
Are Needed Redexes Really Needed?

Sergio Antoy and Andy Jost
Computer Science Dept., Portland State

University, Oregon, U.S.A.
antoy@cs.pdx.edu

andrew.jost@synopsys.com

ABSTRACT
We present an approach to rewriting in inductively sequential
rewriting systems with a very distinctive feature. In the class of
systems that we consider, any reducible term defines a needed
step, a step that must be executed by any rewriting computation
that produces the term’s normal form. We show an implementa-
tion of rewriting computations that avoids executing some needed
steps. We avoid executing these steps by defining functions that
compute a reduct of a step without the explict construction or pres-
ence of the redex. Our approach improves the efficiency of many
computations—in some cases by one or two orders of magnitude.
Our work is motivated by and applicable to the implementation of
functional logic programming languages.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features—Control structures; D.3.4 [Programming Languages]:
Processors—Compilers; F.4.2 [Mathematical Logic and Formal
Languages]: Grammars and Other Rewriting Systems; G.2.2
[Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms
Languages, Graph, Rewriting, Compilation.

Keywords
Functional Logic Programming Languages, Graph Rewriting Sys-
tems, Call-by-Need, Compiler Construction.

1. INTRODUCTION
Functional logic languages such as Curry [16, 18] and T OY [13,

28] offer a variety of high-level features to the programmer includ-
ing expressive constructs (e.g., functional patterns, list comprehen-
sion), checkable redundancy (e.g., declaration of types and free
variables), visibility policies (e.g., modules and nested functions),
and syntactic sugaring (e.g., infix operators, anonymous functions).

An approach to compiling these high-level features is to trans-
form a program S into a semantically equivalent graph rewriting
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP ’13, September 16–18, 2013, pages 61-71, Madrid, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2154-9/13/09 ...$15.00.
http://doi.acm.org/10.1145/2505879.2505881.

system G [11, 14, 34]. This transformation includes lambda lifting
[23], elimination of partial applications and high-order functions
[39], elimination of conditions [3], replacement of non-inductively
sequential functions with inductively sequential ones [3] and re-
placement of logic (free) variables with generator functions [8, 27].
With this approach [10], a functional logic computation in program
S is executed by rewriting some graph according to G.

Graph rewriting is a step-wise process. Given a graph rewriting
systemG and a graph e over the signature ofG, a step of e consists
of two separate activities: (1) finding a subgraph, t (called the re-
dex), of e which is an instance of the left-hand side of a rule l→ r
of G, and (2) replacing t in e with the corresponding instance of r
(called the replacement). A computation inG of a graph e is a finite
or infinite sequence e = e0 → e1 → . . . such that e1+1 is obtained
from ei by a step. Each ei is called a state of the computation of e.

An implementation of rewriting repeatedly executes these two
activities on some graph representation. In a low-level implementa-
tion language, graphs may be represented by dynamic linked struc-
tures in which a node is a record (tuple) with components typically
abstracting the node’s label and successors by means of pointers.
The first activity, which we will describe in detail shortly, simulta-
neously produces a redex, t, a rule, l → r, and a homomorphism,
σ such that t = σ(l), by looking at the labels of some nodes of e.
The replacement, u = σ(r), of t is constructed by allocating a new
node for each non-variable symbol of r and then setting the node’s
successors. Replacing t in e can be efficiently executed either by
overwriting the components of the root of t with the components of
the root of u, or by an indirection pointer.

Recall that in orthogonal term rewriting systems [11, Chap. 4],
in every reducible term e, there is a redex, called needed, which is
reduced by every computation of e to normal form [20]. In strongly
sequential systems [21, Sect 4.2], a subclass of the orthogonal sys-
tems, this redex is easily found without lookahead. Constructor-
based systems are those in which the signature is partitioned into
data constructors and defined operations [31]. Our results are pre-
sented for inductively sequential systems [1, 14], which are the
intersection [19] of strongly sequential and constructor-based sys-
tems.

The systems in which functional logic programs are transformed
for execution are called LOIS (limited overlapping inductively se-
quential) [4] and slightly differ from the inductively sequential
graph rewriting systems: they rewrite acyclic graphs instead of
terms, and they define an operation called choice denoted by the
infix symbol “?” and defined by the rules:

x ? - = x

- ? y = y (1)

The choice operation captures the logic component of functional
logic programming. Its rules are overlapping and applied non-

deterministically. Hence LOIS systems are not orthogonal. We will
postpone any discussion about the choice operation to the end
of this paper and consider only inductively sequential systems.
Throughout this paper we will consider graph rewriting rather than
term rewriting, noting differences only where relevant.

For the inductively sequential systems, the redexes and steps of
an expression are in a bijection, since each redex is an instance of
exactly one rule left-hand side. In graph rewriting, furthermore, a
redex has at most one residual by a step [20, Def. 2.1]. Hence, in
any rewriting computation producing a value, every needed redex
must be reduced and it is reduced exactly once. Consequently, a
strategy that computes by repeatedly reducing an arbitrarily cho-
sen needed redex is considered optimal [1, 2, 4, 7, 14] in the sense
that no other strategy can produce a reduction to the same normal
form while executing fewer steps. The intuition seems to suggest
that we cannot evaluate an expression any better. Our results con-
tradict this intuition and draw some boundaries around the meaning
of “needed.”

Sect. 2 presents two examples containing familiar functions,
which will be used throughout the paper. This section only shows
that needed steps can be skipped by some computations that ex-
ecute more than rewrite steps. Sect. 3 introduces a new notion of
need applicable to both redexes and nodes and proves some proper-
ties of this notion. This section shows that redexes needed accord-
ing to the new notion are needed according to the classic notion.
Sect. 4 presents two variants of an abstract implementation of com-
putations in inductively sequential rewrite systems and an abstract
compiler that generates implementation code. The first variant ex-
ecutes only rewrite steps. The second variant executes both rewrite
steps and calls to certain functions, called “ahead fuctions,” of the
implementation. Sect. 5 discusses how to infer at compile time that
some run-time-produced subexpression will be needed. This infor-
mation is a key component of our implementation. Sects. 6 and
7 address aspects of an implementation with significant potential
for improving performance. These aspects are related to the defi-
nition and invocation of ahead functions, a key component of our
approach. Sect. 8 presents the application of both variants of our
implementation to a case study, and compares their relative perfor-
mances. Sect. 9 briefly outlines the run-time architecture of a con-
crete implementation of our approach in C++. Sect. 10 describes
how to apply the results of our work to the implementation of a
functional logic language. Sects. 11 and 12 discuss related work
and offer our conclusions, respectively.

2. EXAMPLES
We introduce our approach to rewriting by way of example in the

hopes that it will ease the reader’s understanding of the formal de-
scription, which follows. In this section, we present two examples
of evaluations that skip some needed step. Obviously, our computa-
tions are not limited to the execution of rewrite steps. Our comput-
ing environment or model of computation, which will be defined
shortly, is called ahead. Both rewrite rules and graphs objects of
an ahead computation are ordinary. For presentation, we encode
them in the syntax of Curry [16], a popular functional logic pro-
gramming language, and refer to a rewrite system as a “program.”
Curry’s syntax is borrowed from Haskell [33]. Apart from the cur-
ried notation for symbol application, infix operations with usual
precedence and associativity, and similar syntactic sugar, our pro-
grams are very simple and can be directly seen as graph rewriting
systems.

An evaluation is a finite computation in which the last state is
a constructor form, i.e., an expression comprising only construc-
tor symbols. Such an expression is also called a value. We recall

that, in constructor-based systems, a value is a normal form, but
some normal forms are not values, e.g. head [], where head is the
usual function that returns the first element of a (non-empty) list.
These normal forms are regarded as failures or exceptions. Like-
wise, a meaningful head-normal form is constructor-rooted and
consequently called a head constructor form.

Example 1. Consider the following definition of the absolute value
function:

abs n = if 0>n then -n else n (2)

We use the familiar mixfix notation for the conditional construct
in the right-hand side of the rule. In a lazy functional or functional
logic language, the conditional construct is only syntactic sugar for
the application of an ordinary function of arity three defined by the
rules:

ifthenelse False x y = y
ifthenelse True x y = x (3)

A rewriting evaluation of abs 2 that makes only needed steps fol-
lows. In particular, it is straightforward to verify that the first step
is needed, since abs 2 is reducible and no other step is available.

abs 2
→ ifthenelse(0 > 2,−2, 2)
→ ifthenelse(False,−2, 2)
→ 2

(4)

Our ahead computation follows. Instead of rewriting abs 2 accord-
ing to rule (2), we put the computation on hold. We evaluate 0 > 2
and upon obtaining False we resume the computation on hold, but
instead of rewriting abs 2 to an instance of the right-hand side of
(2), we rewrite it to an instance of the right-hand side of the first
rule of (3), i.e., 2. The ahead evaluation of abs 2 follows, where the
nested computation is between braces:

abs 2 {0 > 2→ False} → 2 (5)

By relaxing the rules so that computations may occur by an ad-
ditional mechanism, some needed steps are avoided. With respect
to ordinary rewriting, the ahead computation executes one fewer
rewrite step and allocates two fewer nodes. It executes the test on
False that is executed by ordinary rewriting, but in a model of com-
putation where the graph rooted by ifthenelse is never created. We
could further reduce the work of evaluating abs 2 by avoiding the
creation of 0 > 2, and thus skipping another needed step. We will
do this later, as the goal of this example is only to show that by
slightly changing the laws of computation, a needed step is skipped.

Example 2. Consider the function computing the length of a list:

length [] = 0
length (-:xs) = 1 + length xs (6)

A rewriting evaluation of length [5,6,7] that makes only needed
steps is:

length [5, 6, 7]
→ 1 + length [6, 7]
→ · · ·
→ 1 + 2
→ 3

(7)

Our ahead computation follows. Instead of rewriting length [5,6,7]
according to the second rule of (6), we put the computation on
hold. We evaluate length [6,7] and upon obtaining 2 we resume
the computation on hold, but instead of rewriting length [5,6,7] to
an instance of the right-hand side of the second rule of (6), we

rewrite it to 3. The computation executes an addition that is exe-
cuted by ordinary rewriting, but in a model of computation where
the graph rooted by “+” is never created. The ahead evaluation of
length [5,6,7] is:

length [5, 6, 7] {length [6, 7]
∗→ 2} → 3 (8)

With respect to ordinary rewriting, the ahead computation executes
one fewer rewrite step and allocates two fewer nodes for each re-
cursive application of length. We could further reduce the work of
evaluating length [5,6,7] by avoiding the creation of length [6,7],
thus skipping another needed step. We will do this later, as the goal
of this example is only to show that by slightly changing the laws
of computation, a needed step is skipped. We note in passing that,
since this program involves no sharing, it is a term rewriting sys-
tem, and that for orthogonal term rewriting systems there is a very
strong notion of needed redex [20, Def. 3.29].

3. NEED
In this section we introduce a novel notion of “need,” we discuss

how to compute needed nodes and redexes, and relate this notion
to the classic one.

DEFINITION 1 (C-NEEDED). Let S be a source program, e
an expression of S whose root node we denote by p, and n a node
of e. Node n is c-needed for e, and similarly is c-needed for p, iff in
any derivation of e to a head-constructor form, the subexpression
of e at n is derived to a head-constructor form. A node n (and
the redex rooted by n, if any) of a state e of a computation in S
is c-needed iff it is c-needed for some maximal operation-rooted
subexpression of e. A computation A : e0 → e1 → · · · of some
expression e0 in S is c-needed iff it reduces only c-needed redexes.

Our notion of need is a relation between two nodes (we also con-
sider the subexpressions rooted by these nodes since they are in
1-1 correspondence with these nodes). Our relation is interesting
only when both nodes are labeled by operation symbols. If e is an
expression whose root node p is labeled by an operation symbol,
then p is trivially c-needed for p. This holds whether or not e is
a redex and even when e is already a normal form, e.g., head [].
In particular, any expression that is not a value has pairs of nodes
in the c-needed relation. Finally, our definition is concerned with
reaching a head-constructor form, not a normal form.

Our notion of need generalizes the classic notion [20] with the
difference that a needed redex has a replacement, whereas a c-
needed node may or may not root a redex. Also, since our systems
follow the constructor discipline [31] we are not interested in ex-
pressions that do not have a value.

LEMMA 2 (CONSERVATION). Let S be a source program and
e an expression of S derivable to a value. If e′ is an outermost
operation-rooted subexpression of e, and n is both a node c-needed
for e′ and the root of a redex r, then r is a needed redex of e in the
sense of [20].

PROOF. Since e′ is an outermost operation-rooted subexpres-
sion of e, the path from the root of e to the root of e′ excluded
consists of nodes labeled by constructor symbols. Hence, e can be
derived to a value only if e′ is derived to a value and e′ can be de-
rived to a value only if e′ is derived to a head-constructor form. By
assumption, in any derivation of e′ to a head-constructor form r is
derived to a head-constructor form, hence it is reduced. Thus, r is
a needed redex of e according to [20].

By Lemma 2 we drop the prefix “c-” from c-needed.

A definitional tree is a hierarchical organization of the rewrite
rules defining certain operations of a program [1, Def. 2] that makes
the computation of needed nodes and redexes easy. We recall that
if t and u are expressions and p is a node of t, then t|p is the subex-
pression of t rooted at p [14, Def. 5] and t[p ← u] is the replace-
ment by u of the subexpression of t rooted by p [14, Def. 9].

DEFINITION 3. T is a partial definitional tree, or pdt, if and
only if one of the following cases holds:

T = branch(π, o, T̄), where π is a pattern, o is a node, called
inductive, labeled by a variable of π, the sort of π|o has con-
structors c1, . . . , ck in some arbitrary, but fixed, ordering, T̄
is a sequence T1, . . . , Tk of pdts such that for all i in 1, . . . , k
the pattern in the root of Ti is π[o← ci(x1, . . . , xn)], where
n is the arity of ci and x1, . . . , xn are fresh variables.

T = rule(π, l→ r), where π is a pattern and l → r is a rewrite
rule such that l = π modulo a renaming of variables and
nodes.

T = exempt(π), where π is a pattern.

DEFINITION 4. T is a definitional tree of an operation f if and
only if T is a pdt with f(x1, . . . , xn) as the pattern argument,
where n is the arity of f and x1, . . . , xn are fresh variables.

DEFINITION 5. An operation f of a rewrite system S is induc-
tively sequential if and only if there exists a definitional tree T of f
such that the rules contained in T are all and only the rules defin-
ing f in S. A rewrite system in which every operation is inductively
sequential is referred to as a source program.

Patterns do not need explicit representation in a definitional tree,
but often their presence simplifies the discussion. Exempt nodes
occur only in trees of incompletely defined operations such as the
operation that computes the head of a (non-empty) list. The defi-
nitional tree of head has an exempt node with pattern head []. This
expression cannot be rewritten and is regarded as a failed computa-
tion that does not produce any result.

LEMMA 6 (RULE SELECTION). Let S be a source program,
e an expression of S rooted by a node n labeled by some operation
f and T a definitional tree of f . If T1 is a node of T with pattern
π, σ(π) = e for some match σ, and l → r is a rule that reduces
a state of a computation of e at n, then l → r is in a leaf of T1,
including T1 itself if T1 is a leaf.

PROOF. Rule l → r is in a leaf of T , since these are all and
only the rules defining f . We prove that if l → r is not in a leaf
of T1, then it cannot reduce e at n. Since n is the root of e, there
exists at most one reduction at n in any computation of e. As in any
proof comparing graphs, equality is intended modulo a renaming of
nodes [14, Def. 15]. Let T2 be a node of T disjoint from T1 and T0
the closest (deepest in T) common ancestor of T1 and T2. Let o0
be the inductive node T0, and σ(o) = p for some node p of e. By
Def. 3 T1 = T0[o0 ← c1(. . .)], where c1 is a constructor symbol
labeling some node o1 and the arguments of c1 do not matter. Like-
wise, T2 = T0[o0 ← c2(. . .)], where c2 is a constructor different
from c1 labeling some node o2. Since π matches e, the label of p
is c1. In e, every node in a path from n (excluded) to p is labeled
by a constructor. Hence, the same nodes with the same labels per-
sist in every state of the computation of e that does not replace n.
Let π′ be a pattern of a rule in a leaf of T2. Pattern π′ can never
match a state of the computation of e, say e′, in which n was not
replaced because any homomorphism of such a match would have
to map o2, which is labeled by c2, to p, which is labeled by c1, and
by construction c1 6= c2.

LEMMA 7 (NEEDED). Let S be a source program, e an ex-
pression of S rooted by a node n labeled by some operation f and
T a definitional tree of f . If T1 is a branch node of T with pattern π
and inductive node o, σ(π) = e for some match σ, and σ(o) = p,
for some node p of e labeled by an operation symbol, then p is
needed for n.

PROOF. By Lemma 6 any rule reducing any state of a computa-
tion of e at the root is in a leaf of T1. Let l → r be a rule in a leaf
of T1. By Def. 3, l is an instance of π, i.e., l = σ(π), for some ho-
momorphism σ. Since o is the inductive position of π in T1, every
child of T1 has a pattern of the form π[o← c(x1, . . . , xn)], where
c is a constructor. Thus, in l, σ(o) is a node labeled by a constructor.
Every node of e in a path from the root n to p, end nodes excluded,
is labeled by a constructor. This condition persists in any state of a
computation of e that does not reduce e at n. Unless e|p is reduced
to a head-constructor form, l cannot match any state of a computa-
tion of e and hence e cannot be reduced at the root. Thus, by Def. 1,
p is needed for n.

4. ABSTRACT IMPLEMENTATION
In this section we discuss an abstract model for implementing

graph rewriting. A program S is an inductively sequential [1],
hence a constructor-based [31], graph rewriting system [14]. An
expression e of S is an acyclic term graph over the signature of S.
The goal is to evaluate e, i.e., to obtain its value according to the
rules of S.

The abstract implementation of rewriting is presented as com-
puter code in a simplified form of the programming language Scala
[36]. Scala is high-level enough to avoid details that would make
the code difficult to present and understand, but low-level enough
to retain control over the creation of structures and to measure the
computational cost (e.g., in terms of steps and memory allocation)
of different variants of the implementation.

We will present two variants of the implementation. The first
is an implementation of graph rewriting that reduces only needed
redexes. It is simple enough to inspire confidence in its correct-
ness. The second will skip some steps, including needed steps, but
will produce the same values as the first variant. This property will
maintain our confidence in its correctness.

In our presentation language, we define classes with instance
variables and dynamically dispatched virtual methods as in typical
object-oriented programming languages. We use pattern matching
as provided in Scala. We define static, global functions, which are
not directly available in Scala, but are simulated by “companion”
objects. We do not declare types, including subtyping, and do not
distinguish between constant and mutable values. The concrete lan-
guage of our implementation is C++. Presenting our ideas in this
language would be much harder than in our simplified language due
to the lack of certain features, e.g., pattern matching, and amount
of details required in by C++ code, e.g., typing, declaring and ini-
tializing instance variables, and accessing these variables through
explicit manipulation of pointers.

4.1 Variant 1: An Ordinary Implementation
Any symbol f of the signature of a rewrite system is abstracted

by a class, identified by f as well, containing a handful of variables
and methods. A node n of a graph g labeled by a symbol f is im-
plemented as an instance of class f in which the variables refer to
the successors of n. Each class abstracting a signature symbol has
a common base class, which we do not show to ease readability.
Class f has a method, H, intended to execute needed steps of an
expression e rooted by a node labeled by f and to derive e to a

head-constructor form. Method H invoked for a node n derives the
expression rooted by n to a head-constructor form, if it exists, and
returns it. The body of method H of class f is compiled from a def-
initional tree of operation f . We will present the compiler shortly.
By way of example, we present in Fig. 1 the class implementing the
operation length defined in (6).

class length (arg) {
def H =
↓ arg.H match {

case [] ⇒ new 0
case _ :xs ⇒ new +(new 1, new length (xs)).H

}
}

Figure 1: Implementation of the function computing the length of a
list defined in (6). The symbol “↓” denotes the replacement of one
graph by another and is described in the text.

Method H is dispatched for an object, referred to as THIS, that pro-
vides a context for the execution. THIS abstracts the root node of
a graph g labeled by the length symbol. In the context of an ex-
ecution, identifier arg abstracts the first and only successor of the
root node of g. The Scala keyword new identifies a built-in op-
erator that allocates and initializes class instances. The expression
new x(y1, . . . yk) denotes the construction of a new node labeled
by x and with successors y1, . . . yk. In particular, new 1 stands for
a node abstracting integer 1. Allocating a new instance for each step
of length is not necessary. A single instance of this node suffices for
the entire program execution, but we do not want to clutter the pre-
sentation with trivial optimizations. Operation new boxes the in-
teger. We will discuss shortly the boxing and unboxing of built-in
types. Reductions are denoted by “↓”, are always applied to THIS,
which consequently is not explicitly written, and replace THIS. For
example, referring to Fig. 1, the expression length [] is reduced to a
node labeled by the integer 0 as follows: arg is reduced to a head-
constructor form, i.e., “[]”, pattern matched by the first case, and a
new node labeled by integer 0 is created and used as replacement.
We will discuss later some subtleties concerning replacing a graph
by another graph.

Method H first attempts to ensure that the variable of THIS, the
argument of this instance of length, is constructor-rooted. For this
purpose, it invokes H for arg. The root of arg might already be la-
beled by a constructor symbol. Therefore method H for any class
abstracting a constructor symbol “does nothing.” We could avoid
the call to H in this case with a test, but the test does not appear
simpler or more efficient than a call that might have to be exe-
cuted anyway after the test. After having reduced the variable of
this instance of length to head-constructor form, a multibranch test
selects what to execute depending on the label of the root of arg.
If the label of the root of arg is a constructor, then it must be ei-
ther “[]” or “:”, assuming a well-typed program1. In both cases, the
appropriate reduction is executed. In the second case, symbol “+”
identifies the class abstracting the usual arithmentic addition of in-
tegers. If reducing arg to head-constructor form is impossible, then
the invocation of method H for arg aborts the computation rather
than returning. This behavior is sensible because then THIS cannot
be reduced hence derived to head-constructor form.

1We use the symbols “[]” and “:” to denote the constructors of
empty and non-empty lists of the functional logic program as op-
posed to “[]” and “::” which are the corresponding constructors of
class List in Scala.

The body of method H of class f is produced by compiling the
definitional tree of f . Function compile, presented below, prints the
body of method H. The function is presented in the same Scala-like
language that we use to present the implementation. The construct
${x} in a string, where x is a program element, represents the in-
terpolation of x in the string. We assume a representation of defi-
nitional trees in which an inductive variable identifies a subexpres-
sion of some expression defined by the context, e.g., an inductive
variable is a path in a graph. Within the code of method H, the con-
text is THIS. Thus, when interpolated, ${o}.H is an invocation of
H for the subexpression of THIS matched by the inductive variable.
Function pattern takes a (partial) definitional tree and returns the
tree’s pattern.

def compile(T) =
T match {

case rule(_ , r)⇒ print “${r}.H”
case exempt(_)⇒ print “abort”
case branch(_ , o, T ′)⇒ {

print “{ ${o}.H”
print “THIS match {”
for(T ′′ ← children(T ′))

print “case ${pattern(T ′′)} ⇒ ” compile(T ′′)
print “} }”

}
}

}

Figure 2: Compiler for the first variant of the implementation.
Function compile takes a definitional tree of a functional logic op-
eration f and produces the body of method H of class f .

Function compile applied to the definitional tree of the operation
length defined in (6) prints the code fragment of Fig. 3 except that
in the figure, we use expressive identifiers, indent lines, and apply
operator new to each signature symbol (non-variable) occurrence
in the right-hand side of a rule. Only the last change is significant,
and it is easy to automate, e.g., by a function that takes an expres-
sion and checks whether the label of a node is either a variable or a
signature symbol. We do not perform this operation because we are
going to perform a similar, but more sophisticated, operation later.

{ arg.H
THIS match {

case length ([]) ⇒ new 0.H
case length (_ :xs)⇒ new +(new 1, new length (xs)).H

} }

Figure 3: Code generated by the compiler for the body of method
H of class length, see Fig. 1, except for minor liberties discussed in
the text.

The code of Fig. 3 is functionally equivalent to the body of method
H of class length in Fig. 1. It invokes H for 0, which is useless,
but harmless. And it pattern matches starting at the root of THIS.
The code of Fig. 1 simplifies or optimizes the patterns of the multi-
branch test by starting at the root of arg. Consequently we have “[]”
instead of length ([]), etc. Adding details to the compiler would
eliminate these differences. We do not show these details to ease
understanding without unnecessary distractions.

The correctness of the implementation just described is stated as
follows. Let e0 be an operation-rooted needed expression, The ex-

ecution of H for (the root of) e0 computes a derivation A = e0 →
e1 → e2 · · · which is either infinite or finite. When it is finite, the
execution either aborts or terminates normally. Regardless of the
outcome, every step of this computation is needed. In the first two
cases (infinite computation and aborted computation), the need of
each step is vacuous. In the third case (terminating computation),
the proof is by induction on the length of the derivation. The details
of the proof are laborious and rely on the following property: the
execution of H for (the root of) e1 computes the same steps as the
portion of A starting at e1, i.e., e1 → e2 · · · .

Only a bit of additional control suffices to evaluate an expres-
sion e: repeatedly call H on the root of any maximal (outermost)
operation-rooted subexpression, g, of any state of a computations
of e. The correctness of this approach stems from the fact that any
such g must be derived to a head-constructor form to evaluate e.
Method H is invoked on the root of g. This invocation of H aborts
the computation if no step of g is available, hence g has no value,
hence e has no value. Otherwise it executes only needed steps. A
strategy that executes only needed steps is normalizing for orthog-
onal term rewriting systems [20]. We are not aware of a published
proof of this claim for graph rewriting systems, but the following
argument informally proves the claim.

Let S be a program, g an expression of S. Suppose that there
exists an infinite computation of g in S, i.e., A : g → g1 → g2 · · ·
that reduces only needed redexes. Remember that we consider
acyclic graphs and let U denote the complete tree unraveling trans-
formation [11, Def. 13.2.9]. By unraveling graphs in rules and com-
putations, we obtain an orthogonal term rewriting system U(P) and
a computation of U(g) such that for every step t → s of A there
is a derivation U(t)

+→ U(s) that executes at least one needed step.
This implies that U(g) has no normal form in U(P), hence g has
no value in S.

4.2 Variant 2: An Optimized Implementation
We now introduce the second variant of the implementation. To

understand how this variant computes the same values as the first
one, although it skips some needed steps, consider the second case
of the multibranch test of Fig. 1. First, the reduct is constructed.
Method H is invoked for the reduct’s root, which is labeled by
“+”. This method is a bit special, since the integers are not al-
gebraically defined, but this peculiarity is largely irrelevant to the
point we are making. Class “+” has two variables which stand for
the operands or the addition. Method H of class “+” first attempts
to derive each instance’s variable to head-constructor form (a lit-
eral integer). Then, it replaces this instance of class “+” with the
sum of its variables. The crucial difference with variant 1 is that
instead of constructing the reduct, i.e., an instance of class “+”,
and reducing it, we define a function, denoted by “+” as well, that
takes as arguments the variables of the instance of “+” on which
H operates. Invoking this function produces, if it exists, the same
head-constructor form that would be obtained from the reduct that
we did not construct.

In the same way, we define a function called length correspond-
ing to method H of class length. These functions, which are as-
sociated with operations of the signature, are called ahead func-
tions. The definition of ahead function length is shown in Fig. 4.
This function invokes ahead function “+” discussed in the previ-
ous paragraph and invokes itself recursively. Observe that in the
second case of the multibranch test, operator new is not applied
to either “+” or length because these are function identifiers and
we are encoding calls to functions, whereas in method H of class
length they are class identifiers and we are encoding instantiation
of classes.

def length (arg) =
arg.H match {

case [] ⇒ new 0
case _ :xs ⇒ +(new 1, length (xs))

}

Figure 4: Definition of ahead function length associated to opera-
tion length. The code is very similar to method H of class length,
see Fig. 1.

The code in Fig. 4 replaces constructing some nodes with invoking
some functions. The nodes that would have been constructed by
the first variant, but are not constructed by the second variant, are
roots of needed expressions. We will describe how to acquire such
a knowledge in a following section. Below, we give an informal
account of it for one of our running examples.

Let t = length (t1: t2), for some subexpressions t1 and t2, be
a state of a computation. Expression t must be derived to head-
constructor form, hence it is needed. If t is rewritten to u = 1 +
length(t2), then u is needed as well. Operation “+” needs both its
arguments, thus length(t2) is needed, too. This explains why, in the
second case of the multibranch test of function length, the nodes
labeled by “+” and length are not constructed.

We adjust the compiler of Fig. 2 to generate the ahead function of
an operation. In the right-hand side of each rewrite rule, we tag any
node that we are able to determine is needed. When a right-hand
side r is interpolated for printing, if n is a node of r labeled by a
non-variable symbol f , then if n is tagged, the compiler generates
a call to ahead function f , otherwise, the compiler generates the
construction of an instance of class f . The syntactic distinction in
the generated code is the absence of operator new for tagged nodes.
The rest of the compiler is unchanged.

The bodies of method H of class f and ahead function f are
identical, except for where they access the expressions they ma-
nipulate. In method H, they are subexpressions of THIS, whereas
in function f they are subexpressions of the arguments passed in
a call. Therefore, we can replace the body of method H of class f
with an invocation to ahead function f . When efficiency is a con-
cern, the invocation can be inlined, and this gives exactly method
H of variant 1. We show this encoding of method H for our running
example in Fig 5.

class length (arg) {
def H = ↓ length (arg)

}

Figure 5: Implementation of class length in which method H in-
vokes ahead function length defined in Fig. 4. Identifier “length” is
overloaded.

The encoding of Fig. 5 offers an interesting perspective of our
rewriting computations. If a node n labeled by operation f of an
expression e is needed, we call ahead function f to derive a head-
constructor form from the subexpression rooted by n. If we do
not know whether n is needed, we represent n with an instance
of class f that contains a “promise” to derive a head-constructor
form from the subexpression rooted by n. This promise is deliv-
ered when method H of this instance is invoked.

5. INFERRING NEED

The second variant of the implementation described in the previ-
ous section benefits from knowing, at compile-time, needed nodes
of a state of a computation. To this aim, we tag some nodes of the
right-hand sides of some rewrite rules of a program. When a rule
is applied in a needed computation, any expression matched by a
tagged node is needed.

The scope of this section is to show that a few inference rules
suffice to find many needed nodes of many programs.

Rule 1. Let S be a source program and l → r a rule of S. Then,
tag the root of r.

Rule 2. Let S be a source program, l → r a rule of S, n tagged
node of r and f the label of n. Let π be a maximal (most specific)
pattern in a branch node of a definitional tree of f that matches
r|n, i.e., for some graph homomorphism σ, σ(π) = r|n, and o the
inductive variable of π. Then, tag σ(o).

Rule 3. Let S be a source program, l → r a rule of S and n a
tagged node of r labeled by an arithmetic or relational operator on
a numeric type. Then, tag the successors of n.

The above rules may tag nodes that are already known to be
constructor-rooted. Tagging one such node n is useless, though
harmless, since tagging captures the notion that the expression
rooted by n must be derived to a head-constructor form, which it
already is.

Rule 3 is an ad-hoc version of Rule 2. It is motivated by the fact
that in most functional logic languages, numeric types have no al-
gebraic definitions. Hence, arithmetic and relational operators on
these types are built-in rather than defined by rewrite rules. Rule 3
regards these operators as if they were defined by a large or infi-
nite set of rules with patterns matching every combination of literal
values.

For example, going back to our first introductory examples, in the
rule (2) of abs, we tag the root node of the right-hand side by Rule
1, the node labeled “<” by Rule 2, and the right argument of “<”
by Rule 3. The node labeled by 0 is constructor-rooted. Tagging
it would be useless, since it is a value, hence already constructor-
rooted. Similarly, in the second rewrite rule of length, we tag the
root by Rule 1, the node labeled by length by Rule 3, and we do not
tag the node labeled by 1.

The correctness of tagging for inferring need is stated as follows.
Let S be a source program, e an expression of S, and A a needed
computation of e. Let l → r be the rule applied in a step t → s
of A, p the root of the redex, and σ the matching homomorphism,
i.e., σ(l) = t|p. Tagging a node n of r is correct iff t[σ(r)]p|n is a
needed subexpression of s.

We can prove the correctness of tagging for the first two infer-
ence rules presented above. The proof is actually trivial for the first
rule. The proof of the second rule is a consequence of Lemma 6.
The third rule originates from looking at the integers as if they were
algebraically defined, and at operations on them accordingly. While
there is no doubt that the inference is sensible, a proof of its cor-
rectness would require a formalization of this viewpoint.

6. BOXING AND UNBOXING
Built-in types, such as integers, floating point numbers, and char-

acters, require some special handling. In a statically-typed imple-
mentation language, the type of an integer expression, e.g., 1 + 2,
must be the same as that of its replacement, 3. In our implementa-
tion, the type of each node of an expression is a subclass of Node,
the base class of all nodes, which for ease of reading we did not
show in our abstract implementation. Thus, a literal expression
such as 3, must consist of a “wrapper”, or box, that transforms a

built-in value into an expression.
The terms “boxing” and “unboxing” refer to the actions of trans-

forming a built-in value into an expression and extracting a built-in
value from an expression, respectively. For example, to evaluate
1 + 2, both operands of the addition will have to be unboxed, the
extracted integer values added together, and the result of the ad-
dition boxed. In this way, redex and replacement have the same
underlying type.

Boxing and unboxing are relatively expensive operations when
compared with the cost of an operation on built-in types. There-
fore, it is highly desirable to avoid boxing and unboxing whenever
possible. The optimized implementation variant avoids boxing and
unboxing in many cases. Ahead functions return head-constructor
forms that for built-in types such as numbers and characters are
boxed literal values. Furthermore, in some cases, ahead functions
are nested. This implies that what a nested function produces the
nesting function consumes. Thus, the producer can avoid boxing
and consequently the consumer can avoid unboxing.

As an example, consider again ahead function length. In the sec-
ond case of the multibranch test of Fig. 4, the call to function length
is nested within the call to function “+”. Ahead function length
returns a had-constructor expression, hence a boxed built-in in-
teger. Ahead function “+” takes this expression, knows that it is
constructor-rooted, hence a boxed built-in integer, and unboxes it.
Therefore, there is an opportunity to avoid boxing and unboxing
the expression produced by length and consumed by “+”. Unfortu-
nately, there is also a potential problem. Ahead function “+” may
be called from other places in the program, and not every call can
guarantee that the second argument will be a literal integer, and
consequently could be passed already unboxed. The solution is to
specialize some ahead functions, such as those discussed in this ex-
ample. Specialization of ahead functions is the subject of the next
section.

Booleans can be defined algebraically, but are also built-in val-
ues in both our abstract and concrete implementation languages.
Either representation has pros and cons. We will consider them as
algebraically defined, but look at them as built-in whenever it is
convenient to pass them unboxed.

7. SPECIALIZATION AND INLINING
Rewriting computations, even needed ones, may construct ex-

pressions that do not play any role in a computation. Specializing
ahead functions avoids the construction of some of these expres-
sions. We begin by showing the problem and its solution in one of
our running examples.

Consider again the rule (2) of abs. The second variant of our
scheme compiles operation abs as follows:

def abs(arg) =
ifthenelse(>(new 0, arg), new −(arg), arg)

Figure 6: Ahead function abs compiled from the rule of operation
abs defined in (2).

where ifthenelse, defined in Fig. 7, identifies the ahead function ab-
stracting the rules of (3), “>” identifies the ahead function abstract-
ing the usual “greater then or equal to” operator on numbers, and
“−” identifies the class abstracting the unary minus operator.
Ahead function abs constructs the expression new −(arg) no mat-
ter what the value of its argument is and passes it to ahead func-
tion ifthenelse. Ahead function ifthenelse makes no use of this ex-
pression when arg evaluates to a non-negative number. Defining

def ifthenelse(arg1, arg2, arg3) =
arg1.H match {

case False ⇒ arg2.H
case True ⇒ arg3.H

}

def ifthenelse(arg1, arg2, arg3) =
if arg1.H.tonative then arg2.H else arg3.H

Figure 7: Two functionally equivalent versions of ahead function
ifthenelse compiled from the rules of (3). The first one is generated
by the compiler. The second one, hand coded, executes the native
if·then·else construct. Method tonative converts expressions False
and True into the corresponding native Boolean values.

a specialized version of ifthenelse for the call within ahead func-
tion abs avoids constructing this expression when it is not needed.
The specialized version of any function f is passed any needed
argument—by convention already evaluated—and any variable re-
quired to produce the returned expression. Constants need not be
passed, since they are known at compile-time and can be encoded
in the specialized function. Fig. 8 shows the specialization of abs
according to the above principles. Specialized versions of a func-
tion f are generated by the compiler which append a progressive
number, “01”, “02”, . . . to f ’s identifier.

def abs(arg) = {
arg.H
ifthenelse_01(>_01(arg), arg)

}

def ifthenelse_01(arg1, arg2) =
if arg1.tonative then new −(arg2).H else arg2.H

def >_01(arg) =
new (0 > unbox(arg))

Figure 8: Ahead functions, some of which are specialized, com-
piled from the rule of “absolute value” defined in (2). The
if·then·else construct in ahead function ifthenelse_01 is the na-
tive conditional statement of the implementation language, not the
ifthenelse function defined in (3). Likewise symbol “>” in the body
of ahead function >_01 is the native relational operator.

The compiler can inline calls to non-recursive ahead functions.
This is interesting for any specialization of the ifthenelse function,
particularly if the implementation uses the native if·then·else con-
struct. The result is that an if·then·else construct of a functional
logic language is compiled into an if·then·else construct of the im-
plementation language. We will show a more detailed example of
this in a case study.

8. A CASE STUDY
Program nfib belongs to the NoFib benchmark suite [32], a col-

lection of Haskell programs that have been used for benchmarking
GHC [15].

nfib n = if n <= 1 then 1
else nfib (n-1) + nfib (n-2) + 1 (9)

We discuss the compilation of this program in some detail. Ini-
tially we tag the right-hand side. The nodes tagged are ifthenelse,
“6” and n. Therefore we define specialized versions of the two

functions. We also specialize nfib. Since its argument is needed,
the specialized ahead function expects to receive the argument in
head-constructor form, hence a literal integer.

The value returned by “6_01” is consumed by ifthenelse_01.
Therefore, it is convenient to look at its type as built-in and ex-
change an unboxed native Boolean. Finally, we inline the call to
“6_01”. This leads to the code of Fig. 9, where the dots stand for
the portion of code not yet compiled. The yet-to-compile portion of
code, involves expressions 1 and nfib (n− 1) + nfib (n− 2) + 1.
Both are needed in their respective branches of the if·then·else con-
struct according to the implementation of ahead function ifthenelse
in Fig. 7. We discuss only the second expression, which is the most
interesting.

def ifthenelse_01(arg1, arg2) =
if arg1 6 1 then · · ·

Figure 9: Portion of the specialized ahead function ifthenelse
called by nfib. Ahead function ifthenelse_01 is compiled into the
native if·then·else construct and is passed a native Boolean as its
first argument.

We have already determined that the argument of nfib is needed.
This leads to tagging every node of this expression. We define spe-
cialized versions of each function and inline their calls except for
nfib_01, since it is recursive. Any time a nested call produces an
integer needed by the nesting context, the integer is exchanged un-
boxed. The resulting code is in Fig. 10, where all the arithmetic and
relational operators are native.

def ifthenelse_01(arg1, arg2) =
if arg1 6 1 then 1 else nfib_01(arg2−1)+nfib_01(arg2−2)+1

Figure 10: Complete specialized ahead function ifthenelse called
by nfib_01.

Finally, we inline the call to ifthenelse_01 from nfib_01. Fig. 11
shows ahead function nfib_01 and its call from class nfib. The ar-
guments of every function call in this code are passed by-value,
hence evaluated eagerly, and the code allocates only a single node
for the entire computation.

def nfib_01(arg) =
if arg 6 1 then 1 else nfib_01(arg−1) + nfib_01(arg−2) + 1

class nfib(arg) {
def H = ↓ new nfib_01(arg.H.tonative)

}

Figure 11: Complete code of the implementation of nfib.

The following table compares various activities of the computation
of nfib(35) performed with and without using ahead functions. The
data were collected by instrumenting the concrete implementation
described in the next section. The numbers of rewrite steps, node
allocations, etc., include a harness that allocates 2 nodes to con-
struct nfib(35), starts the execution and collects the result, hence
some data items may be off by a few units with respect to the com-
putation of nfib(35).

ahead rewriting
rewrite steps 1 119,442,811
node allocations 3 238,885,626
pattern matches 1 328,467,726
ahead calls 29,860,703
exec. time (sec) 0.03 3.49

The column labeled ahead refers to the execution of the program
in Fig. 11. The column labeled rewriting refers to the execution of
a program that evaluates by rewriting only. The number of ahead
calls counts only calls to nfib_01. It does not included in the count
the calls to other ahead function such as “+” and ifthenelse because
these have been inlined and differ greatly in their contribution to
wall-clock time. Should we include these, too, in the count, for each
ahead function call in the first column there would be exactly one
rewrite step in the second column.

9. CONCRETE IMPLEMENTATION
We encoded the abstract implementation in C++. The overall

architecture presented in our simplified Scala language consisting
of classes with instances abstracting nodes, variables in these in-
stances abstracting the successors of the node, ahead functions,
boxing and unboxing, inlining, etc., is faithfully preserved in the
C++ implementation. C++ has no pattern matching. To achieve
the same functionality, each node has an integer attribute, a token
telling whether the node’s label is an operation or a constructor
and in this case which constructor. The tokens of the constructors
of a type are numbered 0, 1, . . . In addition, there are a few ad-
ditional token numbers for the logic part of the implementation,
i.e., whether a node is labeled by the choice symbol, a failure, or
a variable. These kinds of nodes were not discussed in this paper.
Pattern matching is implemented by traversing definitional trees as
described in [1, Def. 7], where the token attribute of a inductive
node is compared with the token attribute of the matching node.

The reduction of a redex by its replacement, which we have de-
noted with “↓” in our simplified Scala code, is a delicate issue. Af-
ter a replacement is constructed, a reduction consists of redirecting
any reference to the redex from the redex to the replacement, an
operation called pointer redirection [14, Def. 8]. Finding in some
state e of a computation all the references to a node n would be
prohibitively expensive. A typical approach is to use an indirect
address, say p, to n. Any reference that should point to n, points to
p instead. A reduction only redirects p from n to the root of the re-
placement. This approach is suitable for most imperative program-
ming languages. C++, unique among them, offers a more efficient
alternative called placement new. This feature allows the program-
mer to construct a new node in the exact memory location previ-
ously occupied by another node. We use placement new to construct
the root of a replacement in the same memory locations occupied
by the root of the redex. Thus, no pointer redirection is required
for a reduction. Our notation and use of “↓”, exactly captures the
functionality of placement new.

Except for the difference in pattern matching and the use of
placement new for reductions, which is not available in Scala, our
C++ implementation is architecturally equivalent to that presented
in our simplified Scala language. A functional logic program is en-
coded in C++ with the help of a macro language. A data construc-
tor is specified as a label identifier and its arity. A defined operation
is specified with a structure that closely matches the structure of
a definitional tree. The macro expansion performed by the C++
preprocessor produces C++ source code which is then compiled
into executable code. More details about this implementation can

be found in [9].

10. FUNCTIONAL LOGIC PROGRAM-
MING

The ultimate goal of our work is the implementation of func-
tional logic languages. The preceeding discussion left out three es-
sential features of this paradigm: higher-order computations, logic
(also called free) variables, and non-determinism. In this section we
show that our approach is compatible with these features.

Higher-order computations are reduced to first-order computa-
tion by a transformation called firstification that replaces a partial
application of a symbol with a full application [35, 39]. This trans-
formation is part of the process that from a functional logic program
produces a graph rewriting system taken by the compiler of Fig. 2
and consequently is effortlessly accomodated by our approach.

Logic variables are equivalent to non-deterministic functions [8,
27]. Every functional logic program containing logic variables can
be transformed into a similar functional logic program without
logic variables as long as the choice operation is allowed in the pro-
gram. Therefore, the only real extension to our treatment to achieve
our goal is handling non-determinism.

In this extention, a program is a LOIS graph rewriting system
as defined in the introduction. A computation is a sequence of de-
terministic and/or non-deterministic rewrite steps. A deterministic
step is the application of a rule of an inductively sequential opera-
tion as described earlier. A non-deterministic step is the application
of a rule of operation choice defined in (1).

Backtracking is a simple strategy for handling non-deterministic
steps. It is adopted by the Prolog language [22] and by many imple-
mentations of functional logic languages [13, 17, 29]. With back-
tracking, a non-deterministic step is executed by arbitrarily apply-
ing the first rule of choice. If and when the computation produces
a result, this result is presented to the user with the option to either
terminate the computation or roll it back to the state preceding the
last application of the first rule of choice, if any, and continue the
computation with the application of the second rule.

Backtracking requires recording the steps of a computation in
order to unroll the computation to a previous state. This require-
ment is independent of any approach to rewriting. Both variants
presented in the paper can be used in conjunction with backtrack-
ing without any change. Backtracking is efficient, but incomplete,
i.e., unable to produce all the values of some expressions. Complete
strategies for handling non-determinism include context cloning,
bubbling [6], and pull-tabbing [5, 12]. All these strategies execute
both rewrite steps and some graph transformations different from
rewrite steps. The interaction of these transformations with both
variants presented in this paper will be the subject of future work.

11. RELATED WORK
The focus of our work is an investigation of the role of “need”

in computations in inductively sequential graph rewriting systems.
We study this class because for this class there is a very strong
notion of “need,” which has been tied to optimal strategies, and
because a minimal extension of this class is a core language for
the implementation of functional logic programming languages [5,
Sect. 4.2]. The classic notion of need [20, 21] plays a central role in
the definition and implementation of complete and theoretically ef-
ficient evaluation strategies for declarative programming languages
[4]. For this reason, this notion has been extended to other sys-
tems, e.g., necessary set [37], where one redex of a set is needed,
but which redex is typically not known, or need modulo a non-
deterministic choice [2], where a redex with distinct replacements

is needed, but which replacement is typically not known.
The inductively sequential systems are a proper subclass of the

orthogonal systems, hence they have the same notion of needed re-
dex. The inductively sequential systems are also constructor-based.
Because of the constructor discipline [31], the need of a redex is
more stringent: not only a needed redex must be reduced, but also
it must be derived to a head-constructor form. This is the crucial
observation of this paper and the reason why we can compile in-
ductively sequential systems in a form that skips some needed re-
duction steps.

Our work is motivated by and targeted to the implementation of
functional logic computation by rewriting. Recently, various graph
operations different from rewrite steps have been proposed for han-
dling non-determinism [5, 6, 12] in functional logic computations.
Variant 2 provides yet another graph operation, different from a
rewrite step, intended to improve both theoretical and practical ef-
ficiencies of a functional logic computation.

The substantial intersection between functional and functional
logic programming relates our work to the implementation of non-
strict functional languages as well. However, there are profound
differences between the implementation of these two paradigms, as
the following program shows:

loop = loop

f (0,0) = 0
f (-,1) = 1

main = f (loop,1)

(10)

The evaluation of expression main by a Haskell [33], the leading
non-strict functional language, does not produce any result. How-
ever, the same evaluation by Curry [16], the leading functional logic
language, produces the value 1. The reason is that Haskell translates
this program into a core language based on extended lambda cal-
culus [25], whereas Curry looks at it as an inductively sequential
systems and evaluates the expression by needed rewriting. This de-
sign decision is motivated by the fact that functional logic compu-
tations must accommodate both narrowing and non-determinism.
We conjecture that our work rediscovers for rewriting some tech-
niques long developed for the extended lambda calculus for com-
piling non-strict functional languages [25, 26]. There is a wide gap
between the two formalisms. The underlying semantics differences
should be formalized—a problem in itself—for a meaningful com-
parison.

Our rewriting computations are lazy (in the sense of call-by-
need). However, for some programs, such as our case study, variant
2 of the implementation seems to evaluate eagerly (in the sense
of call-by-value). We say “seems” because the overall laziness of
a functional logic computation is not affected by the strictness of
some ahead functions. Therefore, our work has similarity of intent
with strictness analysis [30]. However, there are substantial differ-
ences. Strictness analysis is concerned with semantics and consid-
ers higher-order computations, whereas we are concerned with op-
erational behavior, we consider only first order computations, and
our framework is rewriting.

The specialization of ahead functions discussed in Section 7 is
a form of partial evaluation [24]. It contributes, in some cases sig-
nificantly, to the efficiency of computations. The central idea of
our work is the discovery that certain reductions can be executed
without a redex. We define functions that compute the reduct with-
out an explicit presence of the redex. These ahead functions can
frequently be specialized and this is how ahead computations are
related to partial evaluation.

Finally, our approach has the same intent as deforestation, but
is complementary to it. Deforestation [38] avoids the construc-

tion of constructor-rooted expressions that would be quickly taken
apart and disposed. This occurs when a function producing one of
these expressions is nested within a function consuming the ex-
pression. Ahead computations avoid the construction of operation-
rooted expressions that would equally be quickly taken apart and
disposed. This occurs when an expression to be constructed is
needed and, consequently, must be reduced again. Deforestation
and ahead computations can be used independently of each other
and jointly in the same program.

12. CONCLUSION
We have described an abstract implementation of rewriting in

inductively sequential graph rewriting systems. Any reducible ex-
pression in this class defines a step, called needed, that must be
executed to obtain the expression’s value. A distinctive feature of
our implementation is that some of these steps are never executed.
Instead, effects similar to the execution of these steps are obtained
more efficiently by calling certain functions. At the core of our
work is a novel notion of need more appropriate for the constructor-
based systems, which we have shown equivalent to the classic no-
tion.

We have defined an abstract compiler that takes as input the rules
of an operation in the form of a definitional tree and produces as
output classes and functions that constitute our implementation.
We have precisely stated the correctness of our approach and in-
formally proved these statements. For any expression e, our imple-
mentation produces a value v iff v is the constructor normal form
of e. We have presented in details a case study from a well-known
benchmark suite and compared the performance of our implemen-
tation against the performance of an implementation of rewriting
that executes only needed steps. This example shows a dramatic re-
duction in the number of steps, in the number of comparisons for
pattern matching, and in the number of allocated nodes. We have
informally discussed the application of our work for implement-
ing functional logic languages and shown that with backtracking, a
well-known technique for handling non-determinism, our work can
be used “out of the box”.

To conclude, we would like to answer the question posed in the
title: Are Needed Redexes Really Needed? If a computer imple-
mentation of rewriting executes only rewrite steps, the answer is,
unsurprisingly, “yes”. However, to execute these steps, the com-
puter implementation calls functions or methods, constructs ob-
jects, compares variables, etc. The very same actions may be em-
ployed for other purposes in addition to executing rewriting steps.
Through these actions, some needed redexes can be reduced by a
process different from a rewrite step, and some redexes that would
have been created, needed and reduced in a rewriting computation
are not created and consequently not reduced.

Thus, some needed redexes appear to be less needed than we
thought before. However, somewhat paradoxically, these redexes
must be needed to be less needed than we thought before.

13. ACKNOWLEDGMENTS
This material is based upon work partially supported by the Na-

tional Science Foundation under Grant No. CCF-1317249.

14. REFERENCES
[1] S. Antoy. Definitional trees. In H. Kirchner and G. Levi,

editors, Proceedings of the Third International Conference
on Algebraic and Logic Programming, pages 143–157,
Volterra, Italy, September 1992. Springer LNCS 632.

[2] S. Antoy. Optimal non-deterministic functional logic
computations. In Proceedings of the Sixth International
Conference on Algebraic and Logic Programming (ALP’97),
pages 16–30, Southampton, UK, September 1997. Springer
LNCS 1298. Extended version at http://cs.pdx.edu/
~antoy/homepage/publications/alp97/full.pdf .

[3] S. Antoy. Constructor-based conditional narrowing. In Proc.
of the 3rd International Conference on Principles and
Practice of Declarative Programming (PPDP’01), pages
199–206, Florence, Italy, September 2001. ACM.

[4] S. Antoy. Evaluation strategies for functional logic
programming. Journal of Symbolic Computation,
40(1):875–903, 2005.

[5] S. Antoy. On the correctness of pull-tabbing. TPLP,
11(4-5):713–730, 2011.

[6] S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for
non-deterministic graph rewriting. In Proc. of the 3rd
International Workshop on Term Graph Rewriting,
Termgraph’06, pages 61–70, Vienna, Austria, April 2006.

[7] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing
strategy. Journal of the ACM, 47(4):776–822, July 2000.

[8] S. Antoy and M. Hanus. Overlapping rules and logic
variables in functional logic programs. In Twenty Second
International Conference on Logic Programming, pages
87–101, Seattle, WA, August 2006. Springer LNCS 4079.

[9] S. Antoy and A. Jost. A target implementation for
high-performance functional programs. In Presentation at
the 14th International Symposium Trends in Functional
Programming (TFP 2013), Provo, Utah, 2013. Available at
http://web.cecs.pdx.edu/~antoy/homepage/
publications/tfp13/paper.pdf .

[10] S. Antoy and A. Peters. Compiling a functional logic
language: The basic scheme. In Proc. of the Eleventh
International Symposium on Functional and Logic
Programming, pages 17–31, Kobe, Japan, May 2012.
Springer LNCS 7294.

[11] M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term
Rewriting Systems. Cambridge University Press, 2003.

[12] B. Brassel and F. Huch. On a tighter integration of functional
and logic programming. In APLAS’07: Proceedings of the
5th Asian conference on Programming languages and
systems, pages 122–138, Berlin, Heidelberg, 2007.
Springer-Verlag.

[13] R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm
Declarative Language (version 2.3.1), 2007. Available at
http://toy.sourceforge.net.

[14] R. Echahed and J. C. Janodet. On constructor-based graph
rewriting systems. Technical Report 985-I, IMAG, 1997.
Available at ftp://ftp.imag.fr/pub/labo-LEIBNIZ/
OLD-archives/PMP/c-graph-rewriting.ps.gz.

[15] GHC, The Glasgow Haskell Compiler, 2013. Available at
http://www.haskell.org/ghc/.

[16] M. Hanus, editor. Curry: An Integrated Functional Logic
Language (Vers. 0.8.2), 2006. Available at
http://www-ps.informatik.uni-kiel.de/currywiki/.

[17] M. Hanus, editor. PAKCS 1.9.1: The Portland Aachen Kiel
Curry System, 2008. Available at
http://www.informatik.uni-kiel.de/~pakcs.

[18] M. Hanus, H. Kuchen, and J. J. Moreno-Navarro. Curry: A
truly functional logic language. In Proceedings of the
ILPS’95 Workshop on Visions for the Future of Logic

Programming, pages 95–107, Portland, Oregon, 1995.
[19] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential

and inductively sequential term rewriting systems.
Information Processing Letters, 67(1):1–8, 1998.

[20] G. Huet and J.-J. Lévy. Computations in orthogonal term
rewriting systems, I. In J.-L. Lassez and G. Plotkin, editors,
Computational logic: essays in honour of Alan Robinson,
pages 395–414. MIT Press, Cambridge, MA, 1991.

[21] G. Huet and J.-J. Lévy. Computations in orthogonal term
rewriting systems, II. In J.-L. Lassez and G. Plotkin, editors,
Computational logic: essays in honour of Alan Robinson,
pages 415–443. MIT Press, Cambridge, MA, 1991.

[22] ISO. Information technology - Programming languages -
Prolog - Part 1, 1995. General Core. ISO/IEC 13211-1, 1995.

[23] T. Johnsson. Lambda lifting: Transforming programs to
recursive equations. In J.-P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture, pages
190–203, Nancy, France, 1985. Springer-Verlag, LNCS 201.

[24] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation
and automatic program generation. Prentice-Hall, Inc., 1993.

[25] S.L.P. Jones. The implementation of functional programming
languages. Prentice-Hall international series in computer
science. Prentice/Hill International, 1987.

[26] S.L.P. Jones and D.R. Lester. Implementing Functional
Languages. Prentice Hall International Series in Computer
Science. Prentice Hall PTR, 1992.

[27] F. J. López-Fraguas and J. de Dios-Castro. Extra variables
can be eliminated from functional logic programs. Electron.
Notes Theor. Comput. Sci., 188:3–19, 2007.

[28] F. J. López-Fraguas and J. Sánchez-Hernández. TOY: A
multiparadigm declarative system. In Proceedings of the
Tenth International Conference on Rewriting Techniques and
Applications (RTA’99), pages 244–247. Springer LNCS
1631, 1999.

[29] W. Lux, editor. The M unster Curry Compiler, 2012.
Available at http://danae.uni-muenster.de/~lux/curry/.

[30] A. Mycroft. The theory and practice of transforming
call-by-need into call-by-value. In Proc. 4th Intl. Symp. on
Programming. Springer LNCS 83, 1980.

[31] M. J. O’Donnell. Equational Logic as a Programming
Language. MIT Press, 1985.

[32] W. Partain. The NoFib benchmark suite of Haskell programs.
In Proceedings of the 1992 Glasgow Workshop on
Functional Programming, pages 195–202, London, UK,
1993. Springer-Verlag.

[33] S. Peyton Jones and J. Hughes, editors. Haskell 98: A
Non-strict, Purely Functional Language, 1999. Available at
http://www.haskell.org/onlinereport/.

[34] D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig,
G. Engels and G. Rozenberg, editors, Handbook of Graph
Grammars, volume 2, pages 3–61. World Scientific, 1999.

[35] J. C. Reynolds. Definitional interpreters for higher-order
programming languages. In Reprinted from the proceedings
of the 25th ACM National Conference, pages 717–740.
ACM, 1972.

[36] The Scala language specification. Available at
http://www.scala-lang.org/node/198, 2011.

[37] R. C. Sekar and I. V. Ramakrishnan. Programming in
equational logic: Beyond strong sequentiality. Information
and Computation, 104(1):78–109, 1993.

[38] P. Wadler. Deforestation: Transforming programs to
eliminate trees. Theor. Comput. Sci., 73(2):231–248, 1990.

[39] D.H.D. Warren. Higher-order extensions to PROLOG: are
they needed? In Machine Intelligence 10, pages 441–454,
1982.

