Set Functions for FLP

Sergio Antoy Portland State University

PPDP'09 – Coimbra, Portugal, Sept 7–9, 2009 Joint work with **Michael Hanus**, CAU Kiel Partial support by DFG Ha 2457/5-2 and DAAD D/06/29439 and D/08/11852

Introduction

- Non-determinism is a major feature of Functional Logic Programming.
- A functional logic program is non-deterministic when some expression evaluates to *distinct* values, e.g., in Curry:

coin = 0 ? 1

- The predefined operator ? yields either one of its arguments.
- Non-determinism simplifies modeling and solving problems in many domains, e.g., modeling a set of flights:

flight = (LH469, Portland, Frankfurt,10:.15)
? (NWA92, Portland, Amsterdam,10:.00)
? (LH10, Frankfurt,Hamburg, 1:.00)
? (KL1783,Amsterdam,Hamburg, 1:.52)

Get one

Non-deterministic functions are used in two ways: either get one value or get all the values satisfying some conditions.

Example: find a non-stop or one-stop flight from Portland to Hamburg.

```
itinerary orig dest
   | flight =:= (num,orig,dest,len)
   = [num]
   where num, len free
itinerary orig dest
   | flight =:= (num1,orig,stop,len1)
   & flight =:= (num2,stop,dest,len2)
   = [num1,num2]
   where num1, len1, num2, len2, stop free
```

Get all

Example: find a non-stop or one-stop flight from Portland to Hamburg with shortest time in the air.

- Must compute the *set* of flights from Portland to Hamburg ...
- to find a minimal element according to some criterion.
- The language provides a set type and a primitive.
- The primitive computes the set of values of some expression.
- The set type has operations for finding a minimal element.

Get all

Example: find a non-stop or one-stop flight from Portland to Hamburg with shortest time in the air.

- Must compute the *set* of flights from Portland to Hamburg ...
- to find a minimal element according to some criterion.
- The language provides a set type and a primitive.
- The primitive computes the set of values of some expression.
- The set type has operations for finding a minimal element.
- Unfortunately, the *order of evaluation* affects the result.

Suppose that $\mathcal{S}(e)$ computes the set of all the values of e.

Recall that coin = 0? 1.

What is the value of $\mathcal{S}(\texttt{coin})$?

Suppose that $\mathcal{S}(e)$ computes the set of all the values of e.

Recall that coin = 0? 1.

What is the value of $\mathcal{S}(\texttt{coin})$?

It depends on the order of evaluation!

Suppose that $\mathcal{S}(e)$ computes the set of all the values of e.

Recall that coin = 0? 1.

What is the value of $\mathcal{S}(\texttt{coin})$?

It depends on the order of evaluation!

Case 1: apply *S* before evaluating coin. Result: {0,1}

Case 2: apply S after evaluating coin. Result: $\{0\}$? $\{1\}$

Suppose that $\mathcal{S}(e)$ computes the set of all the values of e. Recall that coin = 0? 1. What is the value of $\mathcal{S}(\texttt{coin})$? It depends on the order of evaluation! Case 1: apply *S* before evaluating coin. Result: {0,1} Case 2: apply *S* after evaluating coin. Result: $\{0\}$? $\{1\}$ There are two problems with S: consistency and semantics. Non right-linear rules (*sharing*) make S inconsistent.

The Idea

Get rid of S.

Every function f, implicitly defines a function $f_{\mathcal{S}}$ as follows:

For each tuple of argument values \bar{c} , $f_{\mathcal{S}} \bar{c}$ is the set of all the values of $f \bar{c}$.

The Idea

Get rid of S.

Every function f, implicitly defines a function f_S as follows:

For each tuple of argument values \bar{c} , $f_{\mathcal{S}} \bar{c}$ is the set of all the values of $f\bar{c}$.

Examples:

coin = 0 ? 1	$\operatorname{coin}_{\mathcal{S}} = \{0,1\}$
id x = x	$id_{\mathcal{S}} x = \{x\}$

The Idea

Get rid of S.

Every function f, implicitly defines a function $f_{\mathcal{S}}$ as follows:

For each tuple of argument values \bar{c} , $f_{\mathcal{S}} \bar{c}$ is the set of all the values of $f\bar{c}$.

Examples:

coin = 0 ? 1	$\operatorname{coin}_{\mathcal{S}} = \{0,1\}$
id x = x	$id_{\mathcal{S}} x = \{x\}$

Given:

bigCoin = 2?4f x = coin + x

The value of $f_{\mathcal{S}}$ bigCoin is $\{2,3\}$? $\{4,5\}$, whereas the value of $\mathcal{S}(f \text{ bigCoin})$ is $\{2,3,4,5\}$.

Properties

• Results are *independent* of the order of evaluation.

must define the class of programs and the notion of independent steps.

Properties

• Results are *independent* of the order of evaluation.

must define the class of programs and the notion of independent steps.

• $f_{\mathcal{S}}$ is deterministic for any f:

non-determinism of arguments is irrelevant.

Properties

• Results are *independent* of the order of evaluation.

must define the class of programs and the notion of independent steps.

• $f_{\mathcal{S}}$ is deterministic for any f:

non-determinism of arguments is irrelevant.

• Can still compute $\mathcal{S}(e)$ for any compile-time e:

as $e_{\mathcal{S}}$.

Programming

The usual *n*-queens puzzle

```
queens n | isEmpty (unsafes p) = p
where p = permute [1..n]
% queens x and y capture each other
unsafe (_++[x]++y++[z]++_)
= abs (x-z) =:= length y + 1
```

Testing the safety with S(unsafe p) would produce an *unintended* result.

The non-determinism of **permute** must be excluded from the non-determinism of **unsafe**.

Set functions are the *intended* semantics.

Implementation

- Exists only on paper, but proved correct.
- The evaluation of $f_{\mathcal{S}}$ is lazy and complete.
- $f_{\mathcal{S}}$ is not actually coded or implemented. Rather, the values of $f \bar{t}$ provide $f_{\mathcal{S}} \bar{t}$.
- The computations of $f \bar{t}$ must distinguish between steps of \bar{t} and steps of f.
- The non-deterministic steps of \overline{t} contribute different values of $f_{\mathcal{S}} \overline{t}$.
- The non-deterministic steps of f contribute different elements in a value of $f_{S} \bar{t}$.

Related work

- "Set of values" is a primitive in both Curry and Toy
- Sharing makes order of evaluation uncontrollable [Braßel et al.]
- Weak encapulation (preserve sharing) in MCC [Lux]
- Strong encapsulation (sever sharing) in KICS [Braßel et al.]
- Formalizes order independence, discovers levels [Antoy et al.]
- Constructive negation [Lopez-Fraguas et al.]

Conclusion

- New approach to non-deterministic computations
- Turns away from "set of values" primitive
- Introduces function sets
- Separates levels of non-determinism
- Proves order independence
- Is natural for non-trivial problems
- Proposes provably correct implementation

The End