
Computing with Subspaces∗

Sergio Antoy
Computer Science Department

Portland State University
P.O. Box 751

Portland, OR 97207, USA
antoy@cs.pdx.edu

Bernd Braßel
Institute of Computer Science

Christian-Albrechts-University of Kiel
Olshausenstr. 40

D-24098 Kiel, Germany
bbr@informatik.uni-kiel.de

Abstract
We propose a new definition and use of a primitivegetAllValues,
for computing all the values of a non-deterministic expression
in a functional logic program. Our proposal restricts the validity
of the argument ofgetAllValues. This restriction ensures that
essential language features like the call-time choice semantics,
the independence of the order of evaluation, and the referential
transparency of the language are preserved whengetAllValues
is executed. Up to now, conflicts between these language features
and primitives likegetAllValues have been seen as one of the
main problems for employing such primitives in functional logic
languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Semantics—Subspaces; D.3.3 [Programming Langua-
ges]: Language Constructs and Features—Non-determinism;
F.4.2 [Mathematical Logic and Formal Languages]: Grammars and
Other Rewriting Systems—Term Graph Rewriting Systems

General Terms Algorithms, Design, Languages

Keywords Functional Logic Programming Languages, Non-De-
terminism, Subspaces, Rewrite Systems

1. Introduction
This paper addresses theoretical and practical aspects of non-
determinism in functional logic languages modeled by graph re-
writing. One of these aspects is a facility for manipulating within a
computation all the values of another computation. We refer to the
values produced by the nested computation as asubspace. Com-
puting with subspaces is a necessary feature of functional logic
languages that support non-determinism. The semantics and the
implementation of computing with subspaces have been elusive
so far. Especially, practical applications of such computations have
shown considerable problems concerning the integration with other
features of functional logic languages, cf. [12]. This paper attempts
to better understand this feature and to discipline its use such that

∗ Partially supported by the NSF grant CCR-0218224, the DFG grant Ha
2457/5-1 and the DAAD grant D/06/29439.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’07 July 14–16, 2007, Wroclaw, Poland.
Copyright c© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

a seamless integration with other features of functional logic lan-
guages, in particular the independence of the order of evaluation
and the sharing of subexpressions, is no longer problematic. We
believe that this is the first published effort of this kind.

Section 2 motivates the need of computing with subspaces.
Section 3 formally defines the key concepts of our discussion, in
particular, a primitive operation,getAllValues, for computing a
subspace. Section 4 recalls background and notations essential to
our discussion. Section 5 specifies an abstract implementation of
getAllValues. Sections 6 and 7 respectively show that the or-
der of evaluation and the sharing of expressions affect the value of
a subspace. Section 8 identifies run-time conditions sufficient for
ensuring that computations with subspaces produce only intended
results. Section 9 discusses how to code programs whose execu-
tions lead only to valid computations. Section 10 briefly addresses
related work. Section 11 offers our conclusion.

2. Motivation
Non-determinism is the most appealing feature of functional logic
programing. A program, which is modeled by a graph rewriting
system, isnon-deterministicwhen its execution may reduce a redex
with multiple replacements. For example, consider a program to
find a donor for a blood transfusion to a patient. The following
declaration, in Curry [17], defines the blood types:

data BloodTypes=Ap | An | ABp | ABn | Op | On | Bp | Bn (1)

The identifiersAp, An, ABp, etc. encode the well-known blood types
A+, A−, AB+, etc., respectively.

Blood of a type can be given only to people with blood of some,
but not all, other types. For example,A+ can be given only to
A+ andAB+, andO+ can be given only toO+, A+, B+, and
AB+. To encode this information in a deterministic language, most
programmers would associate with each blood typet a set of all
the blood types to whicht can be given, or from whicht can be
received, or both.

In a non-deterministic language, instead, the programmer en-
codes this information in a simple relational or tabular form:

give Ap = Ap
give Ap = ABp
give 0p = 0p
give 0p = Ap
give 0p = Bp
give 0p = ABp
...

(2)

The definition of this relation looks like a function definition in
the sense thatgive Ap evaluates to bothAp and ABp, non-de-
terministically. During a program execution, either value may be

selected. The programmer has no control over this choice but can
constrain it if appropriate. Non-determinism supports an expres-
sive programming style because often specifications of problems
are non-deterministic as well. For example, suppose that the prob-
lem is to find a donor for a blood transfusion and assume the ex-
istence of a database of people, donor and/or patients, and their
blood types.

has "John" = ABp
has "Doug" = ABn
has "Lisa" = An

(3)

The specification of this problem is:a donor forx is a persony
that has a blood type that can begiven to the blood type ofx. A
non-deterministic program to solve this problem consists of a sin-
gle conditional rewrite rule:

donorFor x
| give (has y) =:= has x & x =/= y
= y
where y free

(4)

(The condition ensures thaty is not x, since self donation is
not intended as implied by the specification.) For example, the
execution ofdonorFor "John" yields "Doug" or "Lisa" non-
deterministically, whereas no donor is found for"Lisa" in our very
small database of people (3). The evaluation of the program is by
narrowing [25, 14]. In particular, when the condition ofdonorFor
is evaluated,y is initially unknown but becomes instantiated to a
suitable value, if one exists.

Non-determinism substantially reduces the effort of designing
and implementing data structures and algorithms to encode this
problem into a program. In particular, there are neither explicit lists
or sets of blood types or people nor operations to process them. The
absence of these constructs is quite desirable, but it makes some
computations more difficult or impossible.

For example, it is impossible to compute the set of all the donors
for a patient. This information could be useful for further process-
ing, e.g., to find the donor closest to a certain donation center or
to find the donor with the longest elapsed time since the previ-
ous donation. For this reason, the language should provide a prim-
itive function, that we will denote withgetAllValues, to com-
pute all the values of a non-deterministic expression. Informally,
getAllValues applied to an argumente returns a list contain-
ing all the values ofe. For example,getAllValues (give Ap)
should return the list[Ap, ABp].

Using all the values of an expression to computeone value
of another expression is referred to ascomputing with subspaces.
Computing with subspaces is relevant whenever different values
of an expression have to be compared in some way to find the
intended solution which is the gist of all optimization problems.
Without primitives like getAllValues the programmer would
have to eliminate all uses of non-determinism as soon as an op-
timization problem arises. We fear that this leads in many cases to
generally avoid using non-determinism and we therefore consider
programming with subspaces as a crucial feature of functional logic
languages.

This paper addresses the problem of computing with subspaces.
It formally defines some concepts, proves some of their properties,
and discusses the implementation and use ofgetAllValues.

3. Definitions
In this section, we formalize the meaning of “computing all the val-
ues of an expression” in the sense discussed earlier. We believe that
this is the first published effort of this kind. We present our defini-

tions within the framework of abstract reduction systems [10, 11]
since they do not depend on specific properties of the objects be-
ing rewritten and of the reduction relation. The concepts introduced
in this section will be applied to programs that can be regarded as
specializations of abstract reduction systems. Anabstract reduc-
tion system, abbreviated with ARS, is a pairR = (T,→), whereT
is a set ofobjectsand→ is binary relation onT calledreduction. If
R is an abstract reduction system, an element of the set of objects
of R is called anexpression ofR, and a normal form with respect
to the reduction relation is called avalue.

DEFINITION 1 (Set of values).LetR be an ARS ande an expres-
sion ofR. We define theset of valuesof e asAe = {v | e

∗
→

v, v is a value}, i.e.,Ae is the set of all the values reachable from
e.

Referring to the code fragment in (2), ife = give Ap, then
Ae = {Ap, ABp}.

DEFINITION 2 (Fair enumeration).LetA be a set. Afair enumer-
ationofA is a denumerable sequenceEA = a0, a1, . . . such that:

1. for everyai in EA, ai ∈ A, and
2. for everya ∈ A, there exists a naturali such thatai = a.

Continuing with the previous example, both list[Ap,ABp] and
[ABp,Ap] are fair enumerations of{Ap, ABp}. Obviously, a non-
empty set has many fair enumerations. For example, any finite or
infinite sequencea, a, . . . is a fair enumeration of the singleton
{a}. This indetermination may not appear ideal; nevertheless, we
believe that our definition is sensible. We will shortly explain why.

DEFINITION 3 (getAllValues). Let R be an ARS ande an
expression ofR. We denote withgetAllValues any function that
applied toe returns a fair enumeration ofAe, the set of values of
e.

The above definition characterizes a class of functions rather than
a single function. For our purposes, identifying a single function
in this class is impractical. To clarify this point, we define the
computation space of an expression.

We begin with the notion ofevaluation strategy. A strategy de-
termines which step(s) to perform during a computation. A strategy
is an essential theoretical and practical component of a program-
ming language. For example, notions like laziness and strictness are
direct consequences of the strategy. A strategy should be efficient
and it should guarantee that all and only the values of an expression
are computed, properties referred to completeness and soundness.
[5] surveys several concrete strategies and related concepts within
the domain of our discussion.

DEFINITION 4 (Evaluation strategy).
Let R = (T,→) be an ARS. Anevaluation strategyof R is a
functions : T → 2T such that, for all expressionse and e′ of
R, s(e) is finite, and ife′ ∈ s(e), thene

+
→ e′.

Many strategies for programming languages are concerned with
a single rewriting or narrowing step. For these strategies, that we
call single-step, referring to Def. 4, ife′ ∈ s(e), then it would
suffice to saye → e′. However, many interesting strategies, e.g.,
[6, 8, 22, 27], are not single-step.

DEFINITION 5 (Computation space).
LetR be an ARS ande an expression ofR. Thecomputation space
of e for a strategys, denotedSs(e) or simply S(e) when s is
understood, is a possibly infinite, finitely branching tree defined as:

1. e is the root ofS(e),

2. for all e′ in S(e), if s(e′) = {e1, . . . , en}, then the children
of e′ are all and onlyS(e1), . . . ,S(en), i.e., the computation
spaces ofe1, . . . , en.

In most current language implementations, the result of evaluating
getAllValues e, for some expressione, is obtained by construct-
ing the computation space ofe and traversing it to collect the val-
ues. Whens(e) has more than one element, the order in which these
elements are installed into the space and/or collected is not impor-
tant and may be difficult to control. Therefore, it seems unwise to
be too specific about the order in which values are produced. In
fact, iterators of collections even in imperative languages, e.g., in
the java.util package, leave undetermined the order in which the
elements of a collection are returned.

Furthermore, the computation space of a given expressione
might be infinite even if the set of values ofe is finite, and a value
may be computed infinitely often [12, Ex. 1.12]. Thus, it seems
unwise to be too specific about duplicates, too.

A trivial example is the space of the expressionzeros, where
the operationzeros is defined [12] by:

zeros = 0
zeros = zeros

(5)

Removing duplicates from lists computed bygetAllValues, is
straightforward.

Finally, we have not specified the conditions under which
getAllValues should return the empty list[]. The undecidability
of termination implies that this result can only be produced under
special circumstances ensuring that the computation space ofe is
finiteand contains no values, cf. Section 5.

To conclude, we prefer the definition ofgetAllValues inde-
pendent of the order in which values are produced and the presence
of duplicates in its result.

4. Background and Notation
In this section we recall some key notions and notations used
in this paper. Various formulations of graph rewriting have been
proposed, among others [15, 23, 24]. In this paper, we follow the
systemization of Echahed and Janodet [15] because it best fits our
programs. We cannot recall the definitions in the space allotted to
this paper, but we faithfully use the same terminology and notation
adopted by [15], which is available on-line.

The space allotted to this paper allows us only to recall the key
concepts. The complete details can be found in [15].

DEFINITION 6 (Graph).
Let Σ be a signature, X a countable set ofvariables, andN a
countable set ofnodes. A (rooted) graphover 〈Σ,N ,X〉 is a 4-
tupleg = 〈Ng,Lg,Sg,Rootsg〉 such that:

1. Ng ⊂ N is the set of nodes ofg;
2. Lg : Ng → Σ ∪ X is thelabelingfunction mapping each node

of g to a signature symbol or a variable;
3. Sg : Ng → N

∗
g is thesuccessorfunction mapping each node

of g to a possibly empty string of nodes ofg, such that if
Lg(n) = s, wheres ∈ Σ∪X , and (for the following condition,
we assume that a variable has arity zero)arity(s) = k, then
there existn1, . . . , nk inNg such thatSg(n) = n1 . . . nk;

4. Rootsg ⊆ Ng is a subset of nodes ofg called therootsof g;
5. if Lg(n1) ∈ X andLg(n2) ∈ X andLg(n1) = Lg(n2), then

n1 = n2, i.e., every variable ofg labels one and only one node
of g; and

6. for eachn ∈ Ng, eithern ∈ Rootsg or there is a path fromr
to n wherer ∈ Rootsg, i.e., every node ofg is reachable from
some root ofg.

A graphg is called aterm(graph) if Rootsg is a singleton.

For a given graphg and a noden in g we denote byg|n the sub-
graphof g rooted byn, cf. [15, Definition 5]. Moreover, we make
explicit use of the notion ofpointer redirection[15, Definition 8]
which intuitively moves all the edges of the graph going into a node
(typically the root of a redex) to another node (typically the root of
the redex’s replacement) while leaving everything else unchanged.

A program is a constructor based, limited overlapping, induc-
tively sequential graph rewriting system, abbreviated GRS. In
short, constructor based[22] means that the signature is parti-
tioned into(data) constructorand(defined) operationsymbols. In
a rewrite rule, which is a pair of terms denotedl → r, the root
of the left-hand sidel is labeled by an operation whereas every
other node is labeled by a constructor or a variable.Inductively
sequential[2] means that the set of left-hand sides of all the rules
rooted by the same operation, modulo a renaming of nodes and/or
variables, can be organized in a hierarchical structure called adefi-
nitional tree[2]. The existence of this structure is instrumental for
the definition of an efficient evaluation strategy and for ensuring
other interesting properties of computations.Overlapping induc-
tively sequential[3] means that overlapping of (the left-hand sides
of) rewrite rules may only be trivial, i.e., two overlapping left-hand
sides may differ only in the names of nodes and variables.Limited
overlapping inductively sequential[7] means that the only overlap-
ping rules are those of an operation, calledchoiceand denoted by
the infix operator “?”, defined by:

x ? y = x
x ? y = y

(6)

Overlapping originating from other rules can be eliminated, with-
out altering the computations, using the choice operation [3]. For
example, the operationgive defined in (2) can be re-coded without
overlapping as:

give Ap = Ap ? ABp
give Op = Op ? Ap ? Bp ? ABp
...

(7)

An expressionis a term graph labeled by the symbols of the sig-
nature or by variables in which no cycle contains an operation. A
valueis a term graph labeled by variables and constructor symbols
only. With some liberty, we say that a symbol, a rewrite rule, etc.,
belong to a GRS, if they belong to the signature of the GRS or to
the set of rewrite rules of the GRS, etc.

A computationis a sequence ofrewrite steps, where a rewrite
stepreplacesin an expression an instance of the left-hand side of a
rewrite rule with the corresponding instance of the right-hand side.
The reflexive and the transitive reflexive closure of→ are denoted
→

=
and

∗
→, respectively. When useful, a step will be denoted with

attributes such as the node of the replaced subgraph and/or the
applied rule as in→n,R.

Functional logic computations are sequences of rewriting and/or
narrowing steps. Anarrowing stepgeneralizes a rewrite step in
that it is applied to expressions that may contain logic (unbound)
variables. These variables may be instantiated by the narrowing
step. For example, whenhas y is evaluated in an execution of
(4), y is unbound, and a narrowing step would instantiate it to
"John" or "Doug", etc., non-deterministically. Loosely speaking,
the following program is equivalent to (4) but executes rewriting
steps only.

donorFor x
| give (has y) =:= has x & x =/= y
= y
where y = "John" ? "Doug" ? "Lisa"

(8)

Narrowing is a very convenient programming feature, but at the
computation level it can be replaced by rewriting. [9] formalizes
the equivalence of narrowing and rewriting when logic variables
are replaced by non-deterministic expressions and vice versa. Thus,
in this paper, we regard computations as sequences of rewrite steps
without too much loss of generality.

Finally, we recall that a noded dominatesa noden in a rooted
graphg if every path from the root ofg to n containsd.

5. Implementation
We do not know how to definegetAllValues with ordinary
rewrite rules. We think that this is impossible because the seman-
tics of non-determinism should ensure that the programmer has
no control on which non-deterministic alternative of choice is se-
lected. The lack of an ordinary definition ofgetAllValues forces
us to rely on somebuilt-in mechanism of an interpreter or virtual
machine. Built-ins are unavoidable in practical programming lan-
guages; e.g., arithmetic operators, I/O functions and many system
activities, such as getting the current time, are built-in. The rewrit-
ing model accommodates built-ins relatively easily.

Below, we describe an abstract implementation of the primitive
getAllValues. Our treatment is independent of the details of a
concrete implementation. We assume the existence of a rewrite
rule:

getAllValues x→ L (9)

wherex is a variable andL is an expression inaccessible to the
programmer (i.e., built-in), which represents “the yet uncomputed
portion of the computation space ofx.”

The evaluation ofL, which depends onx, is conceptually quite
similar to the top-level computation of the program, but nested
inside it. For everyx, the computation space ofx is constructed or
traversed—on-demand or as-needed, since it may be infinite. The
value ofL is obtained as follows:

1. Initially, L is a representation ofS(x).

2. If L contains some values, thenL evaluates tov:L′, wherev
is a value ofx andL′ is a new built-in expression, similar to
L, which represents the same space asL, but with the portion
that producedv removed. The evaluation ofL′ may produce
another valuev′ of x and a new built-in tailL′′, and so on.

3. If L is finite and contains no values, thenL evaluates to[].

4. Otherwise,L is undefined and evaluatinggetAllValues x
does not terminate, i.e., the execution ofgetAllValuesx takes
forever.

The implementation sketched above is compatible with a rewriting
model with a lazy evaluation strategy such as the one we are
considering. However, some problems arise from the interaction of
getAllValues with other features of the language, in particular,
sharing and the order of evaluation. These interactions are the
subjects of the next two sections.

6. Order of Evaluation
A key semantic property of declarative languages is the “indepen-
dence of the order of evaluation.” This property intends to free the
programmer from some difficult details of a computation and to
make reasoning about programs simpler. If an expressione has a
value, that value should be produced in a finite amount of time us-
ing only a finite amount of memory. It is up to an implementation’s
strategy to ensure this property by choosing which steps ofe to exe-
cute and in which order. Generally, the programmer has no detailed
knowledge of these choices and limited control over them.

When a program is modeled by a rewrite systemR, the in-
dependence of the order of evaluation is often formulated as the
confluence ofR. However, the non-deterministic GRSs that model
functional logic languages are not confluent. Thus, some attention
is required to formalize the concept that we want to capture. Infor-
mally, if an expression allows two steps atdifferent locations, the
results of a computation are not affected by which step is executed
first.

DEFINITION 7 (Deterministic confluence).
LetR be a GRS. We say thatR is deterministically confluentif and
only if for every expressiont and stepst →n1

t1 and t →n2
t2

with n1 6= n2 there exist expressionsu1 andu2 such thatt1 →
=

u1

andt2 →
=

u2 andu1 = u2 modulo a renaming of nodes.

Our definition differs from the standard notion of confluence [10,
11] in that we explicitly exclude different steps at thesamelocation.
Obviously, these steps break the confluence. Referring to the initial
example,give Ap allows two different steps at the root. These steps
yield Ap andABp which are normal forms and therefore cannot be
joined into a common expression.

THEOREM 1.
A constructor based GRS is deterministically confluent.

PROOF. In a constructor based GRSs two redex patterns overlap if
and only if they have the same root. Condition 5 of [15, Def. 2],
i.e., that all the occurrences of a variable are shared, is essential to
the claim.�

The operationgetAllValues invalidates the deterministic conflu-
ence of GRSs.

EXAMPLE 1.
Consider the expressiont = getAllValues (give Ap). If the
evaluation starts at the root oft, the value oft is [Ap, ABp].
However, ifgive Ap is evaluated first,t has two values,[Ap] and
[ABp]. The intended value oft is produced by the first computation.
In the second computation, the argument ofgetAllValues is
“prematurely evaluated.”

Example 1 provides an intuitive notion of “premature evaluation”.
Formalising this notion requires some care. In the computation
of getAllValues (1+1), the evaluation of1+1 should not be
considered as premature no matter where or when it takes place.

DEFINITION 8 (Deterministic step).
LetR be a GRS,t an expression ofR, andB = t →n u a step
of t at some noden. We say thatB is a deterministic stepiff there
exists no other stepB′ = t→n u′ of t distinct fromB.

THEOREM 2. LetR be a limited overlapping inductively sequen-
tial GRS, andt a term graph ofR. A stept→R u is deterministic
iff R is not a rule of“?” .

PROOF. In a limited overlapping inductively sequential GRS, the
only rules with overlapping left-hand sides are the rules defining
“?”. �

DEFINITION 9 (Premature evaluation).LetR be a GRS,t an ex-
pression ofR, andgetAllValues e a subexpression oft rooted
by a noden. We say that a stept→m t′ prematurely evaluatese iff
the step is non-deterministic and there exists a path int from n to
m.

The dependence on the order of evaluation introduced by the primi-
tivegetAllValues is undesirable. The premature evaluation of the
argument ofgetAllValues is a problem only in particular situa-
tions that we will discuss shortly. We begin with simple conditions
sufficient to ensure that an expression is not prematurely evaluated.

THEOREM 3. LetR be a TRS,f an operation ofR defined by a
single rule of the formf(x) → r, wherex is a variable andr is
any term,t any term ofR of the formC[f(e)], whereC[] is any
context ande is any term. In any outermost computation oft, f(e)
is reduced before any reduction insidee.

PROOF. If, for any contextC[] and terme, a step of the computa-
tion of t were of the formC[f(e)] →n C[f(e′)], with n a node
of e, the computation oft would not be outermost, sincef(e) is a
redex.�

Both conditions of Th. 3, i.e., thatR is atermrewriting system (as
opposed to agraph) and that the strategy isoutermost, are neces-
sary and are violated when it comes to functional logic languages.

An outermoststrategy for a TRS never reduces an expression
if there exists another reducible expression above it. In a GRS, the
notion of being “above” becomes ambiguous. A subexpressione
of an expressiont could be reachable from the root oft through
two different paths, a situation informally referred to as sharing
and addressed in the next section. Thus,e could be outermost along
one path, but not along another one. Therefore, we must either de-
velop new strategies or reconsider the notion of outermostness [15,
Def. 27].

DEFINITION 10 (Outermost strategy for GRSs).
We say that a strategys for a GRS isoutermostiff for every step
t →n t′ computed bys, there exists a path from the root oft to n
such that the only redex on this path ist|n.

Issues concerning the order of evaluation are even more compli-
cated in practice because current functional logic languages, such
as Curry [17] andT OY [20], are not executed with an outermost
strategy. The reason is that outermost strategies are incomplete for
these languages, see [4] for a discussion and an example. The in-
completeness of outermost strategies stems from unrestricted over-
lapping of the left-hand sides of rules, which is allowed in these
languages. We argue [4] that unrestricted overlapping is unneces-
sary, if not harmful, and that the class of the overlapping induc-
tively sequential programs [3] is a better model for functional logic
languages. Any constructor based conditional rewrite system can
be mapped to an overlapping inductively sequential rewrite system
that executes the same computations [4]. A sound, complete and
optimal outermoststrategy is available for the overlapping induc-
tively sequential rewrite systems [3, 5]. Optimality in the presence
of non-deterministic steps is a subtle concept. A non-deterministic
choice is appropriately coded when the programmer does not know
which alternative of the choice is best. Obviously, the strategy can-
not be expected to choose the best alternative. In this context, a
strategy is optimal only if it chooses alternative of choices that must
be made to obtain the result(s) of a computation.

7. Sharing
The semantics of non right-linear rules is particularly relevant for
non-deterministic expressions. For example, consider the program:

f x = x + x (10)

When the expressionf (0 ? 1) is evaluated, the two occurrences of
x in any instance of the right-hand side of (10) share the same bind-
ing at all times. This semantics is calledcall-time choicein [19].
Under the call-time choice semantics, multiple occurrences of a
variable are referred to asshared, since they share the same value.
By contrast, ordinary term rewriting ignores sharing originating
from non right-linear rewrite rules. Without sharing, the expres-
sionf (0 ? 1) may evaluate to 1, which is not obtainable using the

call-time choice semantics. In this context, the behavior of ordinary
term rewriting is referred to as theneed-time choicesemantics.

Graph rewriting elegantly captures the call-time choice seman-
tics in condition 5 of [15, Def. 2]. Various other frameworks have
been proposed to formalize the behavior of the call-time choice se-
mantics (e.g., [1, 16]). We find term graph rewriting [15] appealing
because it is very close to implementation models in imperative
languages and promises evaluation strategies [6] inherently more
efficient than those developed for term rewriting.

Sharing substantially complicates computing with subspaces.
For example, suppose that we group the donors of Example (3)
into families:

family = (Family ("John" ? "Lisa"))
? (Family "Doug") ...

(11)

Now, we could write a function like this:

f (Family x) | x=="John"
= getAllValues (has x)

(12)

The condition is syntactic sugar. From a rewriting viewpoint, the
program is:

f (Family x) = if x=="John"
then getAllValues (has x)
else failed

(13)

where theif·then·else function is defined as usual, the variable
x is shared in the right-hand side of the rule off and the symbol
failed is a non-reducible function [18, Sect. 2.3.2] (i.e., the
expressionfailed is not a value).

Suppose that we evaluatet = f family. What should the value
of t be?

If the programmer had the call-time choice semantics in mind,
both occurrences ofx in the rule of f have the same binding.
Hence,t would evaluate to[ABp]. The call-time choice makes
getAllValues in the rule off totally ineffective, which probably
is not what the programmer intended.

If the programmer had the need-time choice semantics in mind,
each occurrence ofx in the rule off is independent of the other.
Hence,t would evaluate to all the blood types of John’s family, i.e.
[ABp,An]. It seems obvious that this is a more sensible semantics
for this expression. However, just a slight change of the example
strongly favors the opposite view:

f (Family x) | x=="John"
= getAllValues (give x)

(14)

Now thegetAllValues in the rule off is effective, sincegive is
a non-deterministic function. The call-time choice semantics now
yields all the blood types that can be given to John whereas the
need-time choice semantics yields all those that can be given to
one of the members of John’s family. We have the impression that
the choice of the right semantics is not simple and that function
definitions like the ones in Examples (12) and (14) are dangerously
ambiguous.

In both cases, the problem originates from the fact thatx in
the right-hand side of the rules is shared between a subspace and
the subspace’s context. In this situation both the call-time and the
need-time choice semantics are problematic.

[12] contains a similar discussion of the problems of sharing be-
tween an “encapsulation” and its “outside”. Encapsulation and out-
side more or less correspond to our notions of a subspace and its
context, although these concepts are not formally defined in [12].
The focus of the discussion in [12] is whether the evaluation of

getAllValues is ensured to be deterministic or not. “Strong en-
capsulation” ensures a deterministic evaluation whereas “weak en-
capsulation” does not in all cases. [12] points out that strong encap-
sulation is desirable for instance in the context of I/O operations.

Our approach is to avoid the ambiguities of interpretation shown
by the above examples by a discipline of sharing described in
the next section. We restrict the derivations in such a way that
obtaining a strong encapsulation is straightforward. In particular,
for derivations which arevalid in the sense to be defined below the
differences between the approaches discussed in [12] disappear.

8. Validity
The previous sections have shown that, when computing with sub-
spaces, sharing may lead to premature evaluation of the argument
of getAllValues that in turn might lead to unintended results.
Furthermore, somea priori fixed choices to handle sharing, such as
weak and strong encapsulation, permit coding and executing pro-
grams, such as (12), that appear questionable. To correct the situ-
ation, some programs and/or computations must be prohibited. In
this section, we define computations that we accept as valid. In the
next section, we will show that it is easy to code programs lead-
ing only to valid computations and with minimal loss of expressive
power.

Characterizing undesirable sharing in a subspace is not a trivial
task. [12] contains a wish list for future implementations of func-
tional logic languages, which says that “Some work has to be in-
vested to clearly define “the outside” [of an encapsulated search]”.

We would like to characterize non-deterministic expressions,
i.e., expressions whose evaluation executes a non-deterministic
step. Unfortunately, this problem is undecidable. But there exists a
sufficient condition to ensure that the evaluation of an expression
will not execute non-deterministic steps. In other words, ensure
that an expression is deterministic.

DEFINITION 11 (Depend on).LetR be a GRS andf andg oper-
ations ofR. We say thatf depends ong if there exists a rule off in
whose right-hand side there occurs an operationh such that either
g = h or h depends ong.

DEFINITION 12 (Deterministic expression).
LetR be a limited overlapping inductively sequential GRS andt
an expression ofR. We say thatt is deterministicif and only if no
operation occurring int depends on“?”.

DEFINITION 13 (Unshared expression).LetR be a GRS,t an ex-
pression ofR of the formC[f(e)], wheref is an operation,e an
expression andC[] is a context. Letn andm be the roots off(e)
ande, respectively. We saym is unshared forn in t, or more simply
that e is unshared forf when nodes and context are understood
from the discussion, if and only if eithert|m is a deterministic ex-
pression orn is a dominator ofm and of all the descendants ofm
in t.

The above definitions intend to capture the situation in which a
non-deterministic expressione is shared by a subspace and its
context. In many cases, the intent is that the evaluation ofe should
contribute all the values ofe to the subspace, but only one value to
the context. Sincee is shared, the premature evaluation ofe and the
call-time choice semantics become problematic. We will soon show
that it is not difficult to avoid undesired sharing in most practical
programs.

THEOREM 4. LetR be a limited overlapping inductively sequen-
tial GRS andt an expression ofR. If e is an unshared expression
for getAllValues in t, thene will not be prematurely evaluated
in any outermost computation oft.

PROOF. If e is deterministic, the claim stems directly from Def. 9.
Otherwise, by (9),getAllValues e is a redex. Sincee is unshared,
by Def. 10 no redex at or belowe is outermost. Soe will not be
evaluated beforegetAllValues e is reduced.�

The previous result provides a sufficient condition to ensure that
e is not prematurely evaluated int = C[getAllValues e]. Un-
fortunately, when the evaluation oft starts, it is possible that the
computation space ofe has already been pruned. The following
program shows the point.

f x = g (x, x)
g (0, y) = getAllValues y

(15)

The evaluation off(0 ? 1) leads tot′ = getAllValues 0. When
t′ is evaluated,0 is unshared forgetAllValues in t′, but of course
it is the result of pruning the space of0 ? 1.

We would like to be able to tell when an argumente′ of an
application ofgetAllValues originates from some expressione,
i.e., e

+
→ e′, such thatS(e′) 6= S(e). We do not know how

to determine that, but we have a practical sufficient condition to
ensure thatS(e′) = S(e).

DEFINITION 14 (Tagging).LetR be a limited overlapping induc-
tively sequential GRS,t0 an expression ofR, andB = t0 → t1 →
. . . a computation ofR. For everyti in B, tagi is a mapping from
the nodes ofti to {◦, •} defined by induction on the indexi as fol-
lows:

1. Base case: the index is 0. We definetag0(n) = ◦, for every
n ∈ Nt0 .

2. Ind. case: the index isi + 1, and by the induction hypothesis,
tagi is defined. Letti →p,R,h ti+1 be thei-th step ofB, where
p is a node ofti, R = l → r is a rule ofR, and h is the
homomorphism matchingl to ti|p. We recall thatti+1 is de-
fined [15, Def. 23] asti[p ← h(r)], which is defined [15, Def.
9] as ρ(ti + h(r))|ρ(Rootsti

), whereρ is the pointer redirec-
tion [15, Def. 8] function.
We definetagi+1(n) by cases as follows:

tagi+1(n)
n=ρ(p)

=

8

>

<

>

:

• if R is a rule of“?” ,
or, for some non-variable
nodem ∈ Nl, tagi(h(m)) = •;

tagi(p) otherwise.

tagi+1(n)
n6=ρ(p)

=

8

<

:

◦ if n = ρ(h(n′)), n′ ∈ Nr,
andLr(n) is not a variable;

tagi(n) otherwise.

Intuitively, the root of a replacement resulting from a non-determi-
nistic step or depending on a non-deterministic step (1st case) is
tagged with•, otherwise it assumes the tag of the root of the redex
(2nd case). A node created by a step is tagged with◦ (3rd case).
Finally, a node passed along by a step maintains its tag (4th case).

For example, consider again program (15). To ease the reading,
we display the tag of a node as a superscript and we omit the◦ tag.

f (0 ? 1) → g (0 ? 1 ,0 ? 1)
→ g (0•, 0•)
→ getAllValues 0•

(16)

Def. 14 involves some subtle points that we try to clarify with the
following example. Consider the function that computes the length
of a list:

len [] = 0
len (:xs) = 1 + len xs

(17)

In the following computations tagging is displayed as in the previ-

ous example:

len[(0?1)] → len[0•] → 1+len[] → 1+0 → 1
len([0]?[]) → len[0]•→ 1+•len[] → 1+•0 → 1•

len([0]?[1]) → len[0]•→ 1+•len[] → 1+•0 → 1•

(18)
The first computation executes a non-deterministic step which is
“forgotten” since the non-determinism of the step does not affect
following steps. The second computation correctly recognizes that
the result depends on a non-deterministic step. The third computa-
tion is a “false positive.” The result depends on a non-deterministic
step, but any other choice would have produced the same result. We
do not think that there is a practical way of avoiding false positives.

Tagging allows us to detect when a step ofgetAllValues
might produce unintended results because previous steps of the
computation might have pruned the computation space of the ar-
gument.

THEOREM 5. LetR be a limited overlapping inductively sequen-
tial GRS andB = t0 → t1 → . . . ti a computation ofR. If, for
every noden of ti, tagi(n) = ◦, thenS(t0) = S(ti) modulo a
renaming of nodes.

PROOF. Obviously,S(ti) ⊆ S(t0), thus we only need to prove the
opposite containment. Letu be a value ofR such thatt0

∗
→ u.

We prove thatti
∗
→ v, whereu andv differ only for a renaming

of nodes. If every node of every expression ofB is ◦-tagged, then
the claim stems from the deterministic confluence ofR ensured
by Th. 1. Otherwise, we construct a new computation ofR, B′ =
t′0 →

=
t′1 →

=
. . . t′i and we show thatt′0 = t0 andt′i = ti and every

node ofB′ is ◦-tagged. Intuitively, to constructB′, first, we “mark”
in every expression ofB every •-tagged node and every node
dominated by it. The marking defines a “waterline” that partitions
each expression. The portion above the waterline is unaffected by
the portion below the waterline and non-deterministic steps affect
only the portion below the waterline. Then, we obtainB′ fromB by
“skipping” every step whose replacement has some marked node.
This defines a sequence of expressionst′0, t

′
1, . . . t

′
i. Formally, by

induction onk, we define the termt′k, and we claim thatt′k →
=

t′k+1, the non-marked portions oftk andt′k are isomorphic (equal
modulo a renaming of nodes [15, Def. 10]), and every node of
t′k is ◦-tagged. The base case, is immediate. For the inductive
case, assume the claim for all the expression ofB′ up tok. If the
replacement of the steptk → tk+1 has some marked node, then
t′k = t′k+1 and the claim is a direct consequence of the induction
hypothesis. If the replacement of the steptk → tk+1 has no
marked node, thent′k → t′k+1 uses the same rule on an isomorphic
redex and, again, the claim is a direct consequence of the induction
hypothesis. Since by hypothesisti has no marked nodes,t′i = ti

modulo a renaming of nodes and this proves the claim.�

DEFINITION 15 (Validity). LetR be a limited overlapping induc-
tively sequential GRS,t0 an expression ofR, and B = t0 →
t1 → . . . a computation ofR. We say thatB is valid iff, for ev-
ery stepti → ti+1 that reducesgetAllValues e, e is unshared
for getAllValues in ti and every node ofe is ◦-tagged.

It is not difficult to check the validity of a computation at run-
time. Tagging is a very fast operation. It consumes a single bit of in-
formation for every node of an expression, and its time-complexity
is linear in the size of a redex replacement. Checking whether the
argument of an application ofgetAllValues is unshared is an
efficient computation, too. It must be performed only once when
getAllValues is applied, and its time-complexity is linear, in the
worst case, in the size of the expression being evaluated.

With an outermost strategy, valid computations in limited over-
lapping inductively sequential GRSs do not suffer from the prob-
lems discussed in Sections 6 and 7. In particular, all the approaches
discussed in [12] behave identically for valid computations, since
there is no sharing of non-deterministic expressions of a subspace
with the “outside.” The overall cost of ensuring the validity of a
computation seems modest and acceptable. The only remaining
problem is to assess how difficult and/or inconvenient it is for a
programmer to code programs that prevent invalid computations.
This is addressed in the next section.

9. Programming
In this section, we show how to resolve the ambiguities, discussed
in Sections 6 and 7, arising when a non-deterministic expression is
shared between a subspace and its context. There is no single solu-
tion to resolve all the situations. Rather, we present two approaches.

One approach eliminates undesirable sharing between a sub-
space and its context using the results of Section 8. Roughly speak-
ing, we lift the non-deterministic shared expressions above the sub-
space and share only deterministic expressions. This is achieved by
simulating the need-time choice semantics, which is not directly
available in the language. For the simulation, we use only standard
features—interestingly enough, we rely on subspaces. The other
approach preserves non-deterministic expressions shared between
a space and its context for problems where this sharing is intended.
These expressions must be evaluated according to the standard call-
time choice semantics. Our definition ofgetAllValues does not
handle this situation since we stipulated thatgetAllValues should
return a fair enumeration ofall the values of its argument. Also
Curry does not handle this situation since there are no syntactic
or semantic constructs in the language to distinguish the two ap-
proaches.

We begin with the approach that eliminates non-deterministic
sharing. To simulate the need-time choice semantics, we define the
following non-deterministic operation:

chooseValue (u:v) = u ? chooseValue v (19)

The operationchooseValue is a left inverse ofgetAllValues.
The following result formalizes this relationship.

THEOREM 6 (Left Inverse).
Let R be an ARS andt and v an expression and a value ofR,
respectively. LetR’ extendR with the data type list and the oper-
ationsgetAllValues, chooseValue, “ ?”. If t

∗
→ v in R, then

chooseValue(getAllValues(t))→ v inR’, and vice versa.

PROOF. If v is a value oft andL = getAllValues(t), then, for
somei ≥ 0, the i-th element ofL is v. By induction oni, v is a
value ofchooseValue(L). The vice versa is analogous.�

An example shows how to simulate the need-time choice semantics
using the operationchooseValue. The following program is very
similar to (10), which was used to explain the call-time choice se-
mantics.

f x = chooseValue z + chooseValue z
where z = getAllValues x

(20)

Thewhere clause is syntactic sugar. The meaning of the program
is [17, p. 80]:

f x = g (getAllValues x)
g z = chooseValue z + chooseValue z

(21)

Observe thatx is unshared forgetAllValues in the above frag-
ment. Thus, any outermost computation oft = f (0 ? 1), whenf

is defined by (20), is valid. Th. 6 ensures that ifu andv are any two
values ofx, thenu + v is a value oft. By contrast, program (10)
only adds to itself any value ofx.

In general, the sharing of an expression between a subspace and
its context originates from a non-right linear rule of the form:

f(. . . x . . .)→ g(. . . x . . . x . . .) (22)

For simplicity, we assume that this is the only rule creating multiple
occurrences ofx. During a computation, an instance of the right-
hand side evaluates tot = C2[x][getAllValues(C1[x])], where
C2[][] and C1[] are contexts. If the intended semantics of the
evaluation ofx is the need-time choice, we replace (22) with:

f(. . . x . . .)→ h(. . . getAllValues(x) . . .)
h(. . . y . . .)→ g(. . . chooseValue(y) . . . chooseValue(y) . . .)

(23)
With the above transformation,chooseValue(y) eventually re-
placesx in t. In the transformed program, any expression bound to
y is shared between a subspace and its context, but this expression
is deterministic. Furthermore, any expression bound tox, which
might be non-deterministic, is no longer shared between a subspace
and its context. The correctness of the above transformation is for-
malized below.

THEOREM 7 (Transformation correctness).
LetR be a limited overlapping inductively sequential GRS,t an
expression ofR of the formC2[x][getAllValues(C1[x])], where
C2[][] and C1[] are contexts and the intended semantics of the
evaluation ofx is the need-time choice. Let

t′=C2[chooseValue(y)]
[getAllValues(C1[chooseValue(y)])]

where y =getAllValues(x).

1. (Soundness) Ift′
∗
→ v, thent

∗
→ v;

2. (Completeness) Ifva andvb are values ofx such that

C2[va][getAllValues(C1[vb])]→ v,

thent′
∗
→ v.

PROOF. Soundness: let[. . . va . . . vb . . .] be a fair enumeration of
getAllValues(x), where va and vb are the choices made by
chooseValue for the two occurrences ofx in t′, i.e.,

t
′ ∗
→ C2[va][getAllValues(C1[vb])]

∗
→ v.

By Th. 6, t
∗
→ C2[va][getAllValues(C1[vb])] as well, and the

claim follows. Completeness: letva andvb values ofx such that
t

∗
→ C2[va][getAllValues(C1[vb])]→ v.

Then,[. . . va . . . vb . . .] is fair enumeration ofgetAllValues(x).
By Th. 6, for some choices ofchooseValue,

t
′ ∗
→ C2[va][getAllValues(C1[vb])]

as well, and the claim follows.�

The existence of values ofx in the statement of the completeness
of the above theorem is a necessary condition. Without this con-
dition the transformation does not preserve the semantics of some
programs. For example, consider:

f x | head (getAllValues (x /= []))
= head x

(24)

and the expressiont = f [1..]. There is a rewrite derivation oft
to 1. Recall that[1..] evaluates to the infinite list[1,2,3,. . .],
hence it has no values. The computation space of[1..] is infinite
and has no leaves.

Our transformation applied to (24) yields:

f x | head (getAllValues (chooseValue y /= []))
= head (chooseValue y)
where y = getAllValues x

(25)

SincegetAllValues [1..] does not terminate, according to (25)
f [1..] does not terminate as well.

Our transformation works in programs where the result of a
computation depends only on thevaluesof some expressione
shared between a subspace and its context, where byvaluewe mean
a constructor normal form ofe, as opposed to some term or head
normal form derived frome. We have not found practical programs
that violate the above condition. Sharing an expressione between a
subspace and its context should be an unfrequent circumstance in a
meaningful program, since in the subspace the program depends on
all the values ofe, whereas in the context the program depends on
one specific valuee only. In fact, when this kind of sharing occurs,
see then-queens program below, the non-determinism ofe is better
left out of the subspaces, i.e., the program depends on only one
value ofe. Furthermore, the situation is compounded by the fact
thate doesnot have a value, but it still determines the result of the
computation, another unfrequent circumstance.

We now turn our attention to programs where sharing be-
tween a subspace and its context is intended. Shared subexpres-
sions are evaluated according to the regular semantics, i.e., the
call-time choice. The problem is the non-determinism of a shared
subexpression. In this case, loosely speaking, an occurrence under
getAllValues should not contribute more than one value to the
computation space. We clarify this subtle point with an example.

The problem is the well-knownn-queenspuzzle: placen queens
on an × n board so that no queen captures any other queen. A
typical solution represents a placement of the queens on the board
as a permutationp of the integers1, 2, . . . n. If the i-th element of
p is j, a queen occupies the board square at coordinates(i, j).

A program designed around the generate and test pattern non-
deterministically generates a permutationp and tests whetherp is
safeaccording to the rules of the puzzle. A conceptually simple
approach to test the safety of a permutation is by means of a
constraint,unsafe, that takes a placement of the queens on the
board and succeeds if two non-deterministically chosen queens
of the placement capture each other. If, for a permutationp, the
computation space ofunsafe p has no values — i.e., there are no
pairs of queens capturing each other — thenp is a solution of the
puzzle.

In Curry we code the above program as follows, wherelength,
abs andpermute are library operations with the obvious mean-
ings.

queens n = safe (permute [1..n])
safe p | getAllValues (unsafe p) == [] = p
unsafe (++i:z++j:) = abs (i-j)-1 =:= length z

(26)

The definition ofunsafe relies onfunction patterns, a feature re-
cently added to the PAKCS implementation of Curry. A slightly
more verbose and less elegant formulation that relies only on
rewriting is easy to code.

There are two noteworthy aspects of the above program. The
variablep in the rule ofsafe is shared between a subspace and
its context. Althoughp is bound to a non-deterministic expression,
i.e.,permute [1..n], the intent is thatp should contribute only a
single value to the subspace. This is the value being returned by the
program. Informally, the specification of the program is “If there
exists a placementp of queens on the board such that, for all pairs
(i, j) of queens of the placement,i does not capturej, thenp is a
solution.” The code is a direct translation of this specification, and
it relies on a subspace for ensuring that all the pairs of queens on
the board are checked for safety.

The execution of this program is particularly challenging be-
cause it is required to evaluate the entire subspace in whichp oc-
curs before the evaluation ofp in the context of that subspace. The
natural order of evaluation would use all the values ofp to compute
the subspace before returning one value ofp, when the condition of
safe is satisfied. In Curry, there is no explicit mechanism to encode
in a program that the non-determinism of an expression should be
excluded from a subspace.

In the above example, an unsatisfactory solution to exclude the
non-determinism ofp from the computation space ofunsafe p is
to evaluatep to a normal formbeforeunsafe p is evaluated. This is
relatively simple, since in a conditional rule, the condition is evalu-
ated before the right-hand side. However, in general, this approach
has substantial drawbacks. The evaluation of some expressione to
a value to exclude the non-determinism ofe from a subspace poten-
tially changes both the semantics and the efficiency of a program.

10. Related Work
Primitives for computing with subspaces are present in many im-
plementations of Curry. Differences among implementations con-
cern sharing between a subspace and its context. The MCC com-
piler [21] adopts a particular form of call-time choice for shared en-
capsulation. By contrast, the KICS compiler [13] adopts the need-
time choice. In addition, both compilers feature the encapsulation
proposed in [12] (see below). The PAKCS [18] interpreter adopts a
particular mix of both semantics that depends on the order of eval-
uation and is strict.

Work on formalizing computations with subspaces is scarce.
In [12] the space of a computation is explicitly represented as
a tree-like data structure, functions are encoded to traverse this
structure according to a depth-first and a breadth-first strategy, and
an operational semantics based on [1] is defined for computing
the computation space. The intent is to compute with subspaces
only within the IO monad to ensure that top-level computations are
deterministic.

Encapsulated search is also an important topic in the closely
related field ofconstraint programming. A comprehensive descrip-
tion of different operational aspects of encapsulated search in the
context of the programming constraint services and constraint com-
binators is [26]. Search spaces are organized in a so calledspace
tree. [26, Section 10.3.2] also constitutes a validity condition called
admissibility restricting certain manipulations of the space tree,
namelymergingand injection. The key idea of admissibility is to
keep the space tree free of cycles. In contrast, the validity condi-
tion discussed in Section 8 is concerned – in terms of [26] – with
the relation of asuperordinatedspace to itssubordinatedspaces.
The problems discussed here do not transfer to constraint program-
ming; the operational behavior oftell [26, Section 10.2] forwards a
non-deterministic choice to allsubordinatedspaces. This has great
resemblance toweak encapsulation[13] and would suffer from the
problems discussed in Section 7 when transferred from constraint
programming to our setting.

With respect to [12], we offer more formal definitions and
prove non-trivial properties of our concepts. In several areas, our
work and [12] complement each other. E.g., our definition of
getAllValues is abstract. An implementation of this abstraction
is likely to rely on a representation of a subspace similar to that
proposed in [12, Sect. 2.1]. We are not explicitly concerned with
ensuring that top-level computations are deterministic, but our ap-
proach can be used to the same aim. By contrast to [12], we adopt a
declarative semantics, we argue that the order of evaluation is a cru-
cial element of computing with subspaces, and we define a concept
of validity that makes the difference between call-time and need-
time choice vacuous for encapsulation. We also show that some
programs intend to share a non-deterministic expressione between

a subspace and its context by excluding the non-determinism ofe
from the computation of the subspace. A construct for this situation
is missing from current functional logic languages.

11. Conclusion
This paper explores problems and potential solutions of an essen-
tial feature of functional logic programming languages modeled
by graph rewriting, the accessibility of all the values of a non-
deterministic expression within a program. We motivate this feature
with some examples, formally define this feature, and show that
without some restrictions this feature is incompatible with other
features of the language, in particular the independence of the or-
der of evaluation and the call-time choice semantics.

To resolve these incompatibilities, we define several concepts,
such as deterministic confluence, premature evaluation, tagging,
and eventually the validity of computations with subspaces. We
propose a simple transformation that replaces non-deterministic ex-
pressions shared between a subspace and its context with deter-
ministic expressions. The transformation preserves the semantics
of programs that depend only on the values of shared expressions,
and the transformed programs execute only valid computations.

We also show that for some programs this transformation does
not capture the intended semantics. A functional logic language
should enable some construct for excluding from a subspace all the
values of some non-deterministic expression.

Acknowledgments
We are grateful to Michael Hanus, Wolfgang Lux and Khai Pham
for comments and discussions on the subject of this paper.

References
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational

semantics for declarative multi-paradigm languages.Journal of
Symbolic Computation, 40(1):795–829, 2005.

[2] S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors,
Proceedings of the Third International Conference on Algebraic and
Logic Programming, pages 143–157, Volterra, Italy, September 1992.
Springer LNCS 632.

[3] S. Antoy. Optimal non-deterministic functional logic computations.
In Proceedings of the Sixth International Conference on Algebraic
and Logic Programming (ALP’97), pages 16–30, Southampton, UK,
September 1997. Springer LNCS 1298.

[4] S. Antoy. Constructor-based conditional narrowing. InProceedings
of the Third ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pages 199–206. ACM
Press, 2001.

[5] S. Antoy. Evaluation strategies for functional logic programming.
Journal of Symbolic Computation, 40(1):875–903, 2005.

[6] S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-
deterministic graph rewriting. InProc. of the 3rd International
Workshop on Term Graph Rewriting, Termgraph’06, pages 61–70,
Vienna, Austria, April 2006. Extended version to appear in ENTCS.

[7] S. Antoy, D. Brown, and S. Chiang. On the correctness of bubbling.
In F. Pfenning, editor,17th International Conference on Rewriting
Techniques and Applications (RTA’06). Springer, 2006.

[8] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for
functional logic languages. InProceedings of the 14th International
Conference on Logic Programming (ICLP’97), pages 138–152,
Leuven, Belgium, July 1997.

[9] S. Antoy and M. Hanus. Overlapping rules and logic variables
in functional logic programs. InTwenty Second International
Conference on Logic Programming, pages 87–101, Seattle, WA,
Aug. 2006. Springer LNCS 4079.

[10] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge
University Press, 1998.

[11] M. Bezem, J. W. Klop, and R. de Vrijer (eds.).Term Rewriting
Systems. Cambridge University Press, 2003.

[12] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism
in functional logic computations.Journal of Functional and Logic
Programming, 2004(6), 2004.

[13] B. Braßel and F. Huch. Translating curry to haskell. InProc. of
the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic
Programming (WCFLP 2005), pages 60–65. ACM Press, 2005.

[14] N. Dershowitz and D. A. Plaisted. Equational programming. In J. E.
Hayes, D. Mitchie, and J. Richards, editors,Machine Intelligence 11,
chapter 2, pages 21–56. Claredon Press, Oxford, 1988.

[15] R. Echahed and J.-C. Janodet. On constructor-based graph rewriting
systems. Research Report 985-I, IMAG, 1997. Available athttp://
citeseer.ist.psu.edu/echahed97constructorbased.html.

[16] J. C. Gonźalez Moreno, F. J. Ĺopez Fraguas, M. T. Hortalá Gonźalez,
and M. Rodŕıguez Artalejo. An approach to declarative programming
based on a rewriting logic.The Journal of Logic Programming,
40:47–87, 1999.

[17] M. Hanus (ed.). Curry: An integrated functional logic language (vers.
0.8.2). Available athttp://www.informatik.uni-kiel.de/
∼curry, March 28, 2006.

[18] M. Hanus (ed.). PAKCS 1.7.3: The Portland Aachen Kiel Curry
System. Available athttp://www.informatik.uni-kiel.de/
∼pakcs, Sept. 4, 2006.

[19] H. Hussmann. Nondeterministic algebraic specificationsand
nonconfluent rewriting.Journal of Logic Programming, 12:237–
255, 1992.

[20] F. J. Ĺopez-Fraguas and J. Sánchez-Herńandez. TOY: A multi-
paradigm declarative system. InProceedings of the Tenth In-
ternational Conference on Rewriting Techniques and Applications
(RTA’99), pages 244–247. Springer LNCS 1631, 1999.

[21] W. Lux. An abstract machine for the efficient implementation of
Curry. In H. Kuchen, editor,Workshop on Functional and Logic Pro-
gramming, Arbeitsbericht No. 63. Institut für Wirtschaftsinformatik,
Universiẗat Münster, 1998.

[22] M. J. O’Donnell. Computing in Systems Described by Equations.
Springer LNCS 58, 1977.

[23] E. Ohlebusch.Advanced Topics in Term Rewriting. Springer-Verlag,
2002.

[24] D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig,
G. Engels and G. Rozenberg, editors,Handbook of Graph Grammars,
volume 2, pages 3–61. World Scientific, 1999.

[25] Uday S. Reddy. Narrowing as the operational semantics offunctional
languages. InProceedings of the IEEE International Symposium on
Logic in Computer Science, pages 138–151, Boston, 1985.

[26] Christian Schulte.Programming Constraint Services: High-Level
Programming of Standard and New Constraint Services, volume
2302 ofLecture Notes in Computer Science. Springer, 2002.

[27] R. C. Sekar and I. V. Ramakrishnan. Programming in equational
logic: Beyond strong sequentiality.Information and Computation,
104(1):78–109, 1993.

