
Set Functions for FLP

Sergio Antoy

Portland State University

PPDP’09 – Coimbra, Portugal, Sept 7–9, 2009

Joint work with Michael Hanus, CAU Kiel

Partial support by DFG Ha 2457/5-2 and DAAD D/06/29439 and D/08/11852



Introduction

• Non-determinism is a major feature of Functional Logic Pro-
gramming.

• A functional logic program is non-deterministic when some
expression evaluates to distinct values, e.g., in Curry:

coin = 0 ? 1

• The predefined operator ? yields either one of its arguments.

• Non-determinism simplifies modeling and solving problems in
many domains, e.g., modeling a set of flights:

flight = (LH469, Portland, Frankfurt,10:.15)

? (NWA92, Portland, Amsterdam,10:.00)

? (LH10, Frankfurt,Hamburg, 1:.00)

? (KL1783,Amsterdam,Hamburg, 1:.52)

2/20



Get one

Non-deterministic functions are used in two ways: either get one

value or get all the values satisfying some conditions.

Example: find a non-stop or one-stop flight from Portland to
Hamburg.

itinerary orig dest

| flight =:= (num,orig,dest,len)

= [num]

where num, len free

itinerary orig dest

| flight =:= (num1,orig,stop,len1)

& flight =:= (num2,stop,dest,len2)

= [num1,num2]

where num1, len1, num2, len2, stop free

3/20



Get all

Example: find a non-stop or one-stop flight from Portland to Hamburg
with shortest time in the air.

• Must compute the set of flights from Portland to Hamburg ...

• to find a minimal element according to some criterion.

• The language provides a set type and a primitive.

• The primitive computes the set of values of some expression.

• The set type has operations for finding a minimal element.

4/20



Get all

Example: find a non-stop or one-stop flight from Portland to Hamburg
with shortest time in the air.

• Must compute the set of flights from Portland to Hamburg ...

• to find a minimal element according to some criterion.

• The language provides a set type and a primitive.

• The primitive computes the set of values of some expression.

• The set type has operations for finding a minimal element.

• Unfortunately, the order of evaluation affects the result.

5/20



Unfortunately

Suppose that S(e) computes the set of all the values of e.

Recall that coin = 0 ? 1.

What is the value of S(coin)?

6/20



Unfortunately

Suppose that S(e) computes the set of all the values of e.

Recall that coin = 0 ? 1.

What is the value of S(coin)?

It depends on the order of evaluation!

7/20



Unfortunately

Suppose that S(e) computes the set of all the values of e.

Recall that coin = 0 ? 1.

What is the value of S(coin)?

It depends on the order of evaluation!

Case 1: apply S before evaluating coin. Result: {0,1}

Case 2: apply S after evaluating coin. Result: {0} ? {1}

8/20



Unfortunately

Suppose that S(e) computes the set of all the values of e.

Recall that coin = 0 ? 1.

What is the value of S(coin)?

It depends on the order of evaluation!

Case 1: apply S before evaluating coin. Result: {0,1}

Case 2: apply S after evaluating coin. Result: {0} ? {1}

There are two problems with S: consistency and semantics.

Non right-linear rules (sharing) make S inconsistent.

9/20



The Idea

Get rid of S.

Every function f , implicitly defines a function fS as follows:

For each tuple of argument values c̄,
fS c̄ is the set of all the values of f c̄.

10/20



The Idea

Get rid of S.

Every function f , implicitly defines a function fS as follows:

For each tuple of argument values c̄,
fS c̄ is the set of all the values of f c̄.

Examples:

coin = 0 ? 1 coinS = {0,1}
id x = x idS x = {x}

11/20



The Idea

Get rid of S.

Every function f , implicitly defines a function fS as follows:

For each tuple of argument values c̄,
fS c̄ is the set of all the values of f c̄.

Examples:

coin = 0 ? 1 coinS = {0,1}
id x = x idS x = {x}

Given:

bigCoin = 2 ? 4

f x = coin + x

The value of fS bigCoin is {2,3} ? {4,5},
whereas the value of S(f bigCoin) is {2,3,4,5}.

12/20



Properties

• Results are independent of the order of evaluation.

must define the class of programs
and the notion of independent steps.

13/20



Properties

• Results are independent of the order of evaluation.

must define the class of programs
and the notion of independent steps.

• fS is deterministic for any f :

non-determinism of arguments is irrelevant.

14/20



Properties

• Results are independent of the order of evaluation.

must define the class of programs
and the notion of independent steps.

• fS is deterministic for any f :

non-determinism of arguments is irrelevant.

• Can still compute S(e) for any compile-time e:

as eS .

15/20



Programming

The usual n-queens puzzle

queens n | isEmpty (unsafeS p) = p

where p = permute [1..n]

% queens x and y capture each other

unsafe (_++[x]++y++[z]++_)

= abs (x-z) =:= length y + 1

Testing the safety with S(unsafe p)

would produce an unintended result.

The non-determinism of permute must be excluded
from the non-determinism of unsafe.

Set functions are the intended semantics.

16/20



Implementation

• Exists only on paper, but proved correct.

• The evaluation of fS is lazy and complete.

• fS is not actually coded or implemented.
Rather, the values of f t̄ provide fS t̄.

• The computations of f t̄ must distinguish
between steps of t̄ and steps of f .

• The non-deterministic steps of t̄ contribute
different values of fS t̄.

• The non-deterministic steps of f contribute
different elements in a value of fS t̄.

17/20



Related work

• “Set of values” is a primitive in both Curry and Toy

• Sharing makes order of evaluation uncontrollable [Braßel et al.]

• Weak encapulation (preserve sharing) in MCC [Lux]

• Strong encapsulation (sever sharing) in KICS [Braßel et al.]

• Formalizes order independence, discovers levels [Antoy et al.]

• Constructive negation [Lopez-Fraguas et al.]

18/20



Conclusion

• New approach to non-deterministic computations

• Turns away from “set of values” primitive

• Introduces function sets

• Separates levels of non-determinism

• Proves order independence

• Is natural for non-trivial problems

• Proposes provably correct implementation

19/20



The End


