Computing with Subspaces

Sergio Antoy

Computer Science Department
Portland State University
P.O. Box 751
Portland, OR 97207, USA

antoy@cs.pdx.edu

Abstract
We propose a new definition and use of a primigeeAl1Values,

for computing all the values of a non-deterministic expression
in a functional logic program. Our proposal restricts the validity

of the argument ogetAllValues. This restriction ensures that

essential language features like the call-time choice semantics,
the independence of the order of evaluation, and the referential

transparency of the language are preserved vgeetillValues

is executed. Up to now, conflicts between these language feature

and primitives likegetAllValues have been seen as one of the
main problems for employing such primitives in functional logic
languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage§ Semantics—Subspaces; D.3.Brggramming Langua-
geg: Language Constructs and Features—Non-determinism;
F.4.2 Mathematical Logic and Formal Language&rammars and
Other Rewriting Systems—Term Graph Rewriting Systems

General Terms Algorithms, Design, Languages
Keywords Functional Logic Programming Languages, Non-De-
terminism, Subspaces, Rewrite Systems

1. Introduction

Bernd Bralel

Institute of Computer Science
Christian-Albrechts-University of Kiel
Olshausenstr. 40
D-24098 Kiel, Germany

bbr@informatik.uni-kiel.de

a seamless integration with other features of functional logic lan-
guages, in particular the independence of the order of evaluation
and the sharing of subexpressions, is no longer problematic. We
believe that this is the first published effort of this kind.

Section 2 motivates the need of computing with subspaces.
Section 3 formally defines the key concepts of our discussion, in
particular, a primitive operatiorgetAllValues, for computing a
subspace. Section 4 recalls background and notations essential to

Qour discussion. Section 5 specifies an abstract implementation of

getAllValues. Sections 6 and 7 respectively show that the or-
der of evaluation and the sharing of expressions affect the value of
a subspace. Section 8 identifies run-time conditions sufficient for
ensuring that computations with subspaces produce only intended
results. Section 9 discusses how to code programs whose execu-
tions lead only to valid computations. Section 10 briefly addresses
related work. Section 11 offers our conclusion.

2. Motivation

Non-determinism is the most appealing feature of functional logic
programing. A program, which is modeled by a graph rewriting
system, ision-deterministievhen its execution may reduce a redex
with multiple replacements. For example, consider a program to
find a donor for a blood transfusion to a patient. The following
declaration, in Curry [17], defines the blood types:

This paper addresses theoretical and practical aspects of non-
determinism in functional logic languages modeled by graph re-
writing. One of these aspects is a facility for manipulating within a The identifiersip, An, ABp, etc. encode the well-known blood types
computation all the values of another computation. We refer to the A+, A—, AB+, etc., respectively.

values produced by the nested computation askzspaceCom- Blood of a type can be given only to people with blood of some,
puting with subspaces is a necessary feature of functional logic but not all, other types. For exampld+ can be given only to
languages that support non-determinism. The semantics and thed+ and AB+, andO+ can be given only t@+, A+, B+, and
implementation of computing with subspaces have been elusive AB+. To encode this information in a deterministic language, most
so far. Especially, practical applications of such computations have programmers would associate with each blood tyjgeset of all
shown considerable problems concerning the integration with other the blood types to which can be given, or from which can be
features of functional logic languages, cf. [12]. This paper attempts received, or both.

to better understand this feature and to discipline its use such that In a non-deterministic language, instead, the programmer en-
codes this information in a simple relational or tabular form:

data BloodTypes=Ap | An | ABp | ABn | Op | On | Bp | Bn (1)

* Partially supported by the NSF grant CCR-0218224, the DFahtgra

2457/5-1 and the DAAD grant D/06/29439. give Ap = Ap
give Ap = ABp
give Op = Op

give Op = Ap 2)
o o . . give Op = Bp
Permission to make digital or hard copies of all or part of this work for personal give Op = ABp

classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

PPDP’07 July 14-16, 2007, Wroclaw, Poland.
Copyright(© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

The definition of this relation looks like a function definition in
the sense thagive Ap evaluates to bothhp and ABp, non-de-
terministically. During a program execution, either value may be

selected. The programmer has no control over this choice but cantions within the framework of abstract reduction systems [10, 11]
constrain it if appropriate. Non-determinism supports an expres- since they do not depend on specific properties of the objects be-
sive programming style because often specifications of problemsing rewritten and of the reduction relation. The concepts introduced
are non-deterministic as well. For example, suppose that the prob-in this section will be applied to programs that can be regarded as
lem is to find a donor for a blood transfusion and assume the ex- specializations of abstract reduction systems.afstract reduc-
istence of a database of people, donor and/or patients, and theition systemabbreviated with ARS, is a paR = (7, —), whereT’

blood types. is a set ofobjectsand— is binary relation orf” calledreduction If
‘R is an abstract reduction system, an element of the set of objects
has "John" = ABp of R is called arexpression ofR, and a normal form with respect
has "Doug" = ABn @) to the reduction relation is calledvalue
has "Lisa" = An

DEFINITION 1 (Set of values)Let R be an ARS and an expres-
sion of R. We define theet of valuesofe as A, = {v | e =
v,vis avalug, i.e., A. is the set of all the values reachable from
(&

The specification of this problem is: donor forx is a persony

that has a blood type that can bgiven to the blood type of. A
non-deterministic program to solve this problem consists of a sin-
gle conditional rewrite rule:

donorFor x Referring to the code fragment in (2), if = give Ap, then
| give (has y) =:= has x & x =/=y @ Ae = {Ap, ABp}.
;the free DEFINITION 2 (Fair enumeration)Let.A be a set. Aair enumer-
y ationof A is a denumerable sequenég, = ag, a1, ... such that:
(The condition ensures that is not x, since self donation is 1. for everya; in E4, a; € A, and

not intended as implied by the specification.) For example, the 2 for everya € A, there exists a naturalsuch that; = a.
execution ofdonorFor "John" yields "Doug" or "Lisa" non-

deterministically, whereas no donor is found farisa" in our very Continuing with the previous example, both lifkp, ABp] and
small database of people (3). The evaluation of the program is by [ABp,Ap] are fair enumerations ofAp, ABp}. Obviously, a non-
narrowing [25, 14]. In particular, when the conditiondfnorFor empty set has many fair enumerations. For example, any finite or
is evaluatedy is initially unknown but becomes instantiated to a infinite sequence, a, ... is a fair enumeration of the singleton
suitable value, if one exists. {a}. This indetermination may not appear ideal; nevertheless, we

Non-determinism substantially reduces the effort of designing believe that our definition is sensible. We will shortly explain why.
and implementing data structures and algorithms to encode this
problem into a program. In particular, there are neither explicit lists DEFINITION 3 (getAllValues). Let R be an ARS ang an
or sets of blood types or people nor operations to process them. Theexpression oR. We denote witlgetA11Values any function that
absence of these constructs is quite desirable, but it makes somépplied toe returns a fair enumeration ofl., the set of values of
computations more difficult or impossible. e.

For example, it is impossible to compute the set of all the donors
for a patient. This information could be useful for further process- The above definition characterizes a class of functions rather than
ing, e.g., to find the donor closest to a certain donation center or & single function. For our purposes, identifying a single function
to find the donor with the longest elapsed time since the previ- in this class is impractical. To clarify this point, we define the
ous donation. For this reason, the language should provide a prim-computation space of an expression.

itive function, that we will denote witlgetAl1Values, to com- We begin with the notion oévaluation strategyA strategy de-

pute all the values of a non-deterministic expression. Informally, termines which step(s) to perform during a computation. A strategy

getAllValues applied to an argument returns a list contain- IS an essential theoretical and practical component of a program-

ing all the values of. For examplegetAllValues (give Ap) ming language. For example, notions like laziness and strictness are

should return the listAp, ABp]. dlrec_t consequences of the strategy. A strategy should be efhugnt
Using all the values of an expression to compuwtee value and it should guarantee that all and only the values of an expression

of another expression is referred toasnputing with subspaces ~ are computed, properties referred to completeness and soundness.

Computing with subspaces is relevant whenever different values [5] surveys several concrete strategies and related concepts within

of an expression have to be compared in some way to find the the domain of our discussion.

intended solution which is the gist of all optimization problems. :

Without primitives like getAllValues the programmer would II_DeEtF;QI ITZIOI(\I;T Lfvﬁguitéogétééti?é'3g|uation strategpf R is a

have to eliminate all uses of non-determinism as soon as an Op'function . T 5 9T such that. for all expressions and ¢’ of

timization problem arises. We fear that this leads in many cases to S Iy . . /p ¢

generally avoid using non-determinism and we therefore consider % 5(¢) is finite, and ife” € s(e), thene — ¢'.

programming with Subspaces as a crucial feature of functional |OgiC Many Strategies for programming |anguages are concerned with

languages.)) a single rewriting or narrowing step. For these strategies, that we
This paper addresses the problem of computing with subspacesca|| single-step, referring to Def. 4, # € s(e), then it would

It formally defines some concepts, proves some of their properties, gy ffice to saye — ¢'. However, many interesting strategies, e.g.,
and discusses the implementation and usgeofi11Values. [6, 8, 22, 27], are not single-step.

DEFINITION 5 (Computation space).
3. Definitions LetR be an ARS and an expression oR. Thecomputation space
of e for a strategys, denotedS,(e) or simply S(e) whens is

In this section, we formalize the meaning of “computing all the val- - hqerstood, is a possibly infinite, finitely branching tree defined as:
ues of an expression” in the sense discussed earlier. We believe that

this is the first published effort of this kind. We present our defini- 1. e is the root ofS(e),

2. forall ¢’ in S(e), if s(e’) = {e1,...,en}, then the children
of ¢’ are all and onlyS(e1), ..., S(ex), i.e., the computation
spaces ot1, . .., en,.

In most current language implementations, the result of evaluating
getAllValues e, for some expressio# is obtained by construct-
ing the computation space efand traversing it to collect the val-
ues. Whers(e) has more than one element, the order in which these

elements are installed into the space and/or collected is not impor-

tant and may be difficult to control. Therefore, it seems unwise to
be too specific about the order in which values are produced. In
fact, iterators of collections even in imperative languages, e.g., in
the java.util package, leave undetermined the order in which the
elements of a collection are returned.

Furthermore, the computation space of a given expression
might be infinite even if the set of values ofs finite, and a value
may be computed infinitely often [12, Ex. 1.12]. Thus, it seems
unwise to be too specific about duplicates, too.

A trivial example is the space of the expressi#ros, where
the operatiorzeros is defined [12] by:

0
Zeros

zZeros
Zeros

®)

Removing duplicates from lists computed gytAllvValues, iS
straightforward.

Finally, we have not specified the conditions under which
getAllValues should return the empty ligl . The undecidability
of termination implies that this result can only be produced under
special circumstances ensuring that the computation spacésof
finite and contains no values, cf. Section 5.

To conclude, we prefer the definition gétAllValues inde-

pendent of the order in which values are produced and the presenc

of duplicates in its result.

4. Background and Notation

In this section we recall some key notions and notations used
in this paper. Various formulations of graph rewriting have been
proposed, among others [15, 23, 24]. In this paper, we follow the

A graphg is called aterm(graph if Roots, is a singleton.

For a given graply and a node: in g we denote by/|,, the sub-
graphof g rooted byn, cf. [15, Definition 5]. Moreover, we make
explicit use of the notion opointer redirection[15, Definition 8]
which intuitively moves all the edges of the graph going into a node
(typically the root of a redex) to another node (typically the root of
the redex’s replacement) while leaving everything else unchanged.
A program is a constructor based, limited overlapping, induc-
tively sequential graph rewriting system, abbreviated GRS. In
short, constructor based22] means that the signature is parti-
tioned into(data) constructoand(defined) operatiosymbols. In
a rewrite rule, which is a pair of terms denotdd— r, the root
of the left-hand sid€ is labeled by an operation whereas every
other node is labeled by a constructor or a variabiductively
sequential2] means that the set of left-hand sides of all the rules
rooted by the same operation, modulo a renaming of nodes and/or
variables, can be organized in a hierarchical structure caltdia
nitional tree[2]. The existence of this structure is instrumental for
the definition of an efficient evaluation strategy and for ensuring
other interesting properties of computatio@erlapping induc-
tively sequential3] means that overlapping of (the left-hand sides
of) rewrite rules may only be trivial, i.e., two overlapping left-hand
sides may differ only in the names of nodes and varialiligsited
overlapping inductively sequentipd] means that the only overlap-
ping rules are those of an operation, caltdmbiceand denoted by
the infix operator %", defined by:

X ?7y=x

x?7y=y ©)

é)verlapping originating from other rules can be eliminated, with-

out altering the computations, using the choice operation [3]. For
example, the operatiggi ve defined in (2) can be re-coded without
overlapping as:

give Ap
give Op

Ap 7 ABp
0

p ? Ap ? Bp 7 ABp ©)

systemization of Echahed and Janodet [15] because it best fits ouran expressioris a term graph labeled by the symbols of the sig-

programs. We cannot recall the definitions in the space allotted to

this paper, but we faithfully use the same terminology and notation
adopted by [15], which is available on-line.

The space allotted to this paper allows us only to recall the key
concepts. The complete details can be found in [15].

DEFINITION 6 (Graph).

Let 3 be asignature X a countable set ofvariables and A/ a
countable set ohodes A (rooted graphover (X, V| X) is a 4-
tupleg = (N, L4, Sy, Roots,) such that:

1. Ny, C N is the set of nodes of

2. Ly : Ny — X U X is thelabelingfunction mapping each node

of g to a signature symbol or a variable;

S, : Ny — N is thesuccessofunction mapping each node

of g to a possibly empty string of nodes @f such that if

L4(n) = s, wheres € XU X, and (for the following condition,

we assume that a variable has arity zero}ty(s) = k, then

there existuy, ..., ny in NV such thatSy(n) = nq ... ng;

. Rootsy C Ny is a subset of nodes gfcalled therootsof g;

fLg(n1) € X andLy(n2) € X andLy(n1) = L4(n2), then
n1 = na, i.e., every variable of labels one and only one node
of g; and

. for eachn € N, eithern € Roots, or there is a path fromr
ton wherer € Roots,, i.e., every node aof is reachable from
some root of;.

3.

nature or by variables in which no cycle contains an operation. A
valueis a term graph labeled by variables and constructor symbols
only. With some liberty, we say that a symbol, a rewrite rule, etc.,
belong to a GRS, if they belong to the signature of the GRS or to
the set of rewrite rules of the GRS, etc.

A computationis a sequence akwrite stepswhere a rewrite
stepreplacesin an expression an instance of the left-hand side of a
rewrite rule with the corresponding instance of the right-hand side.
The reflexive and the transitive reflexive closure-efare denoted
— and—, respectively. When useful, a step will be denoted with
attributes such as the node of the replaced subgraph and/or the
applied rule as if—,, r.

Functional logic computations are sequences of rewriting and/or
narrowing steps. Anarrowing stepgeneralizes a rewrite step in
that it is applied to expressions that may contain logic (unbound)
variables. These variables may be instantiated by the narrowing
step. For example, whehas y is evaluated in an execution of
(4), y is unbound, and a narrowing step would instantiate it to
"John" or "Doug", etc., non-deterministically. Loosely speaking,
the following program is equivalent to (4) but executes rewriting
steps only.

donorFor x
| give (has y) =:= has x & x =/=y
=Y
where y = "John" 7 "Doug" 7 "Lisa"

®)

Narrowing is a very convenient programming feature, but at the When a program is modeled by a rewrite syst&nthe in-
computation level it can be replaced by rewriting. [9] formalizes dependence of the order of evaluation is often formulated as the
the equivalence of narrowing and rewriting when logic variables confluence ofR. However, the non-deterministic GRSs that model
are replaced by non-deterministic expressions and vice versa. Thusfunctional logic languages are not confluent. Thus, some attention
in this paper, we regard computations as sequences of rewrite stepss required to formalize the concept that we want to capture. Infor-

without too much loss of generality.
Finally, we recall that a nodé dominatesa noden in a rooted
graphyg if every path from the root of to n containsd.

5. Implementation
We do not know how to defingetAllValues with ordinary

rewrite rules. We think that this is impossible because the seman-

mally, if an expression allows two stepsditferentlocations, the
results of a computation are not affected by which step is executed
first.

DEFINITION 7 (Deterministic confluence).

LetR be a GRS. We say th& is deterministically confluerif and
only if for every expressiohand steps —,, t1 andt —,, t2
with ny # n, there exist expressions andu. such thatt; — w,

tics of non-determinism should ensure that the programmer hasandtz — uz andui = u2 modulo a renaming of nodes.

no control on which non-deterministic alternative of choice is se-
lected. The lack of an ordinary definition gétAl1vValues forces

us to rely on soméuilt-in mechanism of an interpreter or virtual
machine. Built-ins are unavoidable in practical programming lan-

guages; e.g., arithmetic operators, 1/0 functions and many system

activities, such as getting the current time, are built-in. The rewrit-
ing model accommodates built-ins relatively easily.

Below, we describe an abstract implementation of the primitive
getAllValues. Our treatment is independent of the details of a

Our definition differs from the standard notion of confluence [10,
11] in that we explicitly exclude different steps at g@mdocation.
Obviously, these steps break the confluence. Referring to the initial
examplegive Ap allows two different steps at the root. These steps
yield Ap andABp which are normal forms and therefore cannot be
joined into a common expression.

THEOREM 1.
A constructor based GRS is deterministically confluent.

concrete implementation. We assume the existence of a rewrite PROOF. In a constructor based GRSs two redex patterns overlap if

rule:
©)

wherezx is a variable and. is an expression inaccessible to the
programmer (i.e., built-in), which represents “the yet uncomputed
portion of the computation space of

The evaluation of., which depends on, is conceptually quite
similar to the top-level computation of the program, but nested
inside it. For everyr, the computation space ofis constructed or

getAllValues z — L

and only if they have the same root. Condition 5 of [15, Def. 2],
i.e., that all the occurrences of a variable are shared, is essential to
the claim.dJ

The operatiorgetAllValues invalidates the deterministic conflu-
ence of GRSs.

EXAMPLE 1.

Consider the expressioh = getAllValues (give Ap). If the
evaluation starts at the root of, the value oft is [Ap, ABp].
However, ifgive Ap is evaluated first{ has two values[Ap] and

traversed—on-demand or as-needed, since it may be infinite. The [ABp]. The intended value ofs produced by the first computation.

value of L is obtained as follows:
1. Initially, L is a representation &(z).

2. If L contains some values, thénevaluates ta: L', wherev
is a value ofr and L’ is a new built-in expression, similar to
L, which represents the same spacd.abut with the portion
that producecb removed. The evaluation df’ may produce
another value’ of z and a new built-in tail.”’, and so on.

. If L is finite and contains no values, thérevaluates td].

. Otherwise,L is undefined and evaluatingetAllValues x
does not terminate, i.e., the executioget Al1Values x takes
forever.

The implementation sketched above is compatible with a rewriting

model with a lazy evaluation strategy such as the one we are

In the second computation, the argumentgeftAllvValues is
“prematurely evaluated.”

Example 1 provides an intuitive notion of “premature evaluation”.
Formalising this notion requires some care. In the computation
of getAllValues (1+1), the evaluation ofi+1 should not be

considered as premature no matter where or when it takes place.

DEFINITION 8 (Deterministic step).

Let R be a GRSt an expression oR, andB = t —,, u a step
of t at some node.. We say thaB is a deterministic stejiff there
exists no other step’ =t —,, v’ of ¢ distinct fromB.

THEOREM2. Let R be a limited overlapping inductively sequen-
tial GRS, and a term graph ofR. A stept —r u is deterministic
iff Ris nota rule of?”.

considering. However, some problems arise from the interaction of PRooF, In a limited overlapping inductively sequential GRS, the

getAllValues with other features of the language, in particular,

only rules with overlapping left-hand sides are the rules defining

sharing and the order of evaluation. These interactions are the«?”,

subjects of the next two sections.

6. Order of Evaluation

A key semantic property of declarative languages is the “indepen-
dence of the order of evaluation.” This property intends to free the

programmer from some difficult details of a computation and to
make reasoning about programs simpler. If an expressioas a

value, that value should be produced in a finite amount of time us-

ing only a finite amount of memory. Itis up to an implementation’s
strategy to ensure this property by choosing which steps@éxe-

DEFINITION 9 (Premature evaluation).et R be a GRSt an ex-
pression ofR, andgetAllValues e a subexpression dfrooted
by a noden. We say that a step—,, t' prematurely evaluatesiff
the step is non-deterministic and there exists a pathfiomn to

The dependence on the order of evaluation introduced by the primi-
tive getAllValues is undesirable. The premature evaluation of the
argument ofgetAllValues is a problem only in particular situa-

cute and in which order. Generally, the programmer has no detailedtions that we will discuss shortly. We begin with simple conditions

knowledge of these choices and limited control over them.

sufficient to ensure that an expression is not prematurely evaluated.

THEOREM3. Let R be a TRSf an operation ofR defined by a call-time choice semantics. In this context, the behavior of ordinary

single rule of the formyf(z) — r, wherex is a variable andr is term rewriting is referred to as threeed-time choiceemantics.

any term,t any term ofR of the formC/[f(e)], whereC]] is any Graph rewriting elegantly captures the call-time choice seman-
context anck is any term. In any outermost computation.of (e) tics in condition 5 of [15, Def. 2]. Various other frameworks have
is reduced before any reduction inside been proposed to formalize the behavior of the call-time choice se-

mantics (e.g., [1, 16]). We find term graph rewriting [15] appealing
PROOF If, for any contextC[] and terme, a step of the computa- pecause it is very close to implementation models in imperative

tion of ¢ were of the formC[f(e)] —» C[f(e')], with n a node languages and promises evaluation strategies [6] inherently more
of e, the computation of would not be outermost, sincge) is a efficient than those developed for term rewriting.

redex.[] Sharing substantially complicates computing with subspaces.
Both conditions of Th. 3, i.e., thak is atermrewriting system (as ~ For example, suppose that we group the donors of Example (3)
opposed to @raph) and that the strategy mutermostare neces- into families:

sary and are violated when it comes to functional logic languages. . . .
family = (Family ("John" 7 "Lisa"))

An outermoststrategy for a TRS never reduces an expression 2 (Family "Doug") (11)
if there exists another reducible expression above it. In a GRS, the ¢ (ramlly “Doug
notion of beln_g above” becomes ambiguous. A subexpression Now, we could write a function like this:
of an expression could be reachable from the root bthrough
twc(nj dg{jerent p(;e}thtsH a sn;Jatlotlj |nf_c|>_rmally|dr%ferre? to ast slharlng £ (Family x) | x=="John" 12)
and addressed in the next section. Thusuld be outermost along = getAllValues (has x)

one path, but not along another one. Therefore, we must either de-
velop new strategies or reconsider the notion of outermostness [15,The condition is syntactic sugar. From a rewriting viewpoint, the

Def. 27]. program is:
DEFINITION 10 (Outermost strategy for GRSs). f (Family x) = if x=="John"
We say that a strategy for a GRS isoutermosiff for every step then getAllValues (has x) (13)

t —, t’ computed by, there exists a path from the root bfo n else failed
such that the only redex on this pathtjs.

| ing th q ; luati i where theif-then-else function is defined as usual, the variable
SSues concerning the order ot evaiuation are even more Compll- ;¢ spared in the right-hand side of the rule folnd the symbol
cated in practice because current functional logic languages, such

. failed is a non-reducible function [18, Sect. 2.3.2] (i.e., the
as Curry [17] andZ O) [20], are not executed with an outermost expressiortailed is not a value).

strategy. The reason is that outermost strategies are incomplete for Suppose that we evaluate- £ family. What should the value

these languages, see [4] for a discussion and an example. The iNUt 4+ be?

completeness of outermost strategies stems from unrestricted over- If the programmer had the call-time choice semantics in mind,

lapping of the left-hand sides of rules, which is allowed in these both occurrences of in the rule of f have the same binding
languages. We argue [4] that unrestricted overlapping is unneces-j. e + would evaluate to[ABp]. The call-time choice makeé

sary, if not ha_rmful, and that _the class of the overlapp_ing indu_c- getAllValues in the rule off totally ineffective, which probably
tively sequential programs [3] is a better model for functional logic is not what the programmer intended.

languages. Any construct(_)r b_ased ponditional re_write s_ystem €an it the programmer had the need-time choice semantics in mind
?he {nappeotl to ?hn overlapping |n(t1IL1t§:t|ver4seguentlaérewrlteIS)t/stemdeach occurrence af in the rule of f is independent of the other.

at executes the same computations [4]. A sound, complete an Hencet would evaluate to all the blood types of John’s family, i.e.
optimal outermoststrategy is available for the overlapping induc- [ABp,An]. It seems obvious that this is a more sensible semantics

tively sequenti_al_ re_write systems [3. 5]. Optimality in the Presence o this expression. However, just a slight change of the example
of non-deterministic steps is a subtle concept. A non-deterministic strongly favors the opposite view:

choice is appropriately coded when the programmer does not know
which alternative of the choice is best. Obviously, the strategy can- £ (Family x) | x=="John"
not be expected to choose the best alternative. In this context, a = getAllValues (give x) (14)
strategy is optimal only if it chooses alternative of choices that must
be made to obtain the result(s) of a computation. Now thegetAllValues in the rule off is effective, sincgive is

a non-deterministic function. The call-time choice semantics now
7. Sharing yields all the blood types that can be given to John whereas the

. need-time choice semantics yields all those that can be given to
The semantics of non right-linear rules is particularly relevant for

L2 ; ‘ ~one of the members of John's family. We have the impression that
non-deterministic expressions. For example, consider the program:ine choice of the right semantics is not simple and that function

definitions like the ones in Examples (12) and (14) are dangerously
ambiguous.

In both cases, the problem originates from the fact that
the right-hand side of the rules is shared between a subspace and
the subspace’s context. In this situation both the call-time and the
need-time choice semantics are problematic.

[12] contains a similar discussion of the problems of sharing be-
tween an “encapsulation” and its “outside”. Encapsulation and out-
side more or less correspond to our notions of a subspace and its
context, although these concepts are not formally defined in [12].
The focus of the discussion in [12] is whether the evaluation of

fx=x+x (20)

When the expressiah (0 7 1) is evaluated, the two occurrences of

x in any instance of the right-hand side of (10) share the same bind-
ing at all times. This semantics is calledll-time choicein [19].
Under the call-time choice semantics, multiple occurrences of a
variable are referred to ahared since they share the same value.
By contrast, ordinary term rewriting ignores sharing originating
from non right-linear rewrite rules. Without sharing, the expres-
sionf (0?7 1) may evaluate to 1, which is not obtainable using the

getAllValues is ensured to be deterministic or not. “Strong en- PROOF If e is deterministic, the claim stems directly from Def. 9.
capsulation” ensures a deterministic evaluation whereas “weak en-Otherwise, by (9)getAllValues e is a redex. Sinceis unshared,
capsulation” does not in all cases. [12] points out that strong encap-by Def. 10 no redex at or belowis outermost. Se@ will not be
sulation is desirable for instance in the context of I/O operations. evaluated beforgetAllValues e is reducedd

Our approach is to avoid the ambiguities of interpretation shown
by the above examples by a discipline of sharing described in
the next section. We restrict the derivations in such a way that
obtaining a strong encapsulation is straightforward. In particular
for derivations which argalid in the sense to be defined below the
differences between the approaches discussed in [12] disappear.

The previous result provides a sufficient condition to ensure that
e is not prematurely evaluated in= C[getAllValues e]. Un-
fortunately, when the evaluation ofstarts, it is possible that the

' computation space of has already been pruned. The following
program shows the point.

fx=g (x,
8. \Validity g (0, y) = getAllValues y

The previous sections have shown that, when computing with sub- The eyaluation of (07 1) leads tol’ = getAllValues 0. When
spaces, sharing may lead to premature evaluation of the argument,
of getAllValues that in turn might lead to unintended results.
Furthermore, some priori fixed choices to handle sharing, such as We would like to be able to tell when an argumeitof an

weak and strong encapsulation, permit coding and executing pro- o o :
grams, such as (12), that appear questionable. To correct the situ-fapphcaltlon OfgetAllValues originates from some expressien

+ ’ !
ation, some programs and/or computations must be prohibited. In"ea6 — ©. iUChbthatS(eh) # Sle). Wel doﬁpgt knowdhqw
this section, we define computations that we accept as valid. In the 0 determine t, at, but we have a practical sufficient condition to
next section, we will show that it is easy to code programs lead- ensure thal(e’) = S(e).
ing only to valid computations and with minimal loss of expressive peeiniTiON 14 (Tagging).Let R be a limited overlapping induc-
power. . _ o _ . tively sequential GR3, an expression oR, andB = to — t1 —
Characterizing undesirable sharing in a subspace is not a trivial 5 computation ofR. For everyt; in B, tag; is a mapping from

task. [12] contains a wish list for future implementations of func- he nodes of, to {o, o} defined by induction on the indexs fol-
tional logic languages, which says that “Some work has to be in- |gs: ’

vested to clearly define “the outside” [of an encapsulated search]”.

We would like to characterize non-deterministic expressions, 1. Base case: the index is 0. We defingo(n) = o, for every
i.e., expressions whose evaluation executes a non-deterministic 7 € Ny,.
step. Unfortunately, this problem is undecidable. But there exists a 2. Ind. case: the index i5+ 1, and by the induction hypothesis,
sufficient condition to ensure that the evaluation of an expression tag; is defined. Let; — r,n tit1 be thei-th step of3, where
will not execute non-deterministic steps. In other words, ensure pis a node oft;, R = 1 — ris arule of R, andh is the

(15)

is evaluatedp is unshared fogetAllValues in ¢’, but of course
it is the result of pruning the space ©f 1.

that an expression is deterministic. homomorphism matchingto ¢;|,. We recall thatt; 1 is de-
fined [15, Def. 23] ag;[p < h(r)], which is defined [15, Def.
DEFINITION 11 (Depend on)LetR be a GRS ang and g oper- 9] as p(ti + h(r))|s(roots,,), Wherep is the pointer redirec-
ations of R. We say thaf depends oy if there exists a rule of in tion [15, Def. 8] function.
whose right-hand side there occurs an operattosuch that either We defingag: 1 (n) by cases as follows:
g = h or h depends om.
L . ° if Ris arule of“?”,
DEFINITION 12 (Deterministic expression). or, for some non-variable
Let R be a_Ilmlted overlapping !nductlvel_y_se_quentlal GRS and tagﬁ;lp(&) = nodem € i, tagi(h(m)) = o;
an expression oR. We say that is deterministicif and only if no tag (p) otherwise.
operation occurring irnt depends on?”.
o if n = p(h(n')),n’ € N,
DEFINITION 13 (Unshared expressior)et R be a GRS¢ an ex- tagii1(n) = and £, (n) is not a variable;
pression ofR of the formC[f(e)], wheref is an operationge an n#p(p) tag; (n) otherwise.
expression and’[] is a context. Lek andm be the roots off (e)
ande, respectively. We say is unshared for in ¢, or more simply Intuitively, the root of a replacement resulting from a non-determi-

that e is unshared forf when nodes and context are understood nistic step or depending on a non-deterministic st€p ¢ase) is
from the discussion, if and only if eithélr, is a deterministic ex- tagged withe, otherwise it assumes the tag of the root of the redex
pression orn is a dominator ofn and of all the descendants of (2" case). A node created by a step is tagged wifB™? case).
int. Finally, a node passed along by a step maintains its tZgo@se).

For example, consider again program (15). To ease the reading,

The above definitions intend to capture the situation in which a |4 display the tag of a node as a superscript and we omit thg.
non-deterministic expression is shared by a subspace and its

context. In many cases, the intent is that the evaluatianshiould f(071) — g (0.? 1 ,.0 71)
contribute all the values efto the subspace, but only one value to — g (0%, 0%) . (16)
the context. Since is shared, the premature evaluatiore@ind the — getAllValues O

call-time choice semantics become problematic. We will soon show pef, 14 involves some subtle points that we try to clarify with the
that it is not difficult to avoid undesired sharing in most practical following example. Consider the function that computes the length

programs. of a list:
THEOREMA4. Let R be a limited overlapping inductively sequen- len [1 = 0
tial GRS and an expression oR. If e is an unshared expression len (_:xs) = 1 + len xs 17)

for getAllValues in ¢, thene will not be prematurely evaluated
in any outermost computation af In the following computations tagging is displayed as in the previ-

ous example: With an outermost strategy, valid computations in limited over-
lapping inductively sequential GRSs do not suffer from the prob-
lems discussed in Sections 6 and 7. In particular, all the approaches
discussed in [12] behave identically for valid computations, since
there is no sharing of non-deterministic expressions of a subspace
with the “outside.” The overall cost of ensuring the validity of a
computation seems modest and acceptable. The only remaining
problem is to assess how difficult and/or inconvenient it is for a
programmer to code programs that prevent invalid computations.
This is addressed in the next section.

len[(071)] — 1len[0°] — 1+len[] — 1+0 — 1
len([0]1?7[]1) — len[0]°— 1+°len[] — 1+°0 — 1°
len([0]?[1]) — 1len[0]°— 1+°len[] — 1+°0 — 1°
(18)
The first computation executes a non-deterministic step which is
“forgotten” since the non-determinism of the step does not affect
following steps. The second computation correctly recognizes that
the result depends on a non-deterministic step. The third computa-
tion is a “false positive.” The result depends on a non-deterministic
step, but any other choice would have produced the same result. We .
do not think that there is a practical way of avoiding false positives. 9- Programming
Tagging allows us to detect when a stepgeftAllValues In this section, we show how to resolve the ambiguities, discussed
might produce unintended results because previous steps of thein Sections 6 and 7, arising when a non-deterministic expression is
computation might have pruned the computation space of the ar-shared between a subspace and its context. There is no single solu-
gument. tion to resolve all the situations. Rather, we present two approaches.
One approach eliminates undesirable sharing between a sub-
THEOREMS. Let R be a limited overlapping inductively sequen- space and its context using the results of Section 8. Roughly speak-

tial GRS andB = t¢ — ¢1 — ...¢; a computation ofR. If, for ing, we lift the non-deterministic shared expressions above the sub-
every noden of ¢;, tagi(n) = o, thenS(to) = S(t;) modulo a space and share only deterministic expressions. This is achieved by
renaming of nodes. simulating the need-time choice semantics, which is not directly

available in the language. For the simulation, we use only standard
PROOF Obviously,S(t;) C S(to), thus we only need to prove the features—interestingly enough, we rely on subspaces. The other
opposite containment. Let be a value ofR such thatty = w. approach preserves non-deterministic expressions shared between
We prove that; — v, whereu andwv differ only for a renaming a space and its context for problems where this sharing is intended.
of nodes. If every node of every expressiontbis o-tagged, then These expressions must be evaluated according to the standard call-
the claim stems from the deterministic confluencefoensured time choice semantics. Our definition gétAl1lValues does not

by Th. 1. Otherwise, we construct a new computatioRef3’ = handle this situation since we stipulated tpat A11Values should
to — t) — ...t; and we show that) = ¢, andt; = ¢; and every return a fair enumeration dll the values of its argument. Also
node of3’ is o-tagged. Intuitively, to construdd’, first, we “mark” Curry does not handle this situation since there are no syntactic

in every expression of3 every e-tagged node and every node Or semantic constructs in the language to distinguish the two ap-
dominated by it. The marking defines a “waterline” that partitions proaches.

each expression. The portion above the waterline is unaffected by ~We begin with the approach that eliminates non-deterministic
the portion below the waterline and non-deterministic steps affect sharing. To simulate the need-time choice semantics, we define the

only the portion below the waterline. Then, we obt&irfrom B by following non-deterministic operation:
“skipping” every step whose replacement has some marked node.
This defines a sequence of expressiting,, . . . t;. Formally, by chooseValue (u:v) = u ? chooseValue v (19)

induction onk, we define the term),, and we claim that; — . . .
)1, the non-marked portions of andt} are isomorphic (equal The operqtlomhooseValue_ is a Ifeft inverse quetAllValues.
modulo a renaming of nodes [15, Def. 10]), and every node of The following result formalizes this relationship.

t). is o-tagged. The base case, is immediate. For the inductive T zoreM 6 (Left Inverse).

case, assume the claim for all the expressiofs'ofip to k. If the Let R be an ARS and and v an expression and a value &
replacement of the stefy — ¢x+1 has some marked node, then respectively. LeR’ extendR with the data type list and the oper-
t, = ty+1 and the claim is a direct consequence of the induction ationsgetAllValues, chooseValue, “?". If ¢ > v in R, then

hypothesis. If the repla/cement of the step — tx41 has no chooseValue(getAllValues(t)) — v in R’, and vice versa.
marked node, thetj, — ¢}, uses the same rule on an isomorphic

redex and, again, the claim is a direct consequence of the inductionPROOF. If v is a value oft and L = getAllValues(t), then, for

hypothesis. Since by hypothegishas no marked nodeg, = ¢; somei > 0, thei-th element ofL is v. By induction oni, v is a
modulo a renaming of nodes and this proves the claim. value ofchooseValue(L). The vice versa is analogous.

An example shows how to simulate the need-time choice semantics
o . o using the operatiorhooseValue. The following program is very
DEFINITION 15 (Validity). LetR be a limited overlapping induc- gjmjlar to (10), which was used to explain the call-time choice se-

tively sequential GRS, an expression oR, and B = to — mantics.

t1 — ... a computation ofR. We say thaf3 is valid iff, for ev-

ery stept; — t;+1 that reducegetAllValuese, e is unshared f x = chooseValue z + chooseValue z 20
for getAllValues in t; and every node of is o-tagged. where z = getAllValues x (20)

It is not difficult to check the validity of a computation at run- Thewhere clause is syntactic sugar. The meaning of the program
time. Tagging is a very fast operation. It consumes a single bit of in- js 17, p. 80]:
formation for every node of an expression, and its time-complexity
is linear in the size of a redex replacement. Checking whether the £ x
argument of an application gfetAllValues is unshared is an gz
efficient computation, too. It must be performed only once when
getAllValues is applied, and its ime-complexity is linear, in the Observe that: is unshared fogetAllValues in the above frag-
worst case, in the size of the expression being evaluated. ment. Thus, any outermost computatiorteE £ (07 1), when f

g (getAllValues x)

chooseValue z + chooseValue z (21)

is defined by (20), is valid. Th. 6 ensures that indv are any two
values ofz, thenu + v is a value oft. By contrast, program (10)
only adds to itself any value of.

In general, the sharing of an expression between a subspace a
its context originates from a non-right linear rule of the form:

fl. J) (22)

For simplicity, we assume that this is the only rule creating multiple
occurrences of. During a computation, an instance of the right-
hand side evaluates to= C;[z][getAllValues(C[z])], where
Cs[][] and C4[] are contexts. If the intended semantics of the
evaluation ofz is the need-time choice, we replace (22) with:

f. .) — h(...getAllValues(z)...)

h(.. .) — g(...chooseValue(y)...chooseValue(y)...)

(23)
With the above transformatiorchooseValue(y) eventually re-
placesr in t. In the transformed program, any expression bound to

Y.

f x | head (getAllValues (chooseValue y /= [1))
= head (chooseValue y) (25)
where y = getAllValues x

nd,. . .
%IﬂCGgetAllValues [1..] does not terminate, according to (25)

f [1..] does not terminate as well.

Our transformation works in programs where the result of a
computation depends only on thaluesof some expressiom
shared between a subspace and its context, wheralbgwe mean
a constructor normal form of, as opposed to some term or head
normal form derived frona. We have not found practical programs
that violate the above condition. Sharing an expressioetween a
subspace and its context should be an unfrequent circumstance in a
meaningful program, since in the subspace the program depends on
all the values ok, whereas in the context the program depends on
one specific value only. In fact, when this kind of sharing occurs,
see ther-queens program below, the non-determinisra isfbetter
left out of the subspaces, i.e., the program depends on only one

y is shared between a subspace and its context, but this expressioajye ofe. Furthermore, the situation is compounded by the fact

is deterministic. Furthermore, any expression bound,tavhich

thate doesnot have a value, but it still determines the result of the

might be non-deterministic, is no longer shared between a subspace:omputation, another unfrequent circumstance.

and its context. The correctness of the above transformation is for-
malized below.

THEOREM7 (Transformation correctness).

Let R be a limited overlapping inductively sequential GR&n
expression oRR of the formCs[x][getAl1Values(C[x])], where
C5[][] and C[] are contexts and the intended semantics of the
evaluation ofz is the need-time choice. Let

t'=C5[chooseValue(y)]
[getAllValues(C[chooseValue(y)])]

where y =getAllValues(X).

1. (Soundness) tf = v, thent = v;
2. (Completeness) if, andwv, are values of: such that

Cslva][getAllValues(Cy[vp])] — v,

thent’ = v.

PROOF. Soundness: It .. v, ... vs...] be a fair enumeration of
getAllValues(x), wherev, and v, are the choices made by
chooseValue for the two occurrences afin t’, i.e.,

t' =5 Cy [va][getAllValues(Cy[vp))] o,

By Th. 6,t = C2[v,][getAllValues(Ci[vy])] as well, and the
claim follows. Completeness: let, and v, values ofx such that
t 5 Calv,][getAl1Values(Ci[vp])] — v.

Then,[...vq ... v ...] is fair enumeration ogetAllValues(z).
By Th. 6, for some choices @fhooseValue,

t' 5 Co[va][getAl1Values(Cy[vp])]

as well, and the claim follows$.]

The existence of values af in the statement of the completeness
of the above theorem is a necessary condition. Without this con-
dition the transformation does not preserve the semantics of som
programs. For example, consider:

f x | head (getAllValues (x /= [1))
= head x

(24)

and the expression= f [1..]. There is a rewrite derivation ¢f
to 1. Recall that[1. .] evaluates to the infinite lisf1,2,3,...],
hence it has no values. The computation spackLof] is infinite
and has no leaves.

Our transformation applied to (24) yields:

€,

We now turn our attention to programs where sharing be-
tween a subspace and its context is intended. Shared subexpres-
sions are evaluated according to the regular semantics, i.e., the
call-time choice. The problem is the non-determinism of a shared
subexpression. In this case, loosely speaking, an occurrence unde
getAllValues should not contribute more than one value to the
computation space. We clarify this subtle point with an example.

The problem is the well-known-queenpuzzle: place: queens
on an x n board so that no queen captures any other queen. A
typical solution represents a placement of the queens on the board
as a permutatiop of the integerd, 2, . . . n. If the i-th element of
pis j, a queen occupies the board square at coordirfatgs

A program designed around the generate and test pattern non-
deterministically generates a permutatipand tests whether is
safeaccording to the rules of the puzzle. A conceptually simple
approach to test the safety of a permutation is by means of a
constraint,unsafe, that takes a placement of the queens on the
board and succeeds if two non-deterministically chosen queens
of the placement capture each other. If, for a permutagiothe
computation space ainsafe p has no values — i.e., there are no
pairs of queens capturing each other — tpdn a solution of the
puzzle.

In Curry we code the above program as follows, whesegth,
abs andpermute are library operations with the obvious mean-
ings.

queens n = safe (permute [1..n])
safe p | getAllValues (unsafe p) ==
unsafe (++i:z++j:.) = abs (i-j)-1

]

=p (26)
ength z

The definition ofunsafe relies onfunction patternsa feature re-
cently added to the AkKcs implementation of Curry. A slightly
more verbose and less elegant formulation that relies only on
rewriting is easy to code.

There are two noteworthy aspects of the above program. The
variablep in the rule ofsafe is shared between a subspace and
its context. Althougtp is bound to a non-deterministic expression,
i.e.,permute [1..n], the intent is thap should contribute only a
single value to the subspace. This is the value being returned by the
program. Informally, the specification of the program Iisttiere
exists a placement of queens on the board such that, for all pairs
(i,4) of queens of the placementioes not capturg, thenp is a
solution? The code is a direct translation of this specification, and
it relies on a subspace for ensuring that all the pairs of queens on
the board are checked for safety.

The execution of this program is particularly challenging be- a subspace and its context by excluding the non-determinisin of
cause it is required to evaluate the entire subspace in whadz from the computation of the subspace. A construct for this situation
curs before the evaluation pfin the context of that subspace. The is missing from current functional logic languages.
natural order of evaluation would use all the valuep tf compute
the sgbspa_\ce_ before returning one vaIup,_m‘_/hen the c_ondition of 11. Conclusion
safe is satisfied. In Curry, there is no explicit mechanism to encode)) .
in a program that the non-determinism of an expression should be ThiS paper explores problems and potential solutions of an essen-
excluded from a subspace. tial feature of functional logic programming languages modeled

In the above example, an unsatisfactory solution to exclude the PY graph rewriting, the accessibility of all the values of a non-
non-determinism of from the computation space afisate p is deterministic expression within a program. We motivate this feature
to evaluate to a normal fornbeforeunsate p is evaluated. Thisis ~ With some examples, formally define this feature, and show that
relatively simple, since in a conditional rule, the condition is evalu- without some restrictions this feature is incompatible with other
ated before the right-hand side. However, in general, this approachféatures of the language, in particular the independence of the or-
has substantial drawbacks. The evaluation of some expression ~ der of evaluation and the call-time choice semantics.
avalue to exclude the non-determinismedfom a subspace poten- To resolve these incompatibilities, we define several concepts,

tially changes both the semantics and the efficiency of a program. Such as deterministic confluence, premature evaluation, tagging,
and eventually the validity of computations with subspaces. We

propose a simple transformation that replaces non-deterministic ex-

10. Related Work pressions shared between a subspace and its context with deter-
Primitives for computing with subspaces are present in many im- ministic expressions. The transformation preserves the semantics
plementations of Curry. Differences among implementations con- of programs that depend only on the values of shared expressions,
cern sharing between a subspace and its context. The MCC com-and the transformed programs execute only valid computations.
piler [21] adopts a particular form of call-time choice for shared en- We also show that for some programs this transformation does
capsulation. By contrast, thei&s compiler [13] adopts the need- not capture the intended semantics. A functional logic language
time choice. In addition, both compilers feature the encapsulation should enable some construct for excluding from a subspace all the
proposed in [12] (see below). Thekcs [18] interpreter adopts a values of some non-deterministic expression.
particular mix of both semantics that depends on the order of eval-
uation and is strict. _ _ _ Acknowledgments

Work on formalizing computations with subspaces is scarce.)]
In [12] the space of a computation is explicitly represented as We are grateful to Michael Hanus, Wolfgang Lux and Khai Pham
a tree-like data structure, functions are encoded to traverse thisfor comments and discussions on the subject of this paper.
structure according to a depth-first and a breadth-first strategy, and
an operational semantics based on [1] is defined for computing
the computation space. The intent is to compute with subspaces
only within the IO monad to ensure that top-level computations are
deterministic.

Encapsulated search is also an important topic in the closely
related field ofconstraint programmingA comprehensive descrip-
tion of different operational aspects of encapsulated search in the
context of the programming constraint services and constraint com-
binators is [26]. Search spaces are organized in a so cslace
tree [26, Section 10.3.2] also constitutes a validity condition called
admissibility restricting certain manipulations of the space tree,
namelymergingandinjection The key idea of admissibility is to
keep the space tree free of cycles. In contrast, the validity condi-
tion discussed in Section 8 is concerned — in terms of [26] — with
the relation of asuperordinatedspace to itsubordinatedspaces.
The problems discussed here do not transfer to constraint program-
ming; the operational behavior tdll [26, Section 10.2] forwards a
non-deterministic choice to alubordinatedspaces. This has great
resemblance tweak encapsulatiof13] and would suffer from the
problems discussed in Section 7 when transferred from constraint
programming to our setting.

With respect to [12], we offer more formal definitions and
prove non-trivial properties of our concepts. In several areas, o
work and [12] complement each other. E.g., our definition of
getAllValues is abstract. An implementation of this abstraction
is likely to rely on a representation of a subspace similar to that
proposed in [12, Sect. 2.1]. We are not explicitly concerned with
ensuring that top-level computations are deterministic, but our ap-
proach can be used to the same aim. By contrast to [12], we adopt a
declarative semantics, we argue that the order of evaluation is a cru-
cial element of computing with subspaces, and we define a concept
of validity that makes the difference between call-time and need-
time choice vacuous for encapsulation. We also show that some
programs intend to share a non-deterministic expressim@iween

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Oatonal
semantics for declarative multi-paradigm languagésurnal of
Symbolic Computatiqrt0(1):795-829, 2005.

S. Antoy. Definitional trees. In H. Kirchner and G. Leviitors,
Proceedings of the Third International Conference on Atgaband
Logic Programmingpages 143-157, \olterra, ltaly, September 1992.
Springer LNCS 632.

S. Antoy. Optimal non-deterministic functional logic cooiptions.

In Proceedings of the Sixth International Conference on Atgjeb
and Logic Programming (ALP’97pages 16-30, Southampton, UK,
September 1997. Springer LNCS 1298.

S. Antoy. Constructor-based conditional narrowing.Pioceedings
of the Third ACM SIGPLAN International Conference on Prles
and Practice of Declarative Programmingages 199-206. ACM
Press, 2001.

S. Antoy. Evaluation strategies for functional logicogramming.
Journal of Symbolic ComputatipA0(1):875-903, 2005.

S. Antoy, D. Brown, and S. Chiang. Lazy context cloning fon-
deterministic graph rewriting. I#Proc. of the 3rd International

Workshop on Term Graph Rewriting, Termgraph’'@ages 61-70,
Vienna, Austria, April 2006. Extended version to appearNTES.

S. Antoy, D. Brown, and S. Chiang. On the correctness aiblting.
In F. Pfenning, editor17th International Conference on Rewriting
Techniques and Applications (RTA'O&pringer, 2006.

S. Antoy, R. Echahed, and M. Hanus. Parallel evaluaticategies for
functional logic languages. IRroceedings of the 14th International
Conference on Logic Programming (ICLP'9ages 138-152,
Leuven, Belgium, July 1997.

2

—

13

—_

[4

[l

[5

—

[6

—_

[7

—

8

—_

[9

—

S. Antoy and M. Hanus. Overlapping rules and logic vaeab
in functional logic programs. Ifwenty Second International
Conference on Logic Programmingages 87-101, Seattle, WA,
Aug. 2006. Springer LNCS 4079.

[10] F. Baader and T. NipkowTerm Rewriting and All ThatCambridge
University Press, 1998.

[11] M. Bezem, J. W. Klop, and R. de Vrijer (eds.lerm Rewriting
SystemsCambridge University Press, 2003.

[12] B. BraRel, M. Hanus, and F. Huch. Encapsulating norieinism
in functional logic computationsJournal of Functional and Logic
Programming 2004(6), 2004.

[13] B. BraRel and F. Huch. Translating curry to haskell. Pioc. of
the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic
Programming (WCFLP 2005pages 60-65. ACM Press, 2005.

[14] N. Dershowitz and D. A. Plaisted. Equational programmihgJ. E.
Hayes, D. Mitchie, and J. Richards, editd#achine Intelligence 1,1
chapter 2, pages 21-56. Claredon Press, Oxford, 1988.

[15] R. Echahed and J.-C. Janodet. On constructor-baset geavriting
systems. Research Report 985-, IMAG, 1997. Availabletap://
citeseer.ist.psu.edu/echahed97constructorbased.html.

[16] J. C. Gonalez Moreno, F. J. &pez Fraguas, M. T. HortalGonalez,
and M. Rodfguez Artalejo. An approach to declarative programming
based on a rewriting logic.The Journal of Logic Programming
40:47-87, 1999.

[17] M. Hanus (ed.). Curry: An integrated functional logambuage (vers.
0.8.2). Available ahttp://www.informatik.uni-kiel.de/
~curry, March 28, 2006.

[18] M. Hanus (ed.). PAKCS 1.7.3: The Portland Aachen Kietr@u
System. Available ahttp://www.informatik.uni-kiel.de/
~pakcs, Sept. 4, 2006.

[19] H. Hussmann. Nondeterministic algebraic specificatiand
nonconfluent rewriting.Journal of Logic Programming12:237—
255, 1992.

[20] F. J. Lopez-Fraguas and Jafchez-Herandez. TOY: A multi-
paradigm declarative system. Rroceedings of the Tenth In-
ternational Conference on Rewriting Techniques and Apfibos
(RTA'99) pages 244-247. Springer LNCS 1631, 1999.

[21] W. Lux. An abstract machine for the efficient implementatif
Curry. In H. Kuchen, editoWorkshop on Functional and Logic Pro-
gramming Arbeitsbericht No. 63. Institutlir Wirtschaftsinformatik,
Universi@t Munster, 1998.

[22] M. J. O’Donnell. Computing in Systems Described by Equations
Springer LNCS 58, 1977.

[23] E. OhlebuschAdvanced Topics in Term Rewritin§pringer-Verlag,
2002.

[24] D. Plump. Term graph rewriting. In H.-J. Kreowski H. Edpri
G. Engels and G. Rozenberg, editddsindbook of Graph Grammars
volume 2, pages 3-61. World Scientific, 1999.

[25] Uday S. Reddy. Narrowing as the operational semantifsrattional
languages. IfProceedings of the IEEE International Symposium on
Logic in Computer Sciencpages 138-151, Boston, 1985.

[26] Christian Schulte.Programming Constraint Services: High-Level
Programming of Standard and New Constraint Servicedume
2302 ofLecture Notes in Computer Scien&@pringer, 2002.

[27] R. C. Sekar and I. V. Ramakrishnan. Programming in equation
logic: Beyond strong sequentialitynformation and Computatign
104(1):78-109, 1993.

