
Lazy Context Cloning for Non-Deterministic

Graph Rewriting

Sergio Antoy

Portland State University

TERMGRAPH’06, Vienna, Austria, April 1, 2006

Joint work with Daniel Brown and Su-Hui Chiang

Partially supported by the NSF grant CCR-0218224

Introduction

• Non-determinism simplifies modeling and solving problems in
many domains, e.g., defining a language and/or parsing a string:

Expr ::= Num | Num BinOp Expr

BinOp ::= + | - | * | /

Num ::= Digit | Digit Num

• Non-determinism is a major feature of Functional Logic Pro-
gramming.

• A functional logic program is non-deterministic when some
expression evaluates to distinct values, e.g., in Curry:

coin = 0 ? 1

• The operator ?, defined in the Prelude, selects either of its ar-
guments.

2/20

An example

Consider a program to find a donor for a blood transfusion. The type
BloodTypes defines the 8 blood types:

data BloodTypes = Ap | An | ABp | ...

The non-deterministic function receive defines which blood types can
receive the argument of the function:

receive Ap = Ap ? ABp

receive Op = Op ? Ap ? Bp ? ABp

...

The function hasType returns the blood type of its argument, a person:

hasType "John" = ABp

hasType "Doug" = ABn

hasType "Lisa" = An

3/20

An example, cont’d

The whole program is a single non-deterministic function, donorFor,
that takes a person x and return a donor, if it exists, for a blood
transfusion to x:

donorFor x | receive (hasType y) =:= hasType x

& x =/= y

= y

where y free

E.g.:

donorFor "John" yields "Doug" or "Lisa"
donorFor "Lisa" fails

Non-determinism greatly reduces the effort to design and code both
data structures and algorithms for handling a many-to-many relation.

4/20

Evaluation

The evaluation of donorFor "John" goes through the following term:

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
o

=:=

??
??

??

ÄÄ
ÄÄ
ÄÄ

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

receive ABp "John" "Doug"

ABn

The redex receive ABn has two values. The context of each value
is the same. Therefore the context of this redex must be “used twice.”

5/20

Approaches

To rewrite in a non-confluent systems, the context of some redex
must be used multiple times. There are two common approaches to
this problem.

• Backtracking

Use the context for “the first” replacement. If and when the
computation completes, recover the context and use it for other
replacements.

• Copying

Make a copy of the context for each replacement. Can evaluate

non-deterministic choices concurrently.

6/20

Problems

Both backtracking and copying have significant problems:

• Backtracking

If the computation of “the first” replacement does not termi-
nate, the value for the other replacements, if such exists, is never
found (incompleteness).

• Copying

The computation of some replacement may fail before the con-
text (or a portion of it) is ever used. Therefore, copying the
whole context is wasteful.

We propose an approach, called bubbling, that ensures completeness
and minimizes copying.

7/20

Bubbling

An expression to evaluate is a term graph. We are concerned with the
evaluation of an expression to a constructor head normal form.

• The symbol ? becomes a data constructor

(the application of the rules of ? is delayed).

• The arguments of ? are evaluated concurrently.

• When an argument of ? becomes constructor-rooted,
? moves up its context.

• Only the portion between the origin and the destination
of the move of ? is copied.

• The move is sound only if the destination of ?
dominates it.

8/20

Steps

Steps of an evaluation

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
o

=:=

??
??

??

ÄÄ
ÄÄ
ÄÄ

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

receive ABp "John" "Doug"

ABp ABn

Reduce the redex receive ABn to ABP ? ABn.

9/20

Steps

Steps of an evaluation

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
o

=:=

??
??

??

ÄÄ
ÄÄ
ÄÄ
Ä

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

?

??
??

??

ÄÄ
ÄÄ
ÄÄ

ABp "John" "Doug"

ABp ABn

Bubble the non-deterministic choice.

10/20

Steps

Steps of an evaluation

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
oo

?

??
??

??
?

ÄÄ
ÄÄ
ÄÄ
Ä

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

=:=

ÄÄ
ÄÄ
ÄÄ

TTT
TTT

TTT
TTT

TTT
T =:=

ÄÄ
ÄÄ
ÄÄ

??
??

??
"John" "Doug"

ABp ABn ABp

Evaluate ABn =:= ABp.

11/20

Steps

Steps of an evaluation

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
oo

?

??
??

??

ÄÄ
ÄÄ
ÄÄ
Ä

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

=:=

ÄÄ
ÄÄ
ÄÄ

??
??

??
fail "John" "Doug"

ABp ABp

Eliminate the irrelevant choice.

12/20

Steps

Steps of an evaluation

&

OO
OO

OO
OO

OO
O

oo
oo
oo
oo
oo
o

=:=

??
??

??

ÄÄ
ÄÄ
ÄÄ

=/=

??
??

??

ÄÄ
ÄÄ
ÄÄ

ABp ABp "John" "Doug"

ABp

Continue the evaluation.
No significant context has been copied.
Backtracking is not used.

13/20

Distributing

A computation is a sequence of rewriting and/or bubbling steps.

A bubbling step is similar to the application of a distributive law.

In the example, we distributed the parent of the occurrence of ?:

(x ? y) =:= z → (x =:= z) ? (y =:= z)

Unfortunately, distributing is unsound in some cases. Consider:

f x = (not x, not x)

and evaluate:

f (True ? False)

14/20

Unsoundness

(,)

not not

?

True False

(,)

? ?

notnotnotnot

True False

The term on the left has 2 values, (True,True) and (False,False).

The term on the right is obtained by bubbling the term on the left.

This term has 4 values, including (True,False), which cannot be
derived from the term on the left.

15/20

Soundness

The destination of bubbling must be a dominator of ?

A node d dominates a node n in a rooted graph g,
if every path from the root of g to n goes through d.

(,)

not not

?

True False

?

(,) (,)

notnotnotnot

True False

These terms have the same set of values.

16/20

Strategy

The strategy is based on definitional trees.

It handles all the key aspects of the computation.

• Redex computation

Extends INS, is aware of ?
Sometimes “leave behind” occurences of ?

• Concurrency

Both arguments of ? are evaluated in parallel.
Other parallelism can be similarly accommodated.

• Bubbling

Performed only to promote reductions
(see next example).

17/20

Strategy behavior

Two major departures from considering ? an operation.

• A needed argument is ?-rooted, but no redex is available:

1 + (2*2 ? 3*3)

Evaluate concurrently the arguments of ?

• A needed argument is ?-rooted, and a redex is available:

1 + (4 ? 3*3)

Bubble and continue with:

(1 + 4) ? (1 + 3*3)

18/20

Conclusion

• New approach for non-confluent, constructor-based rewriting

• It finds application in functional logic language development

• It avoids the incompleteness of backtracking

• It avoids the inefficiency of context copying

• Very recently bubbling has been proved sound and complete

• It is not known if steps are needed (modulo non-det. choices)

• There exists a prototypical implementation for rewriting

• The extension to narrowing is under way

19/20

The End

