
Representing Functional Logic Computations?

Sergio Antoy1 Michael Hanus2 Sunita Marathe1

1 Computer Science Department, Portland State University,
P.O. Box 751, Portland, OR 97207, U.S.A.
{antoy,marathes}@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. The execution of declarative programs is largely independent of con-
crete execution strategies. For instance, functional logic languages support var-
ious strategies to execute programs, e.g., sequential, parallel, concurrent, fair,
depth-first etc. This freedom causes difficulties for tools intended to visualize,
trace, or debug functional logic computations. To improve this situation, we de-
scribe structures for representing a functional logic computation independently of
its concrete execution strategy. Our representation serves as an interface to con-
nect different implementations of functional logic languages, such as PAKCS,
KiCS, MCC, FLVM, or TOY, to current and future tools, such as tracers or de-
buggers, for visualizing and understanding computations.

1 Motivation

One of the main ideas of declarative programming is to separate the logic description
of a problem from the control necessary to solve it (“Algorithm = Logic + Control”).
Purely logic languages do not fully support this idea and often provide non-declarative
features for application programming (e.g., I/O operations with side effects). By con-
trast, functional logic languages (see [16] for a recent survey) like Mercury [25] or
Curry [15, 18] exploit functional programming techniques (e.g., monadic I/O [26]) to
better support independence of the evaluation strategy. Thus, functional logic languages
support various controls to execute programs, e.g., sequential [4], parallel [3], concur-
rent [15], depth-first search [5], fair search [7], etc. Actually, there are implementations
that allow the execution of the same functional logic programs with different strategies
(e.g., KiCS [11]).

In general, an evaluation strategy is a crucial component of every implementation of
a functional logic programming language. The strategy determines the steps of a com-
putation. Typically, executing all the possible steps of an expression is an unnecessary
and inefficient operation. In most cases, only a small number of steps must be executed
to obtain every result of a given expression, an essential property of computations and
implementations referred to as completeness. An ideal situation, known as sequential-
ity, is when for any expression there exists a single step whose execution ensures the

? This work was partially supported by the German Research Council (DFG) grant Ha 2457/5-2
and the DAAD grant D/06/29439.

completeness of computations. Even when an expression has several necessary steps, it
may suffice to execute only one of these steps and to ignore the remaining ones, perhaps
without even computing them, because the ignored steps will be eventually computed
later. Some programs require a non-sequential control to ensure the completeness of
some computations, but sequentiality contributes to the simplicity and efficiency of an
implementation to such a degree that sometimes it is adopted even if the completeness
is lost.

There are very few evaluation strategies for functional logic computations, and they
are precisely defined. However, the needs of and/or the opportunities presented by an
implementation, as discussed in the previous paragraph, disconnect the practice from
the theory. When the strategy computes several steps on an expression, different im-
plementations of functional logic languages may vary in the order in which these steps
are applied to the expression. This variation is often referred to as control. For instance,
PAKCS [17], TOY [20], and MCC [21] always select a single needed step in the expres-
sion being evaluated and use backtracking to accommodate non-deterministic compu-
tations.1 KiCS [11] and FLVM [7] use more sophisticated strategies to deal with non-
determinism. In particular, they support sharing over non-determinism. Subexpressions
common to different non-deterministic branches may be evaluated only once.

Example 1. Consider the following rewrite rules (using the notation of Curry) defining
an operation head that returns the first element of a list, a non-terminating operation
self, and an operation coin that non-deterministically returns 0 or 1:

head (x:xs) = x coin = 0
self = self coin = 1

Now, consider the expression coin+head(2*3:self) (“+” and “*” are primi-
tive operations defined elsewhere). An eager or innermost evaluation is incomplete
since it evaluates the subexpression self forever. A lazy evaluation that evalu-
ates the arguments of “+” from left to right reduces the whole expression non-
deterministically to 0+head(2*3:self) or 1+head(2*3:self). Thus, the
subexpression head(2*3:self) will be evaluated twice during the rest of the com-
putation of the non-deterministic branches of the search space. However, more sophis-
ticated strategies, as implemented in KiCS or FLVM, evaluate this subexpression only
once and share the result with the other non-deterministic branch, since the value of this
subexpression does not depend on the chosen alternative.

Although the differences in the evaluation strategies support efficient and/or complete
implementations of functional logic languages, the details of the evaluation are dif-
ficult to comprehend for the programmer. In particular, if a programmer wishes to
browse through a computation for the purpose of debugging, the steps of the com-
putation should be presented in an order which is more closely related to the program
text than to the idiosyncrasies of a particular implementation of the evaluation strategy.
This fact, well-known for lazy functional languages, becomes even more relevant for
modern functional logic languages which extend the functional computation model.

1 In addition, MCC also implements encapsulated search to provide more sophisticated search
strategies.

2

The difficulty of understanding a computation through the sequence of its steps
prompted the development of various debugging tools for specific implementations of
declarative languages. To ease the development of such tools, and to make them portable
across various language implementations, we propose both an abstract representation
of functional logic computations and a protocol to support the incremental construction
and transmission of this representation. Our work enables different language implemen-
tations to generate a protocol that can be used by any protocol-aware tool to visualize a
functional logic computation in a form which is more natural and easier to understand
than the sequence of steps in the order in which they are executed.

2 Computation Spaces

This section introduces the notion of computation space, an abstraction of the steps and
non-deterministic choices performed during a functional logic computation.

We formalize a functional logic program with a constructor-based graph rewriting
system [14, 22]. An “expression” to be evaluated according to a program is therefore a
graph. A graph is defined by a set of nodes, a distinguished node called the root and
two functions on nodes, (1) a labeling function that associates a symbol of the signature
or a variable to a node, and (2) a successor function that associates a sequence of nodes
to a node. For any variable v, there is at most one node labeled by v. To use a familiar
terminology, a graph will be also called a term or expression and a node a position. The
notions of redex, replacement and rewrite are more laborious to present for graphs than
for terms, but are substantially similar. [14] contains an in-depth treatment of graph
rewriting which is well suited to this paper. A functional logic computation consists of
a sequence of rewrites of one expression e into another by applying a rewrite rule of the
program at some subexpression of e.

We allow non-deterministic rewrites, or in other words, redexes that have distinct
replacements, but we ignore logic variables and the bindings that would arise from nar-
rowing. This is a simplification, not a restriction, since logic variables can be replaced
by non-deterministic generator functions [6]. We allow parallel rewrites to keep our
discussion independent of any particular functional logic machine and to accommodate
future implementations. A step is a pair of terms denoted t → u such that t rewrites to
u. When appropriate, we will decorate a step with the position of the redex and/or the
rule applied to the redex. Consider Example 1 and the following step that replaces (with
itself) the first component of a pair:

(self,self) →1 (self,self)

In this particular example, without decoration it would be impossible to tell what is
replaced in the step. A step is non-deterministic when the step’s redex admits two or
more replacements, i.e., when more than one rule can be applied to this redex. A parallel
step is a pair of terms denoted t→ u such that t = t0 →p1 t1 →p2 · · · →pn

tn = u in
which P = {p1, . . . pn} is a set of distinct positions. Since programs are constructor-
based, the redex patterns at distinct positions of a term do not overlap. This condition
ensures that the order of the elements in P does not affect u. Therefore, a parallel step is
well-defined without specifying the order of the replacements, a fact that can be proved
as in the Parallel Moves Lemma [19, Sect. 2]. Obviously, a parallel step generalizes a

3

step and a step is a special case of a parallel step. In the rest of this paper, the word
“step” will refer to a step that may be parallel and/or non-deterministic.

A strategy is a mapping S from terms into sets of terms such that if t is a term and
u is in S(t), then t → u. Simply put, a strategy tells which steps to execute on a term.
Good strategies are minimalistic in the sense that they compute more than one step only
for non-deterministic redexes.

Definition 1 (Minimalistic strategy). We say that a strategy S is minimalistic if and
only if the following two conditions hold, where t is any term. (1) If u1 and u2 are
distinct terms in S(t), where t →P1 u1 and t →P2 u2, then there exists a position
p such that p ∈ P1 ∩ P2 and the subterm of t at p is a non-deterministic redex. (2)
Conversely, if S(t) = {u}, where t →P u, then for all p in P , the subterm of t at p is
deterministic.

A computation of a term t w.r.t. a strategy S is a finite or infinite sequence of steps
ti → ui, i > 0, such that ui ∈ S(ti) for all i, and ti = ui−1 for i > 0. The
computation space of a term t w.r.t. a strategy S, denoted SPACE(t), is a (possi-
bly infinite) tree-like structure representing every computation (according to S) orig-
inating from t. More precisely, for any t, if S(t) = {u1, . . . un}, then SPACE(t) =
(t, {SPACE(u1), . . . , SPACE(un)}).

For a minimalistic strategy, a branch in a computation space abstracts a term that un-
dergoes a non-deterministic step. The computation space is an unordered tree, i.e., the
order of the children of a node is not specified, since there is no natural order among the
various replacements of a non-deterministic redex. A computation space has similarities
to proof trees w.r.t. operational semantics of functional logic programs. A computation
space is an abstract, declarative concept. The execution of a program generates or tra-
verses, partially or entirely, the computation space of a term in an attempt to produce
the term’s values. The order in which the program generates or visits the nodes of a
space is not perceptible in our model. This is intended, since we want to abstract from
an evaluation order that might be difficult to understand for a programmer.

3 Communication Protocol

A computation space is an abstraction for reasoning about computations. It is not in-
tended to be explicitly stored or generated during the execution of a program. To trans-
mit and manipulate a computation space, we introduce a communication protocol for
the space itself. Loosely speaking, a protocol contains the same information as a com-
putation space. The protocol is meant to be generated on-the-fly during the execution
of program and serialized over a stream that, e.g., can be stored on some medium or
consumed by a protocol-aware tool. By contrast to a computation space that consists
of a monolithic, typically large and possibly infinite piece of information, the protocol
consists of elements that refer to more localized information and are easy to serialize.
This eases producing and exchanging the protocol.

Basically, a machine for functional logic computations (subsequently abbreviated
“FLM”) has to report the following information via the protocol:

– construction of terms (e.g., instances of right-hand sides of applied rules)

4

main
→ coin+(2*3)
→ coin+6
→ 0+6
→ 6 (S1)

→ 1+6
→ 7

main
→ coin+(2*3)
→ 0+(2*3)
→ 0+6
→ 6 (S2)

→ 1+(2*3)
→ 1+6
→ 7

Fig. 1. Example computation spaces

– application of rewrite rules
– creation of computation branches

An important issue about the protocol is the fact that it makes no assumption about the
order in which the alternatives of a non-deterministic step are executed. This condition,
e.g., makes backtracking indistinguishable from breadth-first search. Thus, it must be
clear to which branch of a computation a step belongs. For instance, implementations
supporting sharing over non-determinism, like KiCS or FLVM, might perform a rewrite
step after a branch of a computation space has been created. If a redex of this step is
shared by another branch, the same redex and step can be perceived as duplicated in
the other branch or as performed before the branch was created. For instance, consider
the non-deterministic function coin defined in Example 1 and the initial expression
defined by the function

main = coin+(2*3)

Depending on the order in which the arguments of “+” are evaluated, we have struc-
turally different computation spaces. For instance, if the right argument is evaluated
first, we obtain computation space (S1) of Fig. 1 (where we align all children of a node
vertically and omit the labeling of the steps). If the left argument is evaluated first, we
obtain computation space (S2) of Fig. 1. Although both computation spaces lead to the
same results, their structures are different. Note that simple implementations, e.g., those
based on backtracking, perform all the individual steps shown in (S2) if the arguments
of “+” are evaluated from left to right. More advanced implementations, like KiCS or
FLVM, detect that the evaluation of the subterm (2*3) is independent of the branch
chosen by coin. Thus, the evaluation of (2*3) is shared over the non-deterministic
branches caused by coin, i.e., the two rewrite steps of (2*3) to 6 occurring in (S2)
correspond to the execution of a single step in the implementation. Although such shar-
ing over non-determinism can have a dramatic impact on the efficiency of functional
logic computations, the details are difficult to comprehend so that a representation of
the overall computation as a tree structure as in (S2) is quite adequate, in particular, for
abstract views supported by declarative debuggers.

To reconstruct a computation space from the steps of a computation, we attach to
each step the information of the branch it belongs to. We call segment of a computation
space a sequence of steps of maximal length which ends in either a leaf or a branch
node of the computation space, and in which any other node is not a branch. Each seg-
ment has a unique identifier, e.g., a natural number. The first segment of a computation

5

space originates at the root of the computation space, which abstracts the initial term
of a computation. Any other segment originates at a child u of some branch node ab-
stracting a term t. When one such segment is introduced, the protocol must provide
the information about the segment of t. In this situation, we say that the segment of u
evolves from the segment of t.

Another subtle point in the reconstruction of computation spaces is the distinc-
tion between sequential and parallel rewrite steps. For example, consider the term
t = (2*3,4+5). A sequential strategy might reduce 2*3 in a first step followed
by a rewrite step on 4+5. A parallel strategy could reduce both expressions in one par-
allel step. Although this difference is not relevant for the computed result, our goal is
to reconstruct the correct computation space according to the strategy performed by
an FLM so that one can visualize the underlying computation in a high-level manner.
Therefore, the protocol groups together reductions that conceptually belong to a same
step according to a strategy (an alternative would be to add a unique identifier to all
those steps).

Altogether, the protocol has the following basic structure (in practice, one could
refine it to distinguish different kinds of terms, e.g., operations, constructors, numbers):

b ∈ Int (segment identifier)
n ∈ Int (node identifier)
p ::= pe∗ (protocol)
tc ::= T (n, f, n∗) (term construction)
rp ::= R(b, n1, n2) (term replacement)
pe ::= tc (protocol elements)
| I(b, n) (initialization)
| B(b1, b2) (segment creation)
| S · (tc | rp)∗ · E (replacements)

According to the definition of graph presented earlier, a graph (term) is represented
by T (n, f, n1 . . . nk) where n is the root node, f is the label of n (which can be an
operation symbol, a constructor symbol, or a literal), and n1 . . . nk are the successors
of n. Nodes have identifiers, e.g., natural numbers. For instance, Fig. 2(a) shows a
protocol defining the term coin+(2*3) rooted at node 14.2

A protocol is initialized by the element I(b, n), where b is the identifier of the first
segment and n is the root node of the initial term. B(b1, b2) introduces a new segment
identifier b2 that evolves from the segment identified by b1. An element R(b, n1, n2)
denotes the step of the term rooted by n which replaces the redex at node n1 by the
replacement at node n2 in segment b. Note that the same redex can be replaced by a
different term in a different segment. Finally, S and E enclose parallel computation
steps. Figure 2(b) shows the protocol of the first 3 steps of the computation space (S1).

The protocol leaves some freedom in the order of reduction steps and segments
which is important for sophisticated implementations. For instance, the first 3 steps of
the computation space (S2) could be represented by the protocol shown in Fig. 2(c).

2 When we use sequences in this paper, Λ denotes the empty sequence and s1 · s2 denotes the
concatenation of the sequences s1 and s2. Moreover, sequences containing only one element
are identified with this element.

6

T (10,coin, Λ)
T (11,2, Λ)
T (12,3, Λ)
T (13,*, 11 · 12)
T (14,+, 10 · 13)

I(0, 9)
T (9,main, Λ)
S
R(0, 9, 14)
< insert here Fig. 2(a) >
E
S
R(0, 13, 15)
T (15,6, Λ)
E
B(0, 1)
S
R(1, 10, 16)
T (16,0, Λ)
E

I(0, 9)
T (9,main, Λ)
S
R(0, 9, 14)
< insert here Fig. 2(a) >
E
B(0, 1)
S
R(1, 10, 16)
T (16,0, Λ)
E
S
R(0, 13, 15)
T (15,6, Λ)
E

(a) (b) (c)

Fig. 2. Example protocols

Note that the reduction step R(0, 13, 15) in the root segment 0 is performed after a
reduction step in segment 1 (which evolved from segment 0). This makes sense for an
FLM that supports sharing over non-determinism as discussed earlier: since the value
of (2*3) is independent on the branch chosen by coin, the rewrite step performed
for this redex is associated to the root segment.

4 Protocol Correctness

In this section we discuss the correctness of our approach. Intuitively, we want to en-
sure that a computation space can be encoded in a protocol and a protocol encodes a
computation space. Clearly, this informal equivalence must be refined. A computation
space can be infinite, while a protocol is always finite. Furthermore, while it is true that
any finite computation space can be encoded in a protocol, the converse is false. We de-
fined only the syntax of a protocol. Given a protocol that encodes a computation space,
it is possible to add, remove and/or modify elements so that the result is a syntactically
compliant, but meaningless protocol. One could define a class of meaningful protocols
by stating a number of conditions on such protocols, e.g., for each elementR(b, n1, n2),
there are elements T (n1, . . .) and T (n2, . . .), etc. Instead of enumerating all these con-
ditions, we implicitly define them by a protocol decoding that fails on protocols that are
not meaningful.

The terms of a computation are trivially encoded by the protocol’s T elements via
the enc mapping defined below. The enc mapping is overloaded since we will use the
same name and notation to encode computation spaces as well.

Definition 2 (Term encoding). The function enc maps a term into a sequence of
protocol elements. Let t be a term where {n1, . . . , nk} is the set of the nodes of t
and label and succ are the labeling and successor functions of t. Then we define
enc(t) = T (n1, label(n1), succ(n1)) · · ·T (nk, label(nk), succ(nk)).

7

The T elements produced by enc(t), for some term t, do not encode the root of t. The
root of a term is captured by the I and R elements, as shown below.

The protocol is computed and transmitted during the evaluation of a term. As re-
ductions are executed on the term, a topmost, finite, typically partial, portion of the
computation space is constructed or discovered. This portion is formalized by the fol-
lowing definition.

Definition 3 (State of traversal). Let t be a term, S a strategy and SPACE(t) the
computation space of t w.r.t. S. A state of traversal of (the computation space of)
t is a finite tree defined by SPACE(t) = (t, {SPACE(u1), . . . , SPACE(uk)}), where
{u1, . . . , uk} ⊆ S(t).

We are now ready to define the protocol of a computation. The definition of the space
encoding is laborious, but conceptually simple. The initialization element is produced
only for the top-level term. Each term of the computation space is encoded using the
term encoding function. A possibly parallel step is abstracted by an S · · ·E group con-
taining a sequence of R elements defining the root of each redex and correspond-
ing replacement, and T elements defining the nodes of the replacements. For non-
deterministic steps, also segment information is encoded using B elements.

Definition 4 (Space encoding). The function enc maps a state of traver-
sal into a sequence of protocol elements. Let t be a term, SPACE(t) =
(t, {SPACE(u1), . . . , SPACE(uk)}) a state of traversal of t, and s the segment identi-
fier of t in SPACE(t), where t →Pi

ui, 1 6 i 6 k, is a step according to S. We define
enc by structural induction on SPACE(t) as follows. If t is the root of the computation
space, let j = I(s, nt), where nt is the root of t, otherwise let j = Λ. If k = 1, then
b = Λ, otherwise, let bi = B(bt, bui

) and b = b1 · · · bk, where bt and bui
are the

segment identifiers of t and ui. For 1 6 i 6 k, Pi is the set of positions of a parallel
step. For each position pih in Pi, let rih = R(bi, nih, nuih

), where nih and nuih
are

the roots of the redex and the replacement. Let ri be the concatenation of all the rih
with pih ∈ Pi, and r = S · r1 · enc(u1) · E · · ·S · rk · enc(uk) · E. By the induction
assumption, for 1 6 i 6 k, enc(SPACE(ui)) is defined and we denote it with ei. Finally,
we define enc(SPACE(t)) = j · enc(t) · b · r · e1 · · · ek.

In the above definition, the order of the elements inside an S · · ·E group and between
different segments is conceptually irrelevant. This is intended to allow the protocol
generation by FLMs that use different search strategies (e.g., depth-first vs. breadth-
first) or evaluation orders (e.g., sharing over non-determinism).

In practice, each reduction step t→ u provides a set of T elements for the replace-
ments, an obvious set of R elements, and an optional set of B elements, if the redex
is non-deterministic. The term encoding of a replacement very frequently contains T
elements that are repeated in the protocol. These are the terms matched to the rule’s
variables occurring in the right-hand side of rules. Filtering out repeated elements is an
obvious optimization that reduces the size of the protocol.

Now, we have the foundations to discuss the correctness of the protocol. Informally,
we consider a protocol correct when it encodes the same information as a computation
space. More formally, given a state of traversal T , the encoding of T can be decoded

8

to obtain T back. This is a notion of partial correctness because it disregards infor-
mation about segments which is not present in the computation space. A treatment of
the decoding function with the same degree of formality that we used for defining the
encoding function would take us well beyond the limits of this paper. Thus, we only
sketch the qualifying issues.

First, we focus on terms only. Let e be a protocol. Each T element of e is associated
to a node of a term of a state of traversal. An element T (n, l, s) is associated with a
node n with label l and successors s. Some conditions of “meaningfulness” must be
met. E.g., each node in s must be defined by some other T element of e. Furthermore,
if two T elements in e have the same first argument, then they have the same second
argument and the same third argument. Thus, the decoding function either produces a
set of terms from a protocol or it fails, if the protocol is not meaningful.

Claim 1 If T is a state of traversal, decoding enc(T) produces all and only the set of
terms of T .

Proof (Sketch). By definition of the function enc, each node of each term of T pro-
duces a T element in enc(T) and, conversely, a T element in enc(T) is produced only
by a node of a term of T . Thus, the proof reduces to verify that the T elements are
meaningful.

Second, we focus on the other elements of the protocol. We have argued that all the
terms of the state of traversal are decoded from the protocol, thus, we only have to
decode the structure of a state of traversal. Again, some conditions of “meaningfulness”
must be met. E.g., the redex and replacement of an R element must be defined by T
elements. The structure of a computation space, hence a state of traversal T , is a binary
relation on the terms of T that for obvious reasons we call “is a reduct of.” For each
term t in T , a term u is a reduct of t if and only if t→ u according to the strategy. Any
reduction of t is defined by an R element in which the second argument is the root of t.

The decoding function, dec maps a protocol into a state of traversal. This function
is partial, i.e., it is only defined on meaningful protocols. First, we consider the unique
initialization element by defining

dec(p1 · I(b, n) · p2) = dec(b, n, p1 · p2)

where the ternary function dec(b, n, p) is defined as follows. Let t be the term with root
n according to the protocol decoding as above. We distinguish the following cases.

– If there is an R element with b as the first argument in protocol p, take the first
S · · ·E group of elements containing this R element. All the R elements in this
group define a possibly parallel step which is defined by examining their second and
third argument. Let n′ = n if there is no replacement for n in this group, otherwise
let n′ be the root of the new replacement. If U = dec(b, n′, p′) where p′ is the
remaining protocol without this S · · ·E group, we define dec(b, n, p) = (t, {U}).

– Otherwise, there is no R element with b as the first argument. Consider the set
{B(b, b1), . . . , B(b, bn)} of all B elements in protocol p with b as the first argu-
ment, where n = 0 is possible if there is no such element. Let p′ be the remaining
protocol without these elements and Ui = dec(bi, n, p′), i = 1, . . . , n. Then we
define dec(b, n, p) = (t, {U1, . . . , Un}).

9

Claim 2 Let T be a state of traversal. If T ′ is obtained by decoding enc(T), then
T ′ = T .

Proof (Sketch). The terms of T ′ are all and only those of T by claim 1. Hence, we only
have to show that the roots of T ′ and T are the same and the reducts of every term t of
T ′ and T are the same. The proof is by induction on the structure of T . Base case: T is
of the form (t, {}), for some term t, i.e., there are no steps. The protocol contains only
an I element beside the T elements defining t. Decoding the T elements of the protocol
produces t except for the definition of its root. Decoding the I element establishes the
root of t. Since t is not produced by any reduction, t is the root of T ′. Ind. case: T
is of the form (t, {SPACE(u1), . . . , SPACE(un)}), for some terms t, u1, . . . , un, where
t → ui, for i in {1, . . . , n}. According to Definition 4, using the same notation, the
protocol is of the form j · enc(t) · b · r · e1 · · · ek. By the induction hypothesis, decoding
ei produces SPACE(ui) except for the definition of ui. r stands for n groups of the form
S · ri · enc(ui) ·E. Each group defines ui and its root node. Finally, enc(t) defines the
root of the state of traversal and j its root node.

The procedure for decoding a protocol and re-constructing a state of traversal is not
intended to be ever executed. It is a definition provided only to address the correctness
of the protocol in the sense discussed at the beginning of this section.

5 Additional Information

It is expected that the compiler, virtual machine and/or interpreter of an implementa-
tion upon request will produce the protocol of an execution. Since these components of
an implementation are complicated and strive to execute efficiently, the protocol is de-
signed to contain only essential information. Some information used by advanced tools
is intentionally left out of our protocol. However, we expect that useful information can
be constructed from the protocol generally with a modest effort, since we have shown,
in the previous section, that the protocol is equivalent to the computation space.

For example, declarative debuggers [12, 24] are more effective when only the steps
that contributed to the result of a computation are presented to the user. For the time
being, we are intentionally vague on the meaning of “contributed,” but will become
more precise shortly. Consider the following contrived program:

f 2 0 = 0
f _ 1 = 1

and the evaluation of t = f(1+1)(0?1), where “?” is a standard operation that
non-deterministically returns one of its arguments [16].

The computation space of t contains two computations ending in a normal form
due to the non-determinism of 0?1. If an implementation shares the evaluation of the
subterm 1+1 between the two computations, which in principle is very desirable, both
computations will contain the step 1+1 → 2 similar to what is shown in space (S2).
The replacement of 1+1 contributes to one computation, but not to the other. High-
performance interpreters, such as KiCS and the FLVM, will execute this step only once
and regard it as belonging to both computations. It would be unnecessarily burdensome

10

and inefficient for them to determine which computations need this step. Instead, an
off-line analysis of the computation may determine this fact more easily.

The notion that a step “contributes” to the result of a computation, is quite technical.
It is formalized in [19] for the sequential TRSs through the notion of needed redex. The
situation for functional logic programming is way more complicated. First, functional
logic programs are not necessarily sequential. Second, when logic variables are present,
a redex may or may not be needed depending on the instantiation of some variables [2,
Example 6]. These issues, together with various degrees of need for various classes of
functional logic programs, are discussed in [2]. Programs for functional logic languages
such as Curry and Toy are modeled by the whole class of the constructor based, condi-
tional graph rewriting systems. For these programs, there are terms that have no needed
redex [2, Example 10]. However, source programs in this large class are often compiled
into target programs belonging to more restrictive classes, often either the inductively
sequential or the overlapping inductively sequential programs, for which a notion of
need is meaningful. Therefore, it may be possible to determine whether a step is needed
for a target program into which a source program has been compiled. This ultimately
explains why a step is executed. Below, we sketch how to accomplish this.

We discuss the problem for the overlapping inductively sequential programs. This
class is large enough that any constructor based, conditional program can be compiled
into a program belonging to this class. The source program and the target program
produce the same results in the sense of [1, Theorem 2] and there exists a strategy for
the target program that performs only steps needed modulo a non-deterministic choice.
We regard these steps as those that contribute to a computation.

The following definition formalizes the intuition that a term t might be reduced by
some rules, but not others. This definition is based on an approximation, referred to as
“arbitrary reductions” [23], that assumes that a term t might be reducible to a term u
if t is a redex, regardless of u and the rewrite rules applicable to t. This assumptions
is commonly made to prove interesting properties of most practical strategies for func-
tional logic computations. Another way of putting it, is that properties so proved hold
for strategies that “do not look at the right-hand sides of the rules” the reason being
that reasoning about the right-hand sides is very difficult and often leads to undecidable
conditions.

Definition 5 (Pre-redex w.r.t. to a rule). Let P be a (possibly overlapping) inductively
sequential program, t a term, n the root of t, f the label of n, where f is a defined
operation, and l → r a rewrite rule of f . We call constructor pattern of t the term t′

obtained from t by replacing every operation-rooted subterm of t, except t itself, with
a fresh variable. We say that t is a pre-redex w.r.t. to l → r iff l and t′ unify, i.e.,
there exists a substitution σ such that σ(t′) and σ(l) are isomorphic (equal modulo a
renaming of nodes).

Definition 6 (Directly needed). Let P be a (possibly overlapping) inductively sequen-
tial program, t a term, n the root of t, f the label of n, where f is a defined operation,
and S the set of rules of P such that t is a pre-redex w.r.t. every rule in S. Let t′ be a
subterm of t, n′ the root of t′, f ′ the label of n′, where f ′ is a defined operation, and
n = n0n1 . . . nk = n′ a path from n to n′ such that the label of ni, 0 < i < k, is a

11

constructor symbol. Observe that in the constructor pattern of t, t′ has been replaced
by a fresh variable. We say that t′ is directly needed by t iff for every rule l → r in S,
the isomorphism unifying l to the constructor pattern of t maps a node ml of l labeled
by a constructor symbol to n′.

We justify very informally the previous definition. A term t can be reduced at the
root only by the rules of P w.r.t. which t is a pre-redex. Every left-hand side l of
one such rule has a constructor symbol at a position that corresponds to the root of
t′, whereas t′ is operation rooted. Hence, unless t′ is reduced (to a constructor-rooted
term), t cannot be reduced (to a value). Obviously, reducing t′ is a necessary condi-
tion to compute the value of t, but it is not sufficient (it becomes sufficient under the
assumption of arbitrary reductions).

Definition 7 (Contributing step). Let P be a (possibly overlapping) inductively se-
quential program, t a term and t′ a subterm of t. We say that t′ is needed by t iff either
of the following conditions hold:

1. t′ is a maximal operation-rooted subterm of t, i.e., there exists a path from the root
of t to the root of t′ in which the only node labeled by an operation symbol is the
root of t′, or

2. there exists a needed subterm t′′ of t such that t′ is directly needed by t′′.

Let A : t = t0 → t1 → · · · be a computation of t. We say that a step ti → ti+1 at some
position p contributes to A iff the subterm of ti at p is needed by ti.

Example 2. Referring to the code of the operation f presented earlier in the section,
two computations of t = f(1+1)(0?1) are:

t → f(1+1)0 → f20 → 0
t → f(1+1)1 → f21 → 1

It is simple to verify that, according to the previous definitions, the step 1 + 1 → 2
contributes to the first computation, but not to the second.

6 Reducing Protocol Information

We have shown that a meaningful protocol contains enough information to reconstruct
the corresponding computation space. If a user wants to browse through a computation,
e.g., in order to find some bugs using a tracer or declarative debugger, the steps of a
computation space should be shown in an order more closely related to the program
text. In particular, the lazy evaluation order is not adequate and should be replaced by
a view corresponding to an eager evaluation. Due to the fact that eager evaluation is
incomplete in general (see Example 1), an eager evaluation view is often implemented
by executing the program with the standard lazy strategy and storing information about
the performed reduction steps during this execution. Then, separate visualization or
debugging tools can use this information to reconstruct an appropriate eager view of
the program execution [10, 13].

Although a similar approach could be based on our protocol, too, it is known that
the size of the stored information can be huge for real-life programs. Therefore, Brassel

12

et al. [9] proposed to reduce the size of the information to be stored by allowing the vi-
sualization or debugging tool to recompute some of this information. This framework,
called “lazy call-by-value evaluation,” is based on two phases. First, the program is ex-
ecuted with the standard (lazy) evaluation strategy. During the execution, the number
of reduction steps in eager evaluation order is computed and stored. Since a lazy strat-
egy may not perform all reduction steps compared to an eager strategy, the number of
reduction steps is represented as a step list of the form [s1,s2,...,sk] which has
the following interpretation: perform (in leftmost innermost order!) s1 reduction steps,
then skip the next function call (i.e., replace its result by the “undefined” element),
then perform s2 steps, skip the next function call, etc. For instance, consider the rewrite
rules

length [] = 0
length (x:xs) = length xs

main = length [fib 0]

(where the definition of the function fib is omitted). The step list to execute main
is [1,2]. This specifies an evaluation in leftmost innermost order where one step is
performed (to reduce main), then the next function call fib 0 is skipped (i.e., replaced
by since its value is not needed), and, finally, two steps are performed to evaluate the
result 0.

The computed step list can be used by tracers or debuggers that execute the program
with an eager strategy respecting the step list. For instance, the declarative debugger
described in [9] first asks whether

main --> 0

is intended (where the result 0 is computed by executing main with the lazy call-
by-value strategy described above). If we answer “no”, it asks a question about the
innermost call of the right-hand side of the main rule, i.e., whether

fib 0 --> _

is intended (where the undefined result indicates that the value of this redex is not
needed). If we stay undecided, the debugger proceeds with the next call in innermost
order and ask whether

length [_] --> 0

is correct. If we answer “no”, it asks the final question

length [] --> 0

After answering with “yes”, the debugger indicates that the second rule of length
must contain an error.

Hence, these two phases with the intermediate construction of the step list ensures
a comprehensible execution order during debugging time. The compactness of this rep-
resentation is indicated by the fact that a computation that demands the evaluation of
all its redexes is represented by a step list containing a single number (the total num-
ber of executed steps). Thus, this approach trades time (to recompute results during the
interactive debugging phase) for memory space.

In [9] it has been shown how to construct step lists by transforming a functional
program into an instrumented program that behaves as the original program, but stores

13

the step list as a side effect during its execution. In order to demonstrate the generality
of our protocol, we show how to reduce a meaningful protocol to a step list. In practice,
this reduction is done on the fly, i.e., during the computation of the protocol by the
FLM.

The following information is relevant to generate a step list:

1. The application of a rewrite rule to some node of a term. For instance, if no rewrite
rule has been applied to some node, the evaluation of this node was not needed, i.e.,
its evaluation can be skipped in an eager order.

2. If a rewrite rule has been applied, the operation-rooted nodes of the replacement
in innermost order are relevant. The constructor nodes are irrelevant since they are
not counted in the step list.

3. The segment identifier of each term replacement is relevant in order to associate
reductions to the corresponding results.

Note that the possible parallelism in computation steps is not relevant here so that we
can ignore this information. Altogether, the information about replacements contained
in the protocol can be reduced to events of the form n

b→ n1 . . . nk specifying that node
n is replaced in segment b by a replacement with n1 . . . nk as operations in leftmost
innermost order. For instance, the three replacements shown in Fig. 2(b) are reduced to
the events

9 0→ 10 · 13 · 14
13 0→ Λ

10 1→ Λ

These events can be incrementally transformed into a step list by associating step coun-
ters to nodes and incrementing them when such a node is replaced, i.e., when an event
with this node as the left-hand side occurs. The details of this transformation for purely
deterministic computations (i.e., where the segment identifier is identical in all events)
are described in [9].

The extension to the non-deterministic case is not straightforward (and, actually,
not discussed in [9]). For this purpose, the information about segments contained in our
protocol structure is quite useful since we can compute a step list for each individual
answer. For instance, the element B(0, 1) in the protocol of Fig. 2(b) indicates that the
events 9 0→ 10 · 13 · 14 and 13 0→ Λ do also count for the segment identified by 1
(with the result 6). Thus, by considering the tree structure given by all B elements of
the protocol, we can construct for each final result a separate step list. In the case of the
protocol corresponding to computation space (S1), this would be the list of step lists

[[4],[4]]

(since in both cases all redexes are evaluated). Obviously, these step lists do not contain
enough information, since both step lists are identical, although one should specify the
evaluation of main to 6 and the other the evaluation to 7. The problem stems from the
definition of coin by two overlapping rules (overlapping rules are not considered in
[9]). The lazy call-by-value interpreter cannot deduce from this step list which of the
two alternative rules should be applied. This problem can be fixed by extending step

14

lists with choice steps: a choice step of the form “?n” indicates that the n-th rewrite
rule3 should be applied. In this case, the protocol of computation space (S1) would be
reduced to the list of step lists

[[1,?1,2],[1,?2,2]]

For instance, the step list [1,?1,2] specifies the eager evaluation of main by one
reduction step (resulting in the term coin+(2*3)), applying the first coin rule to
the leftmost innermost subterm coin (giving 0+(2*3)), followed by two innermost
steps yielding 6. Note that, in contrast to [9], skip steps are not performed before and
after the specific choice elements in the step list.

A debugging tool could use the list of step lists [[1,?1,2],[1,?2,2]] to com-
pute the different results (6 and 7) corresponding to each of these lists and asks the user
which of these answers is wrong. Then, it would proceed with the selected step list as
described above.

It is interesting to note that the protocol of computation space (S2) would be reduced
to the identical lists of step lists, although the underlying computation space is different.
This is due to the fact that the leftmost innermost evaluation order is identical in both
cases.

We have prototypically implemented this reduction schema and a declarative debug-
ger for the specific case that all non-determinism is expressed by the binary choice op-
eration “?”, e.g., coin could be defined by “coin = 0?1”. In this case, the choice
steps can be easily detected in a protocol by checking whether the name of the replaced
operation is “?”.

Of course, there are also other applications where the protocol information can be
reduced in other ways. For instance, one could try to visualize the structure of the non-
determinism of a computation (e.g., the search tree explored during a computation), or
to observe the evaluation of distinct expressions (as in observation debuggers [8]). The
development of such reductions and corresponding tools is left for future work.

7 Conclusions

We proposed a protocol for the transmission of a functional logic computation from
an interpreter or virtual machine to tools intended to visualize and/or analyze the com-
putation. The protocol serializes the computation space in a text stream that can be
stored or processed for specific purposes. The proposed protocol is fairly general in that
it supports non-deterministic and parallel computations in a form independent of any
concrete strategy and control. We offered a proof sketch of the protocol correctness.
The protocol encodes the same information of a finite portion of the computation space
of a term.

The protocol is versatile and we intend to use it for a variety of purposes. To this aim
we showed that, e.g., information about needed steps can be extracted from the proto-
col. This information is used, among others, by declarative debuggers. We also showed

3 In practice, arbitrary choices are often compiled into intermediate languages with binary
choices only. In this case, two elements like “?l” (left choice) and “?r” (right choice) are
sufficient.

15

how to process the protocol information. E.g., the steps executed during a computation
with the usual lazy evaluation strategy can be re-ordered for a presentation known as
lazy call-by-value view. We believe that the protocol is adequate for the purposes of
common debuggers and tracers, and we are open to suggestions from the functional
logic research community about extensions for increasing the generality and usefulness
of our proposal.

We have started to extend some implementations of functional logic languages with
capabilities to produce the protocol to support the development of protocol-aware tools.

References

1. S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP
2001), pages 199–206, 2001.

2. S. Antoy. Evaluation strategies for functional logic programming. Journal of Symbolic
Computation, 40(1):875–903, 2005.

3. S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional logic
languages. In Proc. of the Fourteenth International Conference on Logic Programming
(ICLP’97), pages 138–152. MIT Press, 1997.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776–822, 2000.

5. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In
Proc. International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages
171–185. Springer LNCS 1794, 2000.

6. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
In Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006),
pages 87–101. Springer LNCS 4079, 2006.

7. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic compu-
tations. In Proc. of the 16th International Workshop on Implementation and Application of
Functional Languages (IFL 2004), pages 108–125. Springer LNCS 3474, 2005.

8. B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In
Proc. of the Sixth International Symposium on Practical Aspects of Declarative Languages
(PADL’04), pages 193–208. Springer LNCS 3057, 2004.

9. B. Brassel, S. Fischer, M. Hanus, F. Huch, and G. Vidal. Lazy call-by-value evaluation.
In Proc. of the 12th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2007), pages 265–276, 2007.

10. B. Braßel, M. Hanus, F. Huch, and G. Vidal. A semantics for tracing declarative multi-
paradigm programs. In Proc. of the 6th ACM SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming (PPDP’04), pages 179–190, 2004.

11. B. Braßel and F. Huch. The Kiel Curry system KiCS. In Proc. 17th International Conference
on Applications of Declarative Programming and Knowledge Management (INAP 2007) and
21st Workshop on (Constraint) Logic Programming (WLP 2007), pages 215–223. Technical
Report 434, University of Würzburg, 2007. To appear in Springer LNAI.

12. R. Caballero and M. Rodrı́guez-Artalejo. A declarative debugging system for lazy functional
logic programs. Electronic Notes in Theoretical Computer Science, 64, 2002.

13. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood – a comparative evaluation
of three systems for tracing and debugging lazy functional programs. In Proc. of the 12th
International Workshop on Implementation of Functional Languages (IFL 2000), pages 176–
193. Springer LNCS 2011, 2001.

16

14. R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In Proc. Joint
International Conference and Symposium on Logic Programming (JICSLP’98), pages 325–
340, 1998.

15. M. Hanus. A unified computation model for functional and logic programming. In Proc. of
the 24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93,
1997.

16. M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International Con-
ference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

17. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/˜pakcs/, 2007.

18. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at
http://www.informatik.uni-kiel.de/˜curry, 2006.

19. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems. In J.-L. Lassez and
G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 395–
443. MIT Press, 1991.

20. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative system. In
Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

21. W. Lux. Implementing encapsulated search for a lazy functional logic language. In Proc. 4th
Fuji International Symposium on Functional and Logic Programming (FLOPS’99), pages
100–113. Springer LNCS 1722, 1999.

22. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Transformation, Volume
2: Applications, Languages and Tools, pages 3–61. World Scientific, 1999.

23. R.C. Sekar and I.V. Ramakrishnan. Programming in equational logic: Beyond strong se-
quentiality. Information and Computation, 104(1):78–109, 1993.

24. E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts, 1983.
25. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an efficient

purely declarative logic programming language. Journal of Logic Programming, 29(1-3):17–
64, 1996.

26. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263, 1997.

17

