Programming with Narrowing. Journal of Symbolic Computation 45(5), pp. 501–522.
Available at http://dx.doi.org/10.1016/j.jsc.2010.01.006.

[5] S. Antoy (2011): On the Correctness of Pull-Tabbing. TPLP 11(4-5), pp. 713–730. Available at http:
//dx.doi.org/10.1017/S1471068411000263.

[6] S. Antoy, D. Brown & S. Chiang (2006): Lazy Context Cloning for Non-deterministic Graph Rewriting. In:
Proceedings of the 3rd International Workshop on Term Graph Rewriting, Termgraph’06, Vienna, Austria,
pp. 61–70. Available at http://dx.doi.org/10.1016/j.entcs.2006.10.026.

[7] S. Antoy & M. Hanus (2006): Overlapping Rules and Logic Variables in Functional Logic Programs. In:
Proceedings of the Twenty Second International Conference on Logic Programming, Springer LNCS 4079,
Seattle, WA, pp. 87–101. Available at http://dx.doi.org/10.1007/11799573_9.

[8] S. Antoy & A. Jost (2013): Are needed redexes really needed? In: Proceedings of the 15th Symposium on
Principles and Practice of Declarative Programming, PPDP ’13, ACM, New York, NY, USA, pp. 61–71.
Available at http://doi.acm.org/10.1145/2505879.2505881.

[9] M. Bezem, J. W. Klop & R. de Vrijer (eds.) (2003): Term Rewriting Systems. Cambridge University Press.
Available at http://dx.doi.org/10.1145/979743.979772.

[10] G. L. Burn, S. L. Peyton Jones & J. D. Robson (1988): The Spineless G-machine. In: Proceedings of the
1988 ACM Conference on LISP and Functional Programming, ACM, pp. 244–258. Available at http:
//doi.acm.org/10.1145/62678.62717.

[11] R. Echahed & J. C. Janodet (1997): On constructor-based graph rewriting systems. Technical
Report 985-I, IMAG. Available at ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/

c-graph-rewriting.ps.gz.

http://dx.doi.org/10.1007/bfb0013825
http://dx.doi.org/10.1007/3-540-56393-8_36
http://dx.doi.org/10.1016/j.jsc.2004.12.007
http://dx.doi.org/10.1016/j.jsc.2010.01.006
http://dx.doi.org/10.1017/S1471068411000263
http://dx.doi.org/10.1017/S1471068411000263
http://dx.doi.org/10.1016/j.entcs.2006.10.026
http://dx.doi.org/10.1007/11799573_9
http://doi.acm.org/10.1145/2505879.2505881
http://dx.doi.org/10.1145/979743.979772
http://doi.acm.org/10.1145/62678.62717
http://doi.acm.org/10.1145/62678.62717
ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz
ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz

32 Needed Computations Shortcutting Needed Steps

[12] W. Fokkink & J. van de Pol (1997): Simulation as a correct transformation of rewrite systems. In: In Pro-
ceedings of 22nd Symposium on Mathematical Foundations of Computer Science, LNCS 1295, Springer, pp.
249–258. Available at http://dx.doi.org/10.1.1.41.8118.

[13] J. C. González Moreno, F. J. López Fraguas, M. T. Hortalá González & M. Rodrı́guez Artalejo (1999): An
Approach to Declarative Programming Based on a Rewriting Logic. The Journal of Logic Programming 40,
pp. 47–87. Available at http://dx.doi.org/10.1016/S0743-1066(98)10029-8.

[14] M. Hanus (1994): The Integration of Functions into Logic Programming: From Theory to Practice. Journal
of Logic Programming 19&20, pp. 583–628. Available at http://dx.doi.org/10.1.1.226.8638.

[15] M. Hanus (2013): Functional Logic Programming: From Theory to Curry. In: Programming Logics - Essays
in Memory of Harald Ganzinger, Springer LNCS 7797, pp. 123–168. Available at http://dx.doi.org/
10.1007/978-3-642-37651-1_6.

[16] M. Hanus, S. Lucas & A. Middeldorp (1998): Strongly sequential and inductively sequential term rewrit-
ing systems. Information Processing Letters 67(1), pp. 1–8. Available at http://dx.doi.org/10.1016/
S0020-0190(98)00016-7.

[17] M. Hanus (ed.) (2012): Curry: An Integrated Functional Logic Language (Vers. 0.8.3). Available at http:
//www.curry-language.org.

[18] G. Huet & J.-J. Lévy (1991): Computations in orthogonal term rewriting systems. In J.-L. Lassez &
G. Plotkin, editors: Computational logic: essays in honour of Alan Robinson, MIT Press, Cambridge, MA.
Part I, pp. 395–414 and Part II, pp. 415–443.

[19] J. F. T. Kamperman & H. R. Walters (1996): Simulating TRSs by Minimal TRSs a Simple, Efficient, and
Correct Compilation Technique. Technical Report CS-R9605, CWI.

[20] R. Kieburtz (1985): The G-machine: A fast, graph-reduction evaluator. In: Functional Programming Lan-
guages and Computer Architecture, LNCS 201, Springer, pp. 400–413. Available at http://dx.doi.org/
10.1007/3-540-15975-4_50.

[21] F. J. López-Fraguas, E. Martin-Martin, J. Rodrı́guez-Hortalá & J. Sánchez-Hernández (2014): Rewriting and
narrowing for constructor systems with call-time choice semantics. TPLP 14(2), pp. 165–213. Available at
http://dx.doi.org/10.1017/S1471068412000373.

[22] A. Middeldorp (1997): Call by Need Computations to Root-stable Form. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97, ACM, New York,
NY, USA, pp. 94–105. Available at http://dx.doi.org/10.1145/263699.263711.

[23] M. J. O’Donnell (1977): Computing in Systems Described by Equations. Springer LNCS 58. Available at
http://dx.doi.org/10.1007/3-540-08531-9.

[24] Philip Wadler (1988): Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73(2),
pp. 231–248. Available at http://dx.doi.org/10.1016/0304-3975(90)90147-A.

http://dx.doi.org/10.1.1.41.8118
http://dx.doi.org/10.1016/S0743-1066(98)10029-8
http://dx.doi.org/10.1.1.226.8638
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1016/S0020-0190(98)00016-7
http://dx.doi.org/10.1016/S0020-0190(98)00016-7
http://www.curry-language.org
http://www.curry-language.org
http://dx.doi.org/10.1007/3-540-15975-4_50
http://dx.doi.org/10.1007/3-540-15975-4_50
http://dx.doi.org/10.1017/S1471068412000373
http://dx.doi.org/10.1145/263699.263711
http://dx.doi.org/10.1007/3-540-08531-9
http://dx.doi.org/10.1016/0304-3975(90)90147-A

	Introduction
	Preliminaries
	Compilation
	Compilation Properties
	Transformation
	Transformation Properties
	Benchmarking
	Functional Logic Programming
	Related Work
	Conclusion

