Lazy Context Cloning for Non-Deterministic
Graph Rewriting

Sergio Antoy
Portland State University

TERMGRAPH'06, Vienna, Austria, April 1, 2006
Joint work with Daniel Brown and Su-Hui Chiang
Partially supported by the NSF grant CCR-0218224

Introduction

Non-determinism simplifies modeling and solving problems in
many domains, e.g., defining a language and/or parsing a string:

FExpr = Num | Num BinOp Ezpr
BinOp ==+ | - | x| /
Num = Digit | Digit Num

Non-determinism is a major feature of Functional Logic Pro-
gramming.

A functional logic program is non-deterministic when some
expression evaluates to distinct values, e.g., in Curry:

coin = 0 7 1

The operator 7, defined in the Prelude, selects either of its ar-
guments.

2/20

An example
Consider a program to find a donor for a blood transfusion. The type
BloodTypes defines the 8 blood types:
data BloodTypes = Ap | An | ABp |

The non-deterministic function receive defines which blood types can
receive the argument of the function:

receive Ap = Ap 7 ABp
receive UOp = Op 7 Ap 7 Bp 7 ABp

The function hasType returns the blood type of its argument, a person:

hasType "John" = ABp
hasType "Doug" = ABn
hasType "Lisa" = An

3/20

An example, cont'd

The whole program is a single non-deterministic function, donorFor,
that takes a person x and return a donor, if it exists, for a blood
transfusion to x:

donorFor x | receive (hasType y) =:= hasType x
&Xz/zy
=Y

where y free
E.g.:

donorFor "John" yields "Doug" or "Lisa"
donorFor "Lisa" fails

Non-determinism greatly reduces the effort to design and code both
data structures and algorithms for handling a many-to-many relation.

4/20

Evaluation

The evaluation of donorFor "John" goes through the following term:

&

T

N N\

receive ABp "John" "Doug"

ABn

The redex receive ABn has two values. The context of each value
Is the same. Therefore the context of this redex must be “used twice.”

5/20

Approaches

To rewrite in a non-confluent systems, the context of some redex
must be used multiple times. There are two common approaches to
this problem.

e Backtracking

Use the context for “the first” replacement. If and when the
computation completes, recover the context and use it for other
replacements.

e Copying

Make a copy of the context for each replacement. Can evaluate
non-deterministic choices concurrently.

6,/20

Problems

Both backtracking and copying have significant problems:

e Backtracking

If the computation of “the first” replacement does not termi-
nate, the value for the other replacements, if such exists, is never
found (incompleteness).

e Copying

The computation of some replacement may fail before the con-
text (or a portion of it) is ever used. Therefore, copying the
whole context is wasteful.

We propose an approach, called bubbling, that ensures completeness
and minimizes copying.

7/20

Bubbling

An expression to evaluate is a term graph. We are concerned with the
evaluation of an expression to a constructor head normal form.

The symbol ? becomes a data constructor
(the application of the rules of 7 is delayed).

The arguments of 7 are evaluated concurrently.

When an argument of 7 becomes constructor-rooted,
? moves up Its context.

Only the portion between the origin and the destination
of the move of 7 is copied.

The move is sound only if the destination of 7
dominates it.

8/20

Steps

Steps of an evaluation

&

/N /N

receive ABp "John" "Doug"

ABn

Reduce the redex receive ABn to ABP 7 ABn.

9/20

Steps

Steps of an evaluation

&

=:=/ \=/=
,?//// \\\\ABp "Johgf// \\iﬁoug"
W\

ABn

Bubble the non-deterministic choice.

10/20

Steps

Steps of an evaluation

~

I
N

I

N\ N\

== == "John" ”Doug"

Evaluate ABn=:=ABp.

11/20

Steps of an evaluation

Steps

T

/\

fail

/\

Eliminate the irrelevant choice.

N

"John" "Doug"

12/20

Steps

Steps of an evaluation

&

ABP/ \ABP VRN

"John" "Doug"

Continue the evaluation.
No significant context has been copied.
Backtracking is not used.

13/20

Distributing

A computation is a sequence of rewriting and/or bubbling steps.

A bubbling step is similar to the application of a distributive law.

In the example, we distributed the parent of the occurrence of 7:

(x ?7y) =:=z2z — (x=:=2) ? (y =:= 2)
Unfortunately, distributing is unsound in some cases. Consider:
f x = (not x, not x)
and evaluate:

f (True ? False)

14/20

Unsoundness

(,)

N N

not not ? ?

\ / \
EN ¥ 4 N 4 \‘4

not nqt nqt not

) / N \\A \ k////////;fjii:::rrrxi:iiiiiiﬁ\1A /

True False True False

The term on the left has 2 values, (True,True) and (False,False).
The term on the right is obtained by bubbling the term on the left.

This term has 4 values, including (True,False), which cannot be
derived from the term on the left.

15/20

Soundness

The destination of bubbling must be a dominator of 7

A node d dominates a node n in a rooted graph g,
if every path from the root of g to n goes through d.

(,) ?
RN - \<*>

not not (,)

N /"\

not not not not

7N N/, \/

True False True False

These terms have the same set of values.

16/20

Strategy

The strategy is based on definitional trees.

It handles all the key aspects of the computation.

e Redex computation

Extends INS, is aware of 7
Sometimes “leave behind” occurences of ?

e Concurrency
Both arguments of 7 are evaluated in parallel.

Other parallelism can be similarly accommodated.

e Bubbling

Performed only to promote reductions
(see next example).

17/20

Strategy behavior

Two major departures from considering ? an operation.

e A needed argument is ?-rooted, but no redex is available:

1 + (2%2 7 3%3)

Evaluate concurrently the arguments of 7

e A needed argument is ?-rooted, and a redex is available:

1 + (4 ? 3%3)
Bubble and continue with:

(1 + 4) 72 (1 + 3%3)

18/20

Conclusion

New approach for non-confluent, constructor-based rewriting
It finds application in functional logic language development

It avoids the incompleteness of backtracking

It avoids the inefficiency of context copying

Very recently bubbling has been proved sound and complete

It is not known if steps are needed (modulo non-det. choices)
There exists a prototypical implementation for rewriting

The extension to narrowing is under way

19/20

The Enag

