
On the Correctness of Bubbling?

Sergio Antoy Daniel W. Brown Su-Hui Chiang

Department of Computer Science
Portland State University

P.O. Box 751
Portland, OR 97207

17th International Conference on Rewriting Techniques and Applications (RTA’06)
Seattle, WA, USA, August 12–14, 2006

c© Springer-Verlag LNCS Vol. 4098, pages 35–49

Abstract. Bubbling, a recently introduced graph transformation for
functional logic computations, is well-suited for the reduction of redexes
with distinct replacements. Unlike backtracking, bubbling preserves op-
erational completeness; unlike copying, it avoids the up-front construc-
tion of large contexts of redexes, an expensive and frequently wasteful
operation. We recall the notion of bubbling and offer the first proof of
its completeness and soundness with respect to rewriting.

1 Introduction

Non-determinism is one of the most appealing features of functional logic pro-
graming. A program is non-deterministic when its execution may evaluate some
expression that has multiple results. To better understand this concept, consider
a program to color a map of the Pacific Northwest so that no pair of adjacent
states shares a color. The following declarations, in Curry [15], define the well-
known topology of the problem:

data State = WA | OR | ID | BC

states = [WA,OR,ID,BC]

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

(1)

The colors to be used for coloring the states and a non-deterministic operation,
paint, to pair its argument to a color are defined below. The library operation
“?” non-deterministically selects either of its arguments.

data Color = Red | Green | Blue

paint x = (x, Red ? Green ? Blue)
(2)

The rest of the program follows:

solve | all diffColor adjacent = theMap

where theMap = map paint states

diffColor (x,y) = colorOf x /= colorOf y

lookup ((s,c):t) x = if s==x then c

else lookup t x

colorOf = lookup theMap

(3)

? Partially supported by the NSF grant CCR-0218224.

The evaluation of solve solves the problem. In particular, theMap associates
a color to each state and so represents the map, diffColor tells whether the
colors associated to two states are different, lookup looks up the color associated
to a state in the map, all and map are well-known library functions for list
manipulation, and the condition of solve ensures that no adjacent states have
been assigned the same color.

Non-determinism reduces the effort of designing and implementing data struc-
tures and algorithms to encode this problem into a program. The simplicity of
the non-deterministic solution inspires confidence in the program’s correctness.
The implementation of non-deterministic functional logic programs has not been
studied as extensively as that of deterministic programs.

This paper addresses both theoretical and practical aspects of the implemen-
tation of non-determinism. Section 2 highlights some deficiencies of typical im-
plementations of non-determinism and sketches our proposed solution. Section 3
discusses the background of our work. Section 4 defines a relation on graphs that
is at the core of our approach. Section 5 proves the correctness of our approach.
Section 6 briefly addresses related work. Section 7 offers our conclusion.

2 Motivation

We regard a functional logic program as a term rewriting system (TRS) [8–10, 18]
or a graph rewriting system (GRS) [11, 21] with the constructor discipline [20].
Source-level constructs such as data declarations, currying, higher-order and
anonymous functions, partial application, nested scopes, etc. can be transformed
by a compilation process into ordinary rewrite rules [15]. The execution of a
program is the repeated application of narrowing steps to a term until either
a constructor term is reached, in which case the computation succeeds, or an
unnarrowable term with some occurrence of a defined operation is reached, in
which case the computation fails. Examples of the latter are an attempt to divide
by zero or to return the first element of an empty list.

The instantiation of free variables in narrowing steps does not play any spe-
cific role in our discussion as well as in the program we presented in the in-
troduction. In this paper, we are mostly concerned with rewriting. For many
problems in this area, extending results from rewriting to narrowing requires
only a moderate effort. We will sketch the extension of our work to narrowing
in the final section.

Our focus is on the interaction of non-determinism and sharing. In a deter-
ministic system, evaluating a shared subexpression twice is merely inefficient;
in a non-deterministic system, it can lead to unsoundness. For instance, in the
map coloring example, the value of theMap is any possible association of a color
to a state. In the program, there are two occurrences of theMap, besides its def-
inition. One occurrence is returned as the output of the program; the other is
constrained to be a correct solution of the problem. Obviously, if the values of
these occurrences were not the same, the output of the program would likely be
wrong.

36

A TRS with non-deterministic operations is typically non-confluent. Opera-
tionally, there are two main approaches to computations in a non-confluent TRS:
backtracking and copying. While the former is standard terminology, we do not
know any commonly accepted name for the latter. Copying is more powerful
since steps originating from distinct non-deterministic choices can be interleaved,
which is essential to ensure the completeness of the results. We informally de-
scribe a computation with each approach. Let t[u] be a term in which t[] is a
context and u is a subterm that non-deterministically evaluates to x or y.

With backtracking, the computation of t[u] first requires the evaluation of
t[x]. If this evaluation fails to produce a constructor term, the computation
continues with the evaluation of t[y]. Otherwise, if and when the evaluation of
t[x] succeeds, the interpreter may give the user the option of evaluating t[y].

With copying, the computation of t[u] consists of the simultaneous (e.g., by
interleaving steps), independent evaluations of t[x] and t[y]. If either evaluation
produces a constructor term, this term is a result of the computation, and the
interpreter may give the user the option of continuing the evaluation of the
other term. If the evaluation of one term fails to produce a constructor term,
the evaluation of the other term continues unaffected.

Both backtracking and copying have been used in the implementation of FL
languages. For example, Pakcs [14] and TOY [19] are based on backtracking,
whereas the FLVM [7] and the interpreter of Tolmach et al. [22] are based on
copying. Unfortunately, both backtracking and copying as described above have
non-negligible drawbacks. Consider the following program, where div denotes
the usual integer division operator and n is some positive integer.

loop = loop

f x = 1+(2+(...+(n ‘div‘ x)...))
(4)

We describe the evaluation of t = f (loop ? 1) with backtracking. If the first
choice for the non-deterministic expression is loop, no value of t is ever computed
even though t has a value, since the evaluation of f loop does not terminate. This
is a well-known problem of backtracking referred to as the loss of completeness.

We describe the evaluation of t = f (0 ? 1) with copying. Both f 0 and f 1

are evaluated. Of course, the evaluation of the first one fails. The problem in this
case is the construction of the term 1+(2+(...+(n ‘div‘ 0)...)). The effort
to construct this term, which becomes arbitrarily large as n grows, is wasted,
since the first step of the computation, which is needed, is a division by zero,
and consequently the computation fails.

Thus, copying may needlessly construct terms and backtracking may fail to
produce results. A recently proposed approach [5], called bubbling, avoids these
drawbacks. The idea is to slowly “move” a choice up its context and evaluate
both its arguments. Bubbling is a compromise between evaluating only one non-
deterministic choice, as in backtracking, and duplicating the entire context of
each non-deterministic choice, as in copying. Bubbling is free from the drawbacks
of backtracking and copying discussed earlier.

The evaluation of f (loop ? 1) by bubbling produces (f loop) ? (f 1). Con-
trary to backtracking, no unrecoverable choice is made in this step. Both argu-

37

ments of “?” can be evaluated concurrently, e.g., as in [5]. The evaluation of the
first argument does not terminate; however, this does not prevent obtaining the
value of the second argument.

Likewise, the evaluation of f (0 ? 1) goes (roughly) through the following in-
termediate terms, where fail is a distinguished symbol denoting any expression
that cannot be evaluated to a constructor term:

f (0 ? 1)

→ 1+(2+(...+(n ‘div‘ (0 ? 1))...))

→ 1+(2+(...+((n ‘div‘ 0) ? (n ‘div‘ 1))...))

→ 1+(2+(...+(fail ? (n ‘div‘ 1))...))

→ 1+(2+(...+(n ‘div‘ 1)...))

(5)

The fail alternative is dropped. Since fail occurs at a position where a construc-
tor-rooted term is needed, it cannot lead to a successful computation.

In (5), the obvious advantages of bubbling are that no choice is left behind
and no unnecessarily large context is copied. In the second step, we have dis-
tributed the parent of an occurrence of the choice operation over its arguments.
Unfortunately, a “distributive property” of the kind f(x ? y) = f(x) ? f(y) is
unsound in the presence of sharing.

Consider the following operation:

f x = (not x, not x) (6)

and the term t = f (True ? False). The evaluation semantics of non-right linear
rewrite rules, such as (6), is called call-time choice [17]. Informally, the non-
deterministic choice for the argument of f is made at the time of f’s application.
Therefore, the instances of x in the right-hand side of (6) should all evaluate to
True or all to False. With an eager strategy, the call-time choice is automatic,
and the only available option. With a lazy strategy, the call-time choice is rel-
atively easy to implement by “sharing” the occurrences of x. That is, there is
only one occurrence of the term bound to x. All the occurrences of x refer to
this term. The term being evaluated is the graph depicted in the left-hand side
of the following figure:

(,)

not not

?

True False

(,)

? ?

notnotnotnot

True False

Fig. 1. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling up to the parents the non-deterministic choice. The two
term graphs have a different set of constructor normal forms.

38

The right-hand side of the above figure shows the result of bubbling up the
non-deterministic choice in a way similar to (5). This term has 4 normal forms.
One is (True,False), which is not obtainable with either backtracking or copy-
ing and is not intended by the call-time choice semantics. Therefore, although
advantageous in some situations, unrestricted bubbling can be unsound.

In the following sections we formalize a sound approach to non-deterministic
computations with shared terms based on the idea of bubbling introduced in this
section. This formalization is the foundation of a recently discovered strategy [5]
that computes both rewriting and bubbling steps.

3 Background

TRSs have been used extensively to model FL programs. This modeling has
been very successful for some problems, e.g., the discovery of efficient narrowing
strategies and the study of their properties; see [4] for a survey. However, a
TRS only approximates a FL program, because it does not adequately capture
the sharing of subexpressions in an expression. As we discussed in the previous
section, and our introductory example shows, sharing is an essential semantic
component of the execution of a non-deterministic program.

GRSs [11, 21] model FL programs more accurately than do TRSs. Unfortu-
nately, they are also more complex than TRSs, and non-trivial variations exist
in their formalization. In this paper, we follow the systemization of Echahed and
Janodet [11] because the class of GRSs that they consider is a good fit for our
programs. The space alloted to this paper prevents us from recalling relevant
definitions and results of [11]. Luckily, this paper is easily accessible on-line at
http://citeseer.ist.psu.edu/echahed97constructorbased.html.

In this paper, we assume that programs are overlapping inductively sequen-

tial [4, 2] term graph rewriting systems, abbreviated GRSs, and computations
are rewriting sequences of admissible term graphs. We recall that a graph is
admissible [11, Def. 18] if none of its defined operations belongs to a cycle.

Our choice of programs is motivated by the expressiveness of this class (e.g.,
as shown by the introductory example), by the existence of a strategy that per-
forms only steps that are needed modulo a non-deterministic choice [2], and by
the fact that computations for the entire constructor based programs can be im-
plemented by this class via a transformation [3]. Non-deterministic computations
in this class are supported by the single operation defined below.

Definition 1 [Choice operation] The choice operation, denoted by the infix op-
erator “?”, is defined by the following rules:

x ? y = x

x ? y = y ut

We assume that this is the only overlapping operation of a GRS. Any other
overlapping can be eliminated, without changing the meaning of a program,
using the choice operation, as discussed in [2] and shown in our introductory
example.

39

Definition 2 [Limited overlapping] A limited overlapping inductively sequential
GRS, abbreviated LOIS, is a constructor based GRS, S, such that the signature
of S contains the choice operation “?” presented in Def. 1 and every other defined
operation of S is inductively sequential. ut

We need an additional definition, which is crucial to our approach.

Definition 3 [Dominance] A node d dominates a node n in a rooted graph t

if every path from the root of t to n contains d. If d and n are distinct, then d

properly dominates n in t. ut

For example, in the left-hand side graph of Fig. 1, the occurrence of “?” is
properly dominated by the root only. Every other occurrence, except the root,
is properly dominated by its predecessor.

Echahed and Janodet [11] formalize rewriting, including an efficient strategy,
for the inductively sequential term graph rewriting systems. This class is similar
to ours, except for the presence of the choice operation. Following their lead,
we always use “fresh” rules in rewrite steps. This is justified by the following
example:

t = (ind, ind)

ind = coin

coin = 0 ? 1

(7)

The intended semantics is that each occurrence of ind in t is evaluated inde-
pendently of the other (ind is not a variable) and therefore t has four values,
every pair in which each component is either 0 or 1. To compute all the intended
values of t, it is imperative that a rewrite step uses a variant [11, Def. 19] of
a rewrite rule, namely a clone of the rule with fresh nodes (and variables). A
consequence of using variants of rules is that the equality of graphs resulting
from rewrite steps can be assessed only modulo a renaming of their nodes [11,
Def. 15].

4 Bubbling

Computations that perform non-deterministic steps must preserve in some form
the context of a redex when the redex has distinct replacements. Typically, some
portions of the context are reconstructed, as in backtracking, or are duplicated,
as in copying. An overall goal of bubbling is to limit these activities. In the
following, we precisely define which portions of a context of a redex are cloned
in our approach.

Definition 4 [Partial renaming] Let g = 〈Ng,Lg,Sg,Rootsg〉 be a term graph
over 〈Σ,N ,X〉, Np a subset of Ng and Nq a set of nodes disjoint from Ng. A
partial renaming of g with respect to Np and Nq is a bijection Θ : N → N such
that:

Θ(n) =

{

n′ where n′ ∈ Nq, if n ∈ Np;

n otherwise.
(8)

40

Similar to substitutions, we call Np and Nq, the domain and image of Θ, respec-
tively. We overload Θ to graphs as follows: Θ(g) = g′ is a graph over 〈Σ,N ,X〉
such that:

– Ng′ = Θ(Ng),
– Lg′(m) = Lg(n), iff m = Θ(n),
– m1m2 . . . mk = Sg′(m0) iff n1n2 . . . nk = Sg(n0), where for i = 0, 1, . . . k,

k > 0, mi = Θ(ni),
– Rootsg′ = Rootsg. ut

In simpler words, g′ is equal to g in all aspects except that some nodes in Ng,
more precisely all and only those in Np, are consistently renamed, with a “fresh”
name, in g′. Obviously, the cardinalities of the domain and image of a partial
renaming are the same.

Lemma 1. If g is a graph and g′ is a partial renaming of g with respect to some

Np and Nq, then g and g′ are compatible.

Proof. Immediate from the notion of compatibility [11, Def. 6] and the construc-
tion of g′ in Definition 4. ut

The evaluation of an admissible term graph t0 in a GRS S is a sequence of graphs
t0∼→t1∼→t2 · · · where for every natural number i, ti+1 is obtained from ti either
with a rewrite step of S or with a bubbling step, which is defined below.

Definition 5 [Bubbling] Let g be a graph and c a node of g such that the
subgraph of g at c is of the form x ? y, i.e., g|c = x ? y. Let d be a proper
dominator of c in g andNp the set of nodes that are on some path from d to c in g,
including d and c, i.e., Np = {n | n1n2 . . . nk ∈ Pg(d, c) and n = ni for some i},
where Pg(d, c) is the set of all paths from d to c in g. Let Θx and Θy be partial
renamings of g with domain Np and disjoint images. Let gq = Θq(g|d[c ← q]),
for q ∈ {x, y}. The bubbling relation on graphs is denoted by “'” and defined by
g ' g[d← gx? gy], where the root node of the replacement of g at d is obviously
fresh. We call c and d the origin and destination, respectively, of the bubbling
step, and we denote the step with “'cd” when this information is relevant. ut

In simpler words, bubbling moves a choice in a graph up to a dominator node. In
executing this move, some portions of the graph, more precisely those between
the end points of the move, must be cloned. An example of bubbling is shown in
Figure 2. In this example, the dominator is the root of the graph, but in general
the destination node can be any proper dominator of the origin. In practice, it is
convenient to bubble a choice only to produce a redex. The strategy introduced
in [5] ensures this desirable property.

The bubbling relation entails 3 graph replacements. By Lemma 1, the graphs
involved in these replacements are all compatible with each other. Therefore, the
bubbling relation is well defined according to [11, Def. 9]. In particular, except
for the nodes being renamed, gx and gy can share nodes between themselves
and/or with g. Any sharing among these (sub)graphs is preserved by bubbling.

Two adjacent bubbling steps can be composed into a “bigger” step.

41

(,)

not not

?

True False

?

(,) (,)

notnotnotnot

True False

Fig. 2. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling the non-deterministic choice up to a proper dominator.
The two term graphs have the same set of constructor normal forms.

Theorem 1 (Transitivity of bubbling). Let S be a GRS. For all term graphs

t, u and v over the signature of S and for all c and d nodes of t and d and e

nodes of u, modulo a renaming of nodes, if t 'cd u and u 'de v then e is a node

of t and t 'ce v.

Proof. If c is a node labeled by a choice operation, cl and cr denotes the left and
right successors of c. Let w be defined by t 'ce w and consider the expressions
defining u, v and w:

u = t[d← (Θdcl
(t|d[c← t|cl

]) ?Θdcr
(t|d[c← t|cr

]))]
v = u[e← (Θedl

(u|e[d← u|dl
]) ?Θedr

(u|e[d← u|dr
]))]

w = t[e← (Θecl
(t|e[c← t|cl

]) ?Θecr
(t|e[c← t|cr

]))]
(9)

where Θxy is a renaming whose domain is the set of the nodes in any path
between x and y. Also, we assume that the images of all renamings are disjoint.

We prove that v = w modulo a renaming of nodes. The portion of u at
and above e is the same as in t. Using this condition twice, we only have to
prove Θedl

(t|e[d ← u|dl
]) = Θecl

(t|e[c ← t|cl
]) and the analogous equation

for the right-hand side argument. By construction, u|dl
= Θdcl

(t|d[c ← t|cl
]).

Thus, Θedl
(t|e[d ← u|dl

]) = Θedl
(t|e[d ← Θdcl

(t|d[c ← t|cl
])]). Since no node

is duplicated by renamings, we have that Θedl
(t|e[d ← Θdcl

(t|d[c ← t|cl
])]) =

Θedl
◦ Θdcl

(t|e[d ← t|d[c ← t|cl
]]). Since t|d is modified only at c and c is below

d, t|e[d ← t|d[c ← t|cl
]] = t|e[c ← t|cl

]. Thus, by equational reasoning, v = w

except for the renamings of nodes, and the claim holds. ut

Bubbling creates a natural mapping between two graphs. If t ' u, then every
node of u “comes” from a node of t. This mapping, which is instrumental in
proving some of our claim, is formalized below.

Definition 6 [Natural mapping] Let S be a GRS, t a graph over the signature
of S and t 'cd u, for some graph u and nodes c and d of t. We call natural the
mapping µ : Nu → Nt defined as follows. By construction, u = t[d ← t′], for
some term graph t′. Let d′ be the root node of t′. The construction of u involves

42

two renamings in the sense of Def. 4; let us call them Θx and Θy. We define µ

on n, a node of u, as follows:

µ(n) =

c if n = d′;

Θ−1
x (n) if n is in the image of Θx;

Θ−1
y (n) if n is in the image of Θy;

n otherwise.

(10)

Observe that the images of Θx and Θy are disjoint, hence the second and third
cases of (10) are mutually exclusive. ut

The next lemma shows that a rule of “?” applied before a bubbling step at the
origin or after a bubbling step at the destination produces the same outcome.

Lemma 2 (Same rule). Let S be a LOIS and t an admissible term graph over

the signature of S. If t 'cd u, t →c,R v and u →d,R w, then v = w modulo a

renaming of nodes.

Proof. R is a rule of “?”. Without loss of generality, we assume that it is the
rule that selects the left argument. By assumption the subgraph of t at c is of
the form x ? y. Hence t = t[c← x ? y] and t→c,R v = t[c← x]. By definition of
bubbling, u = t[d ← (Θx(t|d[c ← x]) ?Θy(t|d[c ← y]))], for some renamings Θx

and Θy. Therefore u→d,R w = t[d← Θx(t|d[c← x])] = Θx(t[d← t|d[c← x]]) =
Θx(t[c← x]). ut

5 Correctness

In this section we state and prove the correctness of our approach. The notion of
a redex pattern defines the set of nodes below a node n labeled by an operation
f that determines that a rule of f can be applied at n. Recall that a matcher is
a function that maps the nodes of one graph to those of another, preserving the
labeling and successor functions.

Definition 7 [Redex pattern] Let t be a graph, l → r a rewrite rule, and n a
node of t such that l matches t at n with matcher h. We call redex pattern of
l→ r in t at n the set of nodes of t that are images according to h of a node of
l with a constructor label. ut

We are convening that a node n is not in any redex pattern at n. This is just a
convenient convention.

The following example shows that some pairs of bubbling and rewriting steps
do not commute. This is a significant condition that prevents proof techniques
based on parallel moves [16]. Although our GRSs are not orthogonal, some form
of parallel moves is available for LOIS [2]. Consider the term t = snd (1,2 ? 3),
where snd is the function that returns the second component of a pair and,
obviously, there is no sharing. Bubbling the choice to its parent (see Figure 3)
produces u = snd ((1,2) ? (1,3)). The term u cannot be obtained from t by

43

snd (1,2 ? 3) 'cd

²²

snd ((1,2) ? (1,3))

2 ? 3 ¥

Fig. 3. Bubbling and rewriting do not
always commute. No parallel moves are
available for this diagram. Note that the
term on the right cannot be reached from
the original term by rewriting.

rewriting. Furthermore, the redex at the root of t has been destroyed by the
bubbling step. The following result offers a sufficient condition, namely an ap-
propriate choice of the destination of a bubbling step, for recovering the commu-
tativity of bubbling and rewriting. As customary, for any relation R, R= denotes
the reflexive closure of R.

Lemma 3 (Parallel Bubbling Moves). Let S be a LOIS and t an admissible

term graph over the signature of S. If t 'cd t′, for some graph t′ and nodes c

and d of t, and t →p,R u, for some node p of t and rule R of S, and d is not

in the redex pattern of R at p in t, then there exists u′ such that t′
+

→ u′ and

u '=
cd u′ modulo a renaming of nodes.

Proof. Let P = µ−1(p) be the set of nodes of t′ that map to p in t. Observe that
P contains either 1 or 2 nodes. We show that R can be applied to any node in
P and we define u′ as the result of applying R to all the nodes of P . If p = c,
then by definition P = {d}. In this case, R is a rule of “?” and consequently
u = u′ (modulo a renaming of nodes) and the claim immediately holds. If p 6= c

and P = {p}, then the reduction in t is independent of the bubbling step. The
redex pattern of R at p in t is either entirely below c, since the label of c is an
operation, or entirely above d, since by hypothesis d is not in the redex pattern
of R at p in t. The redex pattern of R at p is the same in t and t′ and the redex
is equally replaced in t and t′. Hence u 'cd u′. If p 6= c and P = {p1, p2}, with
p1 6= p2, then the reduction in t is in the portion of t cloned by the bubbling
step. The redex pattern of R at p in t is entirely contained in this portion. The
redex pattern is entirely below d by hypothesis, and cannot include c since the
the label of c is an operation. Thus the redex pattern is entirely cloned in two
disjoint occurrences in t′. By reducing both occurrences, in whatever order, t′

reduces to u′ in two steps and u 'cd u′. ut

t 'cd

p,R
²²

t′

+²²
u '

=
cd u′

Fig. 4. Graphical representation of Lemma 3. If the des-
tination of the bubbling step of t is not in the redex pat-
tern of the rewrite step of t, then, for a suitable graph
u′, the diagram commutes.

Definition 8 [Combined step] We denote with “∼→”, called a combined step, the
union of the bubbling and rewriting relations in a LOIS, i.e., ∼→ =' ∪ →. ut

44

We now address the completeness of the combined step relation. Since this rela-
tion is an extension of the rewrite relation, a traditional proof of completeness
would be trivial. Instead, we prove a more interesting claim, namely, no re-
sult of a computation is lost by the execution of bubbling steps. Therefore, an
implementation of rewriting is allowed to execute bubbling steps, if it is con-
venient. The completeness of bubbling is not in conflict with the example of
Figure 3. Although a bubbling step may destroy a redex, the redex is not irre-
vocably lost—there always exists a second bubbling step to recover the redex
lost by the first step. In the case of Figure 3, a second bubbling step results in
snd (1,2) ? snd (1,3).

Theorem 2 (Completeness of bubbling). Let S be a LOIS, t an admissible

term graph and u a constructor graph such that t
∗

→ u. If t 'cd v for some graph

v and nodes c and d of t, then v
∗∼→ u modulo a renaming of nodes.

Proof. The proof is by induction on the length of t
∗

→ u. Base case: If t = u, then
v does not exist, and the claim vacuously holds. Ind. case: There exist some node
p, rule R and graph t1 such that t →p,R t1

∗

→ u. We consider two exhaustive
cases on d. If d is not in the redex pattern of R at p in t, then, by Lemma 3,
there exists a graph v1 such that v

+

→ v1 and t1 '= v1 modulo a renaming of
nodes. By the induction hypothesis, v1

∗∼→ u modulo a renaming of nodes. If d

is in the redex pattern of R at p in t, then d is neither the root of t nor the
root of v. There exists a dominator e of d in v, witness the root of v, such that
v 'de w; by Theorem 1 t 'ce w, and e is not in the redex pattern of R at p in t.
By Lemma 3, there exists a graph w1 such that w

+

→ w1 and t1 '
= w1 modulo a

renaming of nodes. As in the previous case w
∗∼→ u modulo a renaming of nodes.

Since v ' w implies v∼→w, v
∗∼→ u modulo a renaming of nodes. ut

We now turn our attention to the soundness of combined steps. This is somewhat
the complement of the completeness. We prove that bubbling non-deterministic
choices does not produce results that would not be obtainable without bubbling.
Of course, a bubbling step of a term graph t creates a term u that is not reachable
from t by rewriting, but any result (constructor normal form) obtainable from
u via combined steps can be reached from t via pure rewriting. We begin by
proving that a single bubbling step with destination the root node is sound.

Lemma 4 (Single copying soundness). Let S be a LOIS and t0 an admis-

sible term graph over the signature of S. If t0 'cd t1
∗

→ tn, where c is a node

of t0, d is the root of t0 and tn is a constructor graph, then t0
+

→ tn modulo a

renaming of nodes.

Proof. A diagram of the graphs and steps in the following proof are shown in
Fig 5. Since in t1 the label of the root node d is “?” and tn is a constructor
normal form, there must be an index j such that in the step tj → tj+1 a rule Rj

of “?” is applied at d. Without loss of generality, we assume that Rj is the rule
of “?” that selects the left argument and we denote with dl the left successor of
d in ti for i = 1, 2, . . . , j. In different graphs, dl may denote different nodes. We

45

prove the existence of a sequence t0 → u1

∗

→ un, such that for all i = 1, 2, . . . , n,
ti →

= ui modulo a renaming of nodes. By induction on i, for all i = 1, 2, . . . , j,
we define ui and we prove that ti|dl

= ui modulo a renaming of nodes. The latter
implies ti →d,Rj

ui. Base case: i = 1. The rule Rj can be applied to t0 at c and
we define u1 as the result, i.e., t0 →c,Rj

u1. By Lemma 2, t1|dl
= u1 modulo a

renaming of nodes. Ind. case: We assume the claim for i, where 0 < i < j, and
prove it for i + 1. Let ti →p,Ri

ti+1. If p is a node of ti|dl
, then since ti|dl

= ui

modulo a renaming of nodes, there exists a node q in ui that renames p. We
define ui →q,Ri

ui+1 and the claim holds for i+1. If p is not a node of ti|dl
, then

ti+1|dl
= ti|dl

. We define ui+1 = ui and the claim holds for i + 1 in this case
too. Now, since tj →d,Rj

tj+1, we have tj+1 = tj |dl and therefore ui+1 = tj+1

modulo a renaming of nodes. For every i such that j < i < n, if ti →p,R ti+1, we
define ui →q,R ui+1, where as before q renames p. Clearly, for every i, j < i 6 n,

ti = ui modulo a renaming of nodes. Thus, t0
+

→ tn exists as claimed. ut

t0 'cd

c,Rj

@

@

@

@

ÃÃ@
@

t1
p1,R1

//

d,Rj²²

· · · // tj
d,Rj

//

d,Rj²²

tj+1
// · · · // tn

u1
q1,R1

=
// · · ·

=
// uj uj+1 // · · · // un

Fig. 5. Diagram of the main graphs and steps involved in the proof of Lemma 4. d is
the root node of t0. Rj is the rule of “?” that selects the left argument. qi renames pi.

We believe that the previous proof could be generalized to any bubbling step.
However, a simpler and more elegant proof is available by taking advantage of
the transitivity and the completeness of bubbling. We show this proof below.

Lemma 5 (Single bubbling soundness). Let S be a LOIS and t0 an admis-

sible term graph over the signature of S. If t0 'cd t1
∗

→ tn, where c and d are

nodes of t0 and tn is a constructor graph, then t0
+

→ tn modulo a renaming of

nodes.

Proof. Suppose that d is not the root of t0; otherwise the claim is already proved
by Lemma 4. Let e be the root node of t0 and also of t1. Let u1 be defined by
t1 'de u1. By the transitivity of bubbling, Th. 1, t0 'ce u1. By the completeness
of bubbling, Th. 2, there exists a sequence u1

+

→ tn modulo a renaming of nodes.
Therefore, t0 'ce u1

∗

→ tn. Since e is the root node of t0, by Lemma 4, t0
+

→ tn
modulo a renaming of nodes. ut

Theorem 3 (Soundness of bubbling). Let S be a LOIS and t an admissible

term graph over the signature of S. If t
∗∼→ u, for some constructor graph u, then

t
∗

→ u modulo a renaming of nodes.

Proof. By induction on the number of bubbling steps in t
∗∼→ u. ut

46

6 Related work

Bubbling is introduced in [5] with a rewriting strategy for the overlapping in-
ductively sequential GRSs. This strategy determines, in theory very efficiently,
when to execute ordinary rewrite steps and/or bubbling steps. A bubbling step
is computed only if it promotes a needed (modulo a non-deterministic choice)
rewrite step. Our work proves that the execution of the bubbling steps computed
by this strategy preserves all and only the constructor normal forms reachable
from a term by pure rewriting. The use of bubbling in the strategy eliminates
the incompleteness of backtracking and the inefficiency of copying.

Although strategies for functional logic computations [4] and term graph
rewriting [21] have been extensively investigated, the work on strategies for
term graph rewriting systems as models of functional logic programs has been
relatively scarce. The line of work closest to ours is [11, 12]. A substantial dif-
ference of our work with this line is the class of programs we consider, namely
non-deterministic ones. Non-determinism is a major element of functional logic
programming. Hence, our work fills a major conceptual and practical gap in this
area. The attempt to minimize the cost of non-deterministic steps by limiting
the copying of the context of a redex by bubbling is original.

Other efforts on handling non-determinism in functional and functional logic
computations with shared subexpressions include [17], which introduces the call-

time choice semantics to ensure that shared terms are evaluated to the same
result; [13], which defines a rewriting logic that among other properties provides
the call-time choice; and [1] and [22], which define operational semantics based on
heaps and stores specifically for the interaction of non-determinism and sharing.

These efforts, prompted by implementations, abstract the interactions be-
tween non-determinism and sharing. In practice, all these implementations adopt
strategies, summarized in [4], that have been designed and proved correct for
term rather than graph rewriting or narrowing. Although for a strategy this
difference is small, addressing sharing indirectly through computational data
structures such as heaps and stores rather than directly prevents graph opera-
tions, such as bubbling, which are potentially beneficial.

7 Conclusion and Future Work

Bubbling, with interleaving steps on the arguments of an occurrence of the choice
operation, ensures the soundness and completeness of computations without in-
curring the cost of copying the contexts of redexes with distinct replacements.
Programs in which don’t know non-determinism is appropriately used are likely
to produce some terms that fail to evaluate to constructor normal forms. Hence,
avoiding the construction of the contexts of these terms can improve the effi-
ciency of these programs.

For example, this situation can be seen in our program for coloring a map. In
finding the first solution of the problem, the operation paint is called 10 times.
Since only four calls are needed, six choices of some color for some state eventu-
ally fail. Saving the partial construction of six contexts of paint can potentially

47

improve the efficiency of execution. We are working on an implementation, within
the FLVM [7], to quantify the expected improvements. The results of this paper
ensure the theoretical correctness of a component of our implementation.

Bubbling steps can be executed any time a choice operation occurs at a
non-root node. The problem of determining when it is appropriate to execute a
bubbling step and the destination of this step is elegantly solved in [5]. A strat-
egy similar in intent to [11] and [2] determines when a bubbling step promotes a
needed (modulo a non-deterministic choice) rewrite step. Thus, bubbling steps
are executed only when they are necessary to keep a computation going. This re-
sult complements quite nicely several optimality properties known for strategies
for functional logic computations [4]

The focus of continued work on this topic is to extend the theory and
the implementation to cover narrowing. Narrowing steps are inherently non-
deterministic and therefore naturally expressed using the choice operation [6].
For example, to narrow not x, where x is a free variable, we bind x to
True ? False—the patterns in the definition of not—and continue the evalu-
ation of the instantiated term. In our framework, this would require a bubbling
step.

Variables are singletons in their contexts. This is a key reason to represent
expressions with graphs. However, in our framework, expressions with choice
operations represent sets of ordinary expressions. Therefore, a variable that has
an ancestor node labeled by a choice operation must be handled with care. For
example, consider the following contrived program:

f x = g x ? h x

g 0 = 0

h - = 1
(11)

The expression f x, where x is free, evaluates to two different terms with two
different bindings. In evaluating the right-hand side of f, before instantiating
x in a narrowing step, x must be “standardized apart” as if evaluating (g u

? h v) where u and v are distinct and free. The situation exemplified in (11)
is characterized by a variable x that belongs to two terms encoded within a
single expression of our framework. The standardization apart of a variable is
accomplished by a graph transformation similar to a bubbling step.

References

1. M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of functional logic
programs based on needed narrowing. Theory and Practice of Logic Programming,
5(3):273–303, 2005.

2. S. Antoy. Optimal non-deterministic functional logic computations. In Proceed-
ings of the Sixth International Conference on Algebraic and Logic Programming
(ALP’97), pages 16–30, Southampton, UK, September 1997. Springer LNCS 1298.

3. S. Antoy. Constructor-based conditional narrowing. In Proceedings of the Third
ACM SIGPLAN International Conference on Principles and Practice of Declara-
tive Programming, pages 199–206. ACM Press, 2001.

48

4. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

5. S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic
graph rewriting. In Proc. of the 3rd International Workshop on Term Graph
Rewriting, Termgraph’06, pages 61–70, Vienna, Austria, April 2006.

6. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP’06), Seattle, WA, August 2006. To appear.

7. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic
computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108–125, Lubeck, Germany,
Sept. 2005. Springer LNCS 3474.

8. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

9. M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term Rewriting Systems. Cam-
bridge University Press, 2003.

10. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243–320. Elsevier, 1990.

11. R. Echahed and J.-C. Janodet. On constructor-based graph rewriting systems.
Research Report 985-I, IMAG, 1997.

12. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 325 – 340, Manchester, June 1998. MIT Press.

13. J. C. González Moreno, F. J. López Fraguas, M. T. Hortalá González, and
M. Rodŕıguez Artalejo. An approach to declarative programming based on a
rewriting logic. The Journal of Logic Programming, 40:47–87, 1999.

14. M. Hanus (ed.). PAKCS 1.7.1: The Portland Aachen Kiel Curry System. Available
at http://www.informatik.uni-kiel.de/~pakcs, March 27, 2006.

15. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, March 28, 2006.

16. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

17. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming, 12:237–255, 1992.

18. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II. Oxford University
Press, 1992.

19. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative
system. In Proceedings of RTA ’99, pages 244–247. Springer LNCS 1631, 1999.

20. M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
21. D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig, G. Engels and

G. Rozenberg, editors, Handbook of Graph Grammars, volume 2, pages 3–61. World
Scientific, 1999.

22. A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages
using multiple threads and stores. In Proc. of the Ninth International Conference
on Functional Programming (ICFP 2004), pages 90–102, Snowbird, Utah, USA,
Sept. 2004. ACM Press.

49

