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Abstract

We define a rewrite strategy for a class of non-confluent constructor-based term
graph rewriting systems and discuss its correctness. Our strategy and its exten-
sion to narrowing are intended for the implementation of modern functional logic
programming languages. Our strategy avoids the construction of large contexts of
redexes with distinct replacements, an expensive and frequently wasteful operation
executed by competitive complete techniques.
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1 Introduction

Non-determinism is one of the most appealing features of functional logic
programing. A program is non-deterministic when its execution may evaluate
some expression that has multiple results. To better understand this concept,
consider a program to find a donor for a blood transfusion to a patient. The
following declarations, in Curry [10], define the blood types and which type
can be given to which other type:

data BloodTypes = Ap | An | ABp | ABn | Op | On | Bp | Bn

giveTo Ap = Ap ? ABp

giveTo Op = Op ? Ap ? Bp ? ABp

giveTo Bp = Bp ? ABp

...

(1)
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For example, the first rule of giveTo states that the blood type A+, encoded
as Ap, can be given to patients with blood types A+ and AB+. The evalua-
tion of giveTo Ap non-deterministically returns Ap or ABp. The infix operator
“?”, called choice operation, selects either of its arguments. There are 5 other
giveTo rules that are not shown.

A small database of people, patients and/or donors, and their blood types
follow:

btype "John" = ABp

btype "Doug" = ABn

btype "Lisa" = An
(2)

The goal, given a patient, is to find a suitable donor for a transfusion. A
non-deterministic program to solve this problem is natural, terse and elegant.

donorFor x

| giveTo (btype y) =:= btype x & x =/= y

= y where y free
(3)

The condition of operation donorFor holds when the blood of some donor y

can be given to patient x and ensures that y is not x, since self donation is
not intended. For example, the execution of donorFor "John" yields "Doug"

or "Lisa" non-deterministically, whereas no donor is found for "Lisa" in
our very small database of people (2). The evaluation of the program is by
narrowing. In particular, when the condition of donorFor is evaluated, y is
initially unknown and becomes instantiated to a suitable value, if one exists.

Non-determinism reduces the effort of designing and implementing data
structures and algorithms to encode this problem into a program. The sim-
plicity of the program inspires confidence in its correctness.

This paper addresses both theoretical and practical aspects of the imple-
mentation of non-determinism. Section 2 highlights some deficiencies of typical
implementations of non-determinism and sketches our proposed solution. Sec-
tion 3 discusses the background of our work. Section 4 defines our strategy
and related concepts. Section 5 briefly addresses related work.

2 Motivation

Functional logic programs are traditionally seen as term rewriting systems
(TRSs) [5] with the constructor discipline [13]. The execution of a program is
the repeated application of narrowing steps to a term until either a constructor
term is reached, in which case the computation succeeds, or an unnarrowable
term with some occurrence of a defined operation is reached, in which case
the computation fails. Examples of the latter are an attempt to divide by zero
or to return the first element of an empty list.

A TRS with non-deterministic operations is typically non-confluent. Oper-
ationally, there are two main approaches to computations in a non-confluent
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TRS: backtracking and copying. While the former is standard terminology, we
do not know any commonly accepted name for the latter. Copying is more
powerful since steps originating from distinct non-deterministic choices can
be interleaved, which is essential to ensure the completeness of the results. We
informally describe a computation of a term with each approach. Let t[u] be
a term in which t[ ] is a context and u is a subterm that non-deterministically
evaluates to x or y.

With backtracking, the computation of t[u] first requires the evaluation of
t[x]. If this evaluation fails to produce a constructor term, the computation
continues with the evaluation of t[y]. Otherwise, if and when the evaluation of
t[x] completes, the interpreter may give the user the option of evaluating t[y].

With copying, the computation of t[u] consists in the simultaneous, e.g., by
interleaving steps, independent evaluations of t[x] and t[y]. If either evaluation
produces a constructor term, this term is a result of the computation, and the
interpreter may give the user the option of continuing the evaluation of the
other term. If the evaluation of one term fails to produce a constructor term,
the evaluation of the other term continues unaffected.

Both backtracking and copying have been used in the implementation of
FL languages. For example, Pakcs [9] and TOY [12] are based on backtracking,
whereas the FLVM [4] and the interpreter of Tolmach et al. [15] are based on
copying. Unfortunately, both backtracking and copying as described above
have non-negligible drawbacks. Consider the following program, where div

denotes the usual integer division operator and n is some positive integer.

loop = loop

f x = 1+(2+(...+(n ‘div‘ x)...))
(4)

We describe the evaluation of t = f (loop ? 1) with backtracking. If the first
choice for the non-deterministic expression is loop, no value of t is ever com-
puted although t has a value, since the evaluation of f loop does not ter-
minate. This is a well-known problem of backtracking referred to as loss of
completeness. Since narrowing computations are complete with an appropri-
ate strategy [3], in this example the culprit is backtracking.

We describe the evaluation of t = f (0 ? 1) with copying. Both f 0 and
f 1 are evaluated. Of course, the evaluation of the first one fails. The problem
in this case is the construction of the term 1+(2+(...+(n ‘div‘ 0)...)).
The effort to construct this term, which becomes arbitrarily large as n grows,
is wasted, since the first step of the computation, which is needed [3], is a
division by zero and consequently the computation fails.

Thus, copying may needlessly construct terms, and backtracking may fail
to produce results. To avoid these drawbacks, we propose a new approach
to non-deterministic computations. Instead of evaluating only one non-de-
terministic choice or copying the entire context for each non-deterministic
choice, we slowly “bubble” the non-deterministic choices up their contexts.
Informally, the evaluation of f (0 ? 1) goes through the following intermediate
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terms, where fail is a distinguished symbol denoting any expression that
cannot be evaluated to a constructor term:

f (0 ? 1)

→ 1+(2+(...+(n ‘div‘ (0 ? 1))...))

→ 1+(2+(...+((n ‘div‘ 0) ? (n ‘div‘ 1))...))

→ 1+(2+(...+(fail ? (n ‘div‘ 1))...))

→ 1+(2+(...+(n ‘div‘ 1)...))

(5)

Because fail occurs at a position where a constructor-rooted term is needed
for the execution of a needed step, the fail choice is eliminated. Since no
rewrite rule matches fail in any position, no constructor term can be derived
from that choice.

In this example, the obvious advantages of our approach are that no choice
is left behind and no unnecessarily large context is copied. However, deter-
mining when and how to bubble a choice is less trivial than it appears in this
example. Consider the following operation:

f x = (not x, not x) (6)

and the term t = f (True ? False). The evaluation semantics of non-right
linear rewrite rules, such as (6), is called call-time choice [11]. Informally, the
non-deterministic choice for the argument of f is made at the time of f’s in-
vocation. Therefore, the instances of x in the right-hand side of (6) should
all evaluate to True or all to False. The term being evaluated is graphically
depicted in the left-hand side of the following figure:

(,)

not not

?

True False

(,)

? ?

notnotnotnot

True False

Fig. 1. The left-hand side depicts a term graph. The right-hand side is obtained
from the left-hand side by bubbling up to the parents the non-deterministic choice.
The two term graphs have a different set of constructor normal forms.

The right-hand side of the above figure shows the result of bubbling up the non-
deterministic choice in a way similar to (5). This term has 4 normal forms. One
is (True,False) which is not obtainable with either backtracking or copying,
and it is not intended by the call-time choice semantics. Therefore, although
advantageous in some situations, unrestricted bubbling can be unsound.

In the following sections we formalize a sound approach to non-deterministic
computations with shared terms based on the idea of bubbling introduced in
this section.
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3 Background

Modern FL languages use narrowing for computing. Echahed and Janodet [6]
define a theoretically efficient narrowing strategy for the inductively sequential
graph rewriting systems. This strategy adequately models sharing with graphs
but does not support the non-deterministic programs of this paper. Antoy [2]
defines a theoretically efficient strategy for the overlapping inductively sequen-
tial term rewriting systems This class adequately models non-determinism—as
in the programs of this paper—but it does not consider sharing.

An adequate background theory for our work would be the combination
of the above extensions. Unfortunately, this combination has not yet been
formalized. We do not foresee any substantial problem in combining [6] and [2].
The formalization of term graphs does not depend on inductive sequentiality,
and the strategy of [6] depends on the rule’s left-hand sides. Extending it
from the inductively sequential TRSs to the overlapping inductively sequential
TRSs poses no problem, since the rule’s left-hand sides are the same for terms
and term graphs. Likewise, the notion of overlapping inductive sequentiality
does not depend on differences between terms and graphs, and the strategy
of [2] depends on the rule’s left-hand sides. Extending this strategy from terms
to term graphs poses no problem as well, since the rule’s left-hand sides are
the same for overlapping and non-overlapping inductively sequential TRSs.

In the rest of this paper, we assume that programs are possibly overlapping
inductively sequential admissible term graph rewriting systems, abbreviated
GRSs. We adopt the notation and definitions of [6]. In particular, we recall
that a graph is admissible if none of its defined operations belongs to a cycle.
We need an additional definition:

Definition 3.1 A node d dominates a node n in a rooted graph g if every path

from the root of g to n contains d. If d and n are distinct, then d properly
dominates n in g.

4 Formalization

We consider an overlapping inductively sequential GRS S. The GRS S includes
the choice operation, shown in the introduction, denoted by the infix operator
“?” and defined by the following rewrite rules:

x ? y = x

x ? y = y
(7)

We assume that these are the only overlapping rules of S. Any other overlap
can be eliminated, without altering the computations, using the choice oper-
ation [2]. The evaluation of an admissible term graph g0 in S is a sequence of
graphs g0

∼

→ g1
∼

→ g2 · · · where for every natural number i, gi+1 is obtained
from gi either with a rewrite step of S or with a bubbling step, which will be
formalized shortly.
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Definition 4.1 (Partial renaming) Let g = 〈Ng,Lg,Sg,Rootsg〉 be a term

graph over 〈Σ,N ,X〉, Np a subset of Ng and Nq a set of nodes disjoint from

Ng. A partial renaming of g with respect to Np and Nq is a bijection renpq :
N → N such that:

renpq(n) =

{

n′ where n′ ∈ Nq, if n ∈ Np;

n otherwise.

We overload renpq to graphs as follows: renpq(g) = g′ is a graph over 〈Σ,N ,X〉
such that:

• Ng′ = renpq(Ng),

• Lg′(m) = Lg(n), iff m = renpq(n),

• m1m2 . . .mk = Sg′(m0) iff n1n2 . . . nk = Sg(n0), where for i = 0, 1, . . . k,
k > 0, mi = renpq(ni),

• Rootsg′ = Rootsg.

In simpler words, g′ is equal to g in all aspects except that some nodes in
Ng, more precisely all and only those in Np, are consistently renamed, with a
“fresh” name, in g′. Obviously, in any partial renaming renpq, the cardinalities
of Np and Nq are the same.

Definition 4.2 (Bubbling) Let g be a graph and c a node of g such that the

subgraph of g at c is of the form x ? y, i.e., g|c = x ? y. Let d be a proper dom-

inator of c in g and Np the set of nodes that are on some path from d to c in g,

including d and c, i.e., Np = {n | n1n2 . . . nk ∈ P(d, c) and n = ni for some i}.
Let Nx and Ny be set of nodes disjoint from Ng and from each other, such

that renpx and renpy are partial renamings of g. Let gq = renpq(g|d[c ← q]),
for q ∈ {x, y}. The bubbling relation on graphs is denoted by “'” and defined

by g ' g[d← gx? gy].

In simpler words, bubbling moves a choice in a graph up to a dominator node.
To execute this move some portions of the graph, more precisely those between
the end points of the move, must be cloned. An example of bubbling is shown
in Figure 2.

(,)

not not

?

True False

?

(,) (,)

notnotnotnot

True False

Fig. 2. The left-hand side depicts a term graph. The right-hand side is obtained
from the left-hand side by bubbling up to a proper dominator the non-deterministic
choice. The two term graphs have the same set of constructor normal forms.

The bubbling relation entails 3 graph replacements. The graphs involved in
these replacements are all compatible [6, Def. 6] with each other. Therefore,
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the bubbling relation is well defined according to [6, Def. 9].

Our approach never applies a rule of the choice operation. In a constructor-
based GRSs, this is equivalent to considering the choice symbol a constructor
rather than an operation. This has far reaching consequences.

One consequence is that every operation of the GRS becomes incompletely
defined, e.g., not (x ? y) cannot be reduced even if x and y are Boolean val-
ues. Therefore, we handle reductions involving the choice symbol in a needed
position using the strategy that we define below.

A second consequence is that the results of computations change, but this
change is more apparent than substantial. For example, the standard eval-
uation of t = True ? False has two results, True and False. With our ap-
proach, t is a normal form. To a large extent, the difference is only in the
representations of the results. Simple transformations allow us to manipulate
non-standard representations as the standard ones.

A third consequence is a significant change in the characteristics of both
the program and its computation space. If overlapping rules are eliminated,
and only admissible graphs are considered, the program becomes confluent.
The computation space of a graph in a non-deterministic program is a tree

of graphs where a child is obtained from its parent with a reduction step. A
branch occurs when a redex admits two or more non-deterministic replace-
ments. In our framework, non-deterministic replacements are eliminated, and
consequently the computation space of a graph is a sequence of graphs. The
graph at the position i+ 1 in the sequence is obtained from the graph at the
position i with either a reduction step or a bubbling step.

Since there are no non-deterministic steps, a redex has only one replace-
ment. In particular, at the machine or implementation level, a redex can al-
ways be replaced in place, i.e., in the execution of a step, the context of the
redex becomes the context of the redex’s replacement. Although in this paper
we consider only rewriting, we believe that these appealing characteristics of
the search space could be extended to narrowing steps as well. We leave this
extension to future work.

We are now ready to define the strategy. In constructor-based TRSs and
GRSs the strategy [3,6] takes an operation rooted term or term graph and
uses a definitional tree of the root symbol to compute either a step or a set of
steps depending on the class of programs. The following definition is adapted
from [6, Def. 29] and uses the same notation and terminology.

Definition 4.3 (Strategy) The function ϕ takes two arguments, an admis-

sible operation-rooted term graph t and a partial definitional tree T such that

pattern(T ) 6 t. The function ϕ yields a set of pairs (p,R), where p is a node
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of t and R is a rewrite rule or the distinguished symbol “'”.

ϕ(t, T ) 3


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(Roott, R) if T = rule(π,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

pattern(Ti) 6 t, for some i, and

ϕ(t, Ti) 3 (p,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

π matches t at the root by homom. h : π → t,

h(o) is labeled with “?” in t,

q is a successor of h(o) in t, and

ψ(h(o), t|q, T ) 3 (p,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

π matches t at the root by homom. h : π → t,

h(o) is labeled with an operation f in t,

T ′ is a definitional tree of f , and

ϕ(t|h(o), T
′) 3 (p,R).

where

ψ(c, t, T ) 3



















































































































(c,') if T = rule(π,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

pattern(Ti) 6 t, for some i, and

ψ(c, t, Ti) 3 (p,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

π matches t at the root by homom. h : π → t,

h(o) is labeled with “?” in t,

q is a successor of h(o) in t, and

ψ(c, t|q, T ) 3 (p,R);

(p,R) if T = branch(π, o, T1, . . . , Tk),

π matches t at the root by homom. h : π → t,

h(o) is labeled with an operation f in t,

T ′ is a definitional tree of f , and

ϕ(t|h(o), T
′) 3 (p,R).

A pair (p,R) in the set computed by ϕ on a graph t is interpreted as a step

of the computation of t as follows. If R is a rule, then the rule is applied at

the node p of t. If R is the symbol “'”, then the choice at p is bubbled in t

according to Def. 4.2.

Our strategy is structurally similar to previously proposed strategies [3] except
for the third case. Intuitively, when a choice is encountered in an inductive
position of a definitional tree, the strategy “glides” over the choice and con-
tinues with the choice’s arguments, but its behavior changes. This is why the
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function ψ is introduced and carries an extra argument. The function ψ is
very similar to ϕ, but it returns a bubbling step instead of a reduction step
if it finds a rule node in the definitional tree. This means that a reduction
would be possible if the choice were not in the way. Therefore, the strategy
clones some portion of the context of a non-deterministic choice if and only if
bubbling enables a reduction step.

We are implementing our strategy in the FLVM to assess its properties.
We expect that its efficiency will surpass that of other strategies for computa-
tions that make frequent non-deterministic choices that quickly fail. A modest
overhead may occur in deterministic-only computations.

To prove the correctness of our strategy we are working on two aspects:
computations and the representation of the results. Computations combine
both bubbling and rewriting steps. We must prove that the results obtainable
by a computation with combined steps are all and only those obtainable by
pure rewriting.

Standard notions of soundness and completeness must be proved for our
strategy as well. Since in our approach the representation of the result of a
computation is non-standard, some extra work is involved. However, extract-
ing results in standard representation from our representation of results is
straightforward.

5 Related work

Although strategies for functional logic computations [3] and term graph
rewriting [14] have been intensely investigated, the work on strategies for term
graph rewriting systems as models of functional logic programs has been rela-
tively scarce. The line of work closest to ours is [6,7]. A substantial difference
of our work with this line is the class of programs we consider, namely non-
deterministic ones. The attempt to minimize the cost of non-deterministic
steps by limiting the cloning of the context of a redex is original.

Other efforts on handling non-determinism in functional and functional
logic computations with shared subexpressions include [11], which introduces
the call-time choice semantics to ensure that shared terms are evaluated to
the same result; [8], which defines a rewriting logic that among other proper-
ties provides the call-time choice; and [1] and [15], which define operational
semantics based on heaps and stores specifically for the problem we are dis-
cussing. Our work is in line with these efforts, but it is explicitly based on
term graph rewriting rather than computational data structures.
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