
Formalization and Abstract Implementation
of Rewriting with Nested Rules ∗

Sergio Antoy and Stephen Johnson
Computer Science Department

Portland State University
P.O. Box 751, Portland, OR 97207, U.S.A.
{antoy,stephenj }@cs.pdx.edu

ABSTRACT
This paper formalizes term rewriting systems (TRSs), called
scoped, in which a rewrite rule can be nested within another
rewrite rule. The right-hand side and/or the condition of a
nested rule can refer to any variable in the left-hand side of a
nesting rule. Nesting of rewrite rules is intended to define a
lexical scope with static binding. Our work is applicable to
programming languages in which programs are modeled by
TRSs and computations are executed by rewriting or nar-
rowing. In particular, we consider a class of non-confluent
and non-terminating TRSs well suited for modeling mod-
ern functional logic programs. We describe an abstract im-
plementation of rewriting and narrowing for scoped TRSs
to show that scopes can be easily handled irrespective of
the evaluation strategy. The efficiency of rewriting within a
scoped TRS, measured using a narrowing virtual machine,
is comparable to the efficiency of rewriting for non-scoped
TRSs.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Multiparadigm Langua-
ges—Functional Logic Languages; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages;
F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems—Lexically Scoped
Rewriting Systems

General Terms
Design, Languages, Theory

Keywords
Term Rewriting Systems, Narrowing, Block Structured, Func-
tional Logic Programming, Non-Determinism

∗This research has been supported by the NSF grants CCR-
0218224 and CCR-0110496.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04,August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

1. INTRODUCTION
Term rewriting systems [4, 5, 10, 16] are versatile models

of computation in their own right and underlie several mod-
ern declarative programming languages, e.g., ASF+SDF [19],
Elan [6] and Maude [8] to name a few. In particular, pro-
grams in the functional logic programming languages Curry
[12] and Toy [17] are generally regarded as TRSs and are
executed by narrowing. Modeling these programs as TRSs
is somewhat necessary and convenient. The lambda calcu-
lus and many of its variations and extensions are inappro-
priate models for functional logic programming languages
even though many declarative programming languages have
a strong functional flavor. These languages support the defi-
nition of “non-deterministic operations” including constants
seen as nullary symbols. For example, consider the following
Curry program:

coin = 0

coin = 1
(1)

The expression coin evaluates non-deterministically to ei-
ther 0 or 1. Furthermore, functional logic languages are ex-
ecuted by narrowing. Narrowing is a computation that eval-
uates functional-like expressions possibly containing unin-
stantiated logic variables. Narrowing supports both terse
code and expressive abstractions. This is illustrated in Dis-
play (2) with last, which is a function that computes the
last element of list.

[] ++ y = y

(x:xs) ++ y = x:(xs++y)

last l | l =:= x++[e] = e

where x, e free

(2)

The operation “++” is the usual list concatenation. The op-
eration last is defined by a conditional rewrite rule. The
condition, y =:= x++[e], is an equational constraints con-
taining two uninstantiated variables x and e. Narrowing
computes values for these variables that satisfy the con-
straint and thus determines the last element of a list.

Functional logic languages are often seen as extensions
of functional languages. However, even though the lambda
calculus is the traditional underlying semantic and oper-
ational model of functional languages it is inadequate for
functional logic languages because of non-determinism and
narrowing. A TRS is a primary semantic and operational
model for a functional logic program. A TRS is also a con-
venient model because several strategies discovered in the
last decade, see [2] for a summary, become available for the
execution of programs in these languages.

Since functional logic languages are often seen as exten-
sions of functional languages, a majority of semantic con-
cepts and syntactic constructs of functional languages are
provided with little or no change in functional logic lan-
guages. As a case in point, Curry has been designed as
an extension of Haskell. In this spirit, the definition of a
function—or more precisely a symbol—can be nested within
the definition of another function. However, in Curry these
symbols may include non-deterministic operations of the
kind shown earlier, therefore what is really being nested is
not a function, but a set of rewrite rules because the seman-
tics of the language models programs as TRSs. No rigorous
semantics exists for the nesting construct in functional logic
languages.

Nesting is intended to define a lexical scope which provides
a name space for both signature symbols and variables. This
paper focuses only on the variables. In a nested rewrite rule,
the right-hand side and/or the condition can refer to a vari-
able defined by the left-hand side of a nesting rewrite rule.
This variable is referred to as non-local. In the following
Curry program,

reverse [] = []

reverse (x:xs) = appelem (reverse xs)

where appelem [] = [x]

appelem (y:ys) = y:appelem ys

(3)

both rewrite rules defining the function appelem are nested
within the second rule of the function reverse. Nesting
is syntactically introduced by a where block declaration to-
gether with appropriate indentation known as off-side rules.
The right-hand side of the first rule of appelem contains
a variable, x, which does not occur in the left-hand side.
The intended meaning is that this occurrence is bound to
the variable with the same identifier introduced by the left-
hand side of the nesting rule, the second rule of reverse.
The above program would be an ordinary TRS except for
the occurrence of a non-local variable.

Nesting in functional programs is syntactically similar to
the above examples. In fact, in Haskell it is identical. Com-
pilers remove nesting typically with transformations such
as lambda-lifting [15] or closure conversion. Lambda-lifting
changes a non-local variable into a local one by explicitly
passing it to nested functions that directly or through other
nested functions refer to it. If all the non-local variables
are explicitly passed to nested functions, nesting becomes
irrelevant, except for potential name clashes that can be
removed by renaming, and nested functions become equiva-
lent to top-level functions. The result of lambda-lifting the
previous example follows:

reverse [] = []

reverse (x:xs) = appelem x (reverse xs)

appelem z [] = [z]

appelem z (y:ys) = y:appelem z ys

(4)

For ease of reading, we have preserved the original iden-
tifiers although operations with the same identifiers differ
in the two programs. In particular, appelem takes one ex-
tra argument, the first one, and is no longer nested within
reverse.

Closure conversion is a lower-level compilation technique
for the execution of functions, or more generally procedures
in a variety of languages, with free variables. Functions are
compiled into a pair consisting of pure code and a map-
ping referred to as the environment, which defines bindings

for the free variables in the code. Several implementations,
e.g., the use of machine registers, hierarchical incremental
updates, etc., have been proposed for this structure.

Lambda-lifting and closure conversion are compilation tech-
niques that have not been well defined in the presence of
narrowing and non-determinism. Therefore, the application
of either lambda-lifting or closure conversion to functional
logic programs is at the very least unsatisfactory since func-
tional logic programs are executed by narrowing and may
define non-deterministic operations. This paper formalizes
a notion of scoped TRSs, a TRS with nested rewrite rules,
and proposes an abstract implementation of rewriting and
narrowing for a scoped TRS. On the conceptual level, our
work provides a rigorous semantics for a feature commonly
found in programs. This semantics is natural and direct
rather than obtained by a program transformation. On the
practical level, our semantics has some similarities with clo-
sure conversion and can be the basis of an implementation.
This implementation is simple, but non-trivial, since it must
be independent of the rewriting strategy. We also show that
a realistic implementation can be competitive with lambda-
lifting in some cases.

In Section 2 we introduce background information and the
notation necessary to understand our work. In Section 3 we
describe an implementation of rewriting. This implementa-
tion is abstract in the sense that it avoids details that may be
important for a real implementation, but that are irrelevant
to our presentation. By remaining abstract we hope to ease
the understanding of our idea and to focus on the key issues.
In Section 4 we formalize scoped TRSs and we present how
to execute rewriting and narrowing computations for TRSs
with nested rewrite rules. Our presentation is abstract in
the sense discussed earlier and for the same reasons. In Sec-
tion 5 we summarize the differences in execution time and
memory consumption of a set of rewriting and narrowing
computations. Our benchmark is obtained using a virtual
machine for narrowing computations [3] which is intended
to be efficient. This summary shows that there is a mod-
est cost to provide the infrastructure necessary to compute
with non-local variables. It also shows that computations in
which non-local variables are frequently accessed generally
execute faster. In Section 7 we offer our conclusion.

2. PRELIMINARIES
This section briefly recalls basic notions of term rewrit-

ing [4, 5, 10, 16].
A term rewriting system is a pair 〈R,Σ〉, where R is a

set of rewrite rules and Σ is a signature. The signature is
a set of symbols, where any symbol f has an arity, a non-
negative integer that defines the number of arguments of an
application of f . The set of terms constructed over Σ and
a countably infinite set X of variables, Term(Σ∪X), is de-
fined as follows: every variable is a term; if f is a symbol of
arity n > 0 and t1, . . . , tn are terms, f(t1, . . . , tn) is a term.
Var(t) is the set of variables occurring in a term t. An occur-
rence or position of a term t is a sequence of positive integers,
〈p1, . . . , pk〉, k > 0, identifying a subterm u in a term t as
follows: if k = 0 then u = t, otherwise if t = f(t1, . . . , tn)
then u is the occurrence of tp1 at 〈p2, . . . , pk〉. The expres-
sion t|p denotes the subterm of t at p. The expression t[u]p
denotes the term obtained from t by replacing t|p with u.

A substitution is a mapping from variables to terms. A
substitution σ is extended to terms by σ(f(t1, . . . , tn)) =

f(σ(t1) . . . , σ(tn)). A rewrite rule is a pair l → r, where l
is a non-variable term and r is a term such that Var(r) ⊆
Var(l). A TRS defines a rewrite relation on terms as fol-
lows: t→p,l→r,σ u if there exists a position p in t, a rewrite
rule l → r and a substitution σ with t|p = σ(l) and u =
t[σ(r)]p. An instance of a left-hand side, σ(l), is called a
redex (reducible expression). The corresponding instance
of the right-hand side, σ(r), is called the redex replacement
and the term u is called a reduct of t.

A computation is a sequence of rewrite steps. Terms
whose subterms are not redexes are normal forms. Sev-
eral distinct redexes may occur in a term. A TRS does not
specify which redex to replace. This choice is the task of
a strategy. Strategies play a crucial role in the execution
of programs modeled by TRSs. Our formalization and im-
plementation of rewriting in scoped TRSs is independent of
any strategy and therefore accommodates any strategy that
a language implementation deems most appropriate.

3. ABSTRACT IMPLEMENTATION
This section presents an abstract implementation of rewrit-

ing. There are no new concepts in this material. Our overall
goal is to show that the formalization of scoped rewriting
presented in the next section can be implemented naturally,
directly, and with acceptable performance.

Efficient implementations of rewriting are intertwined with
a strategy. The strategy depends on the class of TRSs con-
sidered, e.g., strongly sequential, constructor based, weakly
orthogonal, etc. The concepts are highly technical and the
details are fairly complicated. This machinery, intended to
optimize the selection of a redex, is irrelevant to our presen-
tation. Therefore, we discuss an abstract implementation of
rewriting. The merit of this implementation is to leave out
both the strategy and its many details. This implementa-
tion would be naive for practical purposes. Later, we will
revisit this implementation and show that it can be extended
to scoped TRSs with a few well-localized changes. We be-
lieve that this form of presentation will help understanding
the differences between ordinary and scoped rewriting and
will guide, as it did in our case, more realistic implementa-
tions [3].

Rewriting can be implemented with very little machin-
ery when the efficiency of computing a normal form is not
a major concern. Two components are crucial to any such
implementation: a suitable type for the representation of
terms and a function that executes a rewrite step. We limit
our discussion to left-linear TRSs, i.e., TRSs in which a vari-
able may occur at most once in the left-hand side of a rewrite
rule. Our technique is indifferent to left-linearity, but this
assumption simplifies our implementation of abstract rewrit-
ing. The function match, described later, matches the left-
hand side of rule against a term. If the left-hand side is
linear, this function can bind a variable occurring in the
left-hand side without checking for previous bindings. Fur-
thermore, TRSs modeling programs in many functional and
functional logic programming languages are left-linear. We
describe an abstract implementation of rewriting in the sense
that we ignore (by encapsulation) many program details,
any efficient pattern matching [13], or any efficient strat-
egy [2]. In particular, we hide the details of the representa-
tion of terms.

Terms are trees. Hence they are naturally and easily
represented as dynamic linked structures in imperative pro-

gramming languages and as algebraic data types in declar-
ative languages. Here we assume the existence of a type
Term. An instance or object of a non-variable term has two
components: a root and a sequence of zero or more argu-
ments. The root abstracts a symbol of the TRS’s signature.
A symbol has attributes such as a name, an arity, etc. The
arguments are terms themselves. For example, referring to
Display (4), let t be the term reverse []. The root of t is
the symbol reverse. t has only 1 argument. The first and
only argument of t is the term []. Term is an overloaded
abstract function that takes a symbol and its arguments and
constructs the corresponding term. The functions root and
arg decompose a term and are related to Term as follows:

root(Term(r, a1, . . . , an)) = r n > 0
arg(i,Term(r, a1, . . . , an)) = ai 1 6 i 6 n

(5)

Variables are terms, too. We are not interested in the typical
attributes of a variable, such as its identifier or its binding,
but in the fact that if a variable occurs in the left-hand
side of a rewrite rule, then our assumption of left-linearity
ensures that its occurrence is unique. Therefore, an instance
or object of a variable term has a single component: its
unique occurrence in the left-hand side of the rewrite rule
that defines it. The type Occurrence abstracts a sequence
of positive integers that identify a subterm of a term. For
example, the occurrence of ys in the left-hand side of the
last rewrite rule of Display (4) is 〈2, 2〉 since ys is the second
argument of the second argument of the left-hand side. Var
is an overloaded abstract function that takes a sequence of
positive integers and constructs a variable. The functions
occur, first and rest are related as follows:

occur(Var(p1, . . . , pn)) = (p1, . . . , pn) n > 1
first(p1, . . . , pn) = p1 n > 1
rest(p1, . . . , pn) = (p2, . . . , pn) n > 1

(6)

Rewriting is implemented as a sequence of rewrite steps.
A rewrite step of a term is accomplished with two key sim-
ple operations: (1) find a redex and (2) compute its replace-
ment. The following function match tells whether a rewrite
rule l→ r is applicable to a term t. Left-linearity simplifies
this computation. The term t can be thought of as a subterm
of some larger expression evaluated during the execution of
a program in some programming language. The selection
of t in the larger expression is made by a strategy, a cru-
cial conceptual and practical component of the language’s
implementation. Our technique is applicable irrespective of
the strategy, therefore we ignore strategy related issues.

boolean match(Term t, Term l) {
if isVariable(l) return true;
else {

int n = arity(root(l));
return root(t) = root(l)

and match(arg(1,t),arg(1,l))
and · · ·
and match(arg(n,t),arg(n,l));

}
}

The following function, replace, constructs the replacement
of a redex. Suppose that t is a term and l → r is a rewrite
rule such that σ(l) = t, for some substitution σ. The re-
placement of t is σ(r). The substitution σ is not explicitly

computed by match and it is not explicitly required to com-
pute σ(r). Left-linearity simplifies this computation. The
variables in l and r are identified by their occurrence in l.
In the initial call to replace the arguments are t and r. A
subterm of r is passed down to recursive calls. The value
returned by replace is σ(r).

Term replace(Term t, Term r) {
Term subterm(Term t, Occurrence o) {

if isEmpty(o) return t;
else return subterm(arg(first(o),t),rest(o));
}
if isVariable(r) return subterm(t, occur(r));
else {

int n = arity(root(r));
return Term(root(r),replace(t,arg(1,r)), · · ·

replace(t,arg(n,r)));
}

}

The functions match and replace are the essential blocks of
an abstract implementation of rewriting. Let t be a term to
rewrite. Some strategy, using match, finds a redex s in t and
a rewrite rule applicable to s. The function replace computes
the replacement s′ of s. The reduct t′ of t is t with s sub-
stituted by s′. If the strategy is complete (normalizing), by
repeating the process to t′ until no more redexes are found,
one obtains the normal form of t. The details that we omit
depend on the strategy, which is irrelevant to our technique,
and the programming language of the implementation.

The abstract implementation of rewriting presented in
this section is useful to understand the crucial problem of
rewriting with nested rewrite rules. In the execution of re-
place, if the argument r were a non-local variable the term
bound to r would not be a subterm of t. Hence, the ex-
pression subterm(t,occur(r)) would either produce an unin-
tended result or be undefined. This observation also sug-
gests how to correct this problem. This will be presented
after the formalization of scoped TRSs presented in the next
section.

4. FORMALIZATION
In this section we formalize a notion of a TRS with nested

rewrite rules. We call these TRSs scoped. We extend the ab-
stract implementation of rewriting for ordinary TRSs pre-
sented in the previous section to scoped TRSs. As we al-
ready pointed out, this implementation is missing infor-
mation to find the bindings of non-local variables. These
bindings are created (implicitly in our abstract implementa-
tion) when a term is matched against the left-hand side of a
rewrite rule. Therefore, loosely speaking, all that is required
to rewrite with nested rewrite rules is to “keep around” these
bindings. Since we represent variables by their occurrences,
it suffices and it is quite convenient to access the term match-
ing the left-hand side of the rule that defines the binding of
a variable.

This apparent conceptual simplicity should not misled the
reader to think that the problem we face is trivial. The
notion of a scope, and the consequent need to manage a
context or environment, are as old as the early program-
ming languages. In the next section we will briefly recall
a few non-trivial approaches proposed to solve these prob-
lems. We remark that a specific issue of our discussion is
that we make no a priori assumption on the evaluation strat-

egy, but we expect any solution to work with a somewhat
non-strict strategy. We say “somewhat” because in some
non-confluent and/or non-terminating classes of TRSs used
to model functional logic languages, a notion of laziness is
not always precisely defined.

4.1 Non-locality
The notion of a block defining a lexical scope dates back

to the dawn of programming languages and continues nowa-
days. Main early languages incorporating this notion of
a block include Lisp and Algol 60. In early Lisp dialects
non-local variables were dynamically bound. Dynamic bind-
ing is easier to implement, but more difficult to understand
and control. For this reason, modern Lisp dialects such as
Scheme switched to static binding. Algol and its descen-
dants, e.g., Pascal and Ada, adopted static binding from
their beginning. More recently, a notion of scope was pro-
posed for rewrite rules too [20]. This notion is quite different
from ours and will be discussed in Section 6.

The contour model provides an operational semantics for
nested blocks with static binding. This model relies on the
fact that all these languages are eager in the sense that the
arguments of a function or procedure call are evaluated be-
fore the function’s invocation. The binding of a variable,
consisting of attributes such as value, location, storage size,
etc., are kept in the stack frame of a procedure invocation.
The stack discipline of function calls ensures that any time a
non-local variable needs to be accessed, the stack frame con-
taining the binding of the variable is somewhere down the
stack. For static binding two techniques have been devel-
oped to fetch the binding of a variable: the static chain and
the display. The static chain is based on a chain of pointers
whereas the display is based on a table. Dynamic binding is
generally implemented by a combination of a dynamic chain
and a symbol table. Both static and dynamic chains thread
stack frames, the first one in the order in which functions
are textually nested in a program and the second one in the
order in which functions are invoked during an execution.

Given this vast body of knowledge about implementing lo-
cal scopes in programming languages, one wonders if some of
the above techniques could be adapted to rewriting. The an-
swer is likely not. All the above techniques are stack based,
i.e., the stack frames containing the bindings of variables, as
the name suggests, are stored according to a first-in last-out
discipline. This discipline works well for eager evaluation
since it ensures that when the access to a non-local vari-
able is required, the frame containing the variable’s binding
is available on the stack. Eager evaluation in a procedural
language is similar to an innermost strategy in rewriting.
Therefore, we believe that both techniques for accessing non-
local variables in a procedural Algol-like language could be
adapted to innermost rewriting with non-local variables, as
well. However, these techniques do not work for some non-
innermost strategies. A following example will prove this
claim. Thus the above techniques are strategy dependant.

4.2 Scoped TRSs
In this section, we formalize the notion of a scoped TRS.

A scoped rewrite rule and a scoped TRS are interdependent
concepts defined as follows. A scoped rewrite rule is a pair
〈l → r,N〉, where l and r are terms satisfying some con-
ditions presented below and N is a scoped TRS. A scoped
TRS is a pair 〈R,Σ〉, where R is a set of scoped rewrite rules

and Σ is a signature. Sometimes we will omit the adjective
“scoped” when talking of scoped TRSs and scoped rewrite
rules. If 〈l→ r,N〉 is a rule of the TRS R, then both R and
l→ r are said to be nesting both N and any of its rules, and
likewise both N and any of its rules are said to be nested
in both l → r and R. Both a TRS and its rewrite rules are
said to be top-level if they are not nested in any other TRS
or rule.

The nesting relation defines a tree-like hierarchy of scoped
TRSs. Loosely speaking, the set of the rules nested within
a rule constitute a nested scoped TRS. For the purpose of
this paper, we assume that the signatures of any TRS in
this hierarchy is disjoint from the signatures any other TRS
in this hierarchy. For scoped TRSs modeling programs, it is
acceptable and convenient to allow symbols with the same
spelling in distinct signatures. These symbols are distinct
and an early phase of the compilation, known as name reso-
lution, identifies symbols according to the language’s scope
rules. Likewise, we assume that the sets of variables in the
left-hand side of any two distinct rewrite rules are disjoint.

Continuing the definition started earlier, we are now ready
to state the conditions on the left-hand and right-hand sides
of a rewrite rule 〈l→ r, 〈R′,Σ′〉〉 of 〈R,Σ〉.

1. l is a non-variable term over Σ.

2. A symbol s may occur in r if and only if one of the
following conditions hold:

(a) s is in Σ or

(b) s is in Σ′ or

(c) s may occur in the right-hand side of the nesting
rule, if l→ r is not top-level.

3. A variable v may occur in r if and only if one of the
following conditions hold:

(a) v occurs in l or

(b) v may occur in the right-hand side of the nesting
rule, if l→ r is not top-level.

The intuition behind the above conditions follows. Con-
dition 1 is standard for ordinary TRSs. Condition 2 estab-
lishes that a symbol s is acceptable in the right-hand side
of a rule m if s is in the signature of (a) the TRS to which
m belongs or (b) the TRS nested in m or (c) in any TRS
directly or indirectly nesting m. Likewise, condition 3 es-
tablishes that a variable v is acceptable in the right-hand
side of a rule m if (a) v occurs in the left-hand side of m,
which is standard for ordinary TRSs or (b) v occurs in the
left-hand side of any rule directly or indirectly nesting m.

The definition of a scoped TRS is a conservative extension
of an ordinary TRS. An ordinary TRS is a scoped TRS
in which nested TRSs are empty, or equivalently, all the
symbols are top-level. Referring to Display (3), the rules
of reverse are the only top-level rules. The second rule of
reverse is nesting the rules of appelem. The right-hand side
of this rule contains an occurrence of appelem which belongs
to the signature of the nested TRS. The right-hand side of
the first rule of appelem contains an occurrence of a variable
defined by the left-hand side of the nesting rule.

4.3 Constructor TRSs
TRSs modeling programs in many declarative program-

ming languages, such as Haskell and Curry, have rewrite
rules with left-hand sides characterized by a particular struc-
ture referred to as the constructor discipline [18]. Our tech-
nique relies on this characterization.

A TRS 〈R,Σ〉 is a constructor TRS if Σ is a construc-
tor signature and the left-hand sides of the rules of R are
patterns. A signature is a constructor signature if it is par-
titioned into a set C of (data) constructors and a set D of
(defined) operations. A pattern over a constructor signature
C]D is a term f(t1, . . . , tn), n > 0, such that f is in D and
every symbol occurring in ti, 1 6 i 6 n, is either a variable
or is in C. In constructor TRSs, a computation leading to a
normal form containing occurrences of defined operations is
regarded as failed. Display (4) is a constructor TRS (apart
from curried application and special infix symbols) in which
reverse and appelem are operations, whereas [] and “:”
are constructors.

The definition of a scoped TRS proposed earlier is orthog-
onal to the notion of a constructor TRS. The only effect of
combining these concepts is that the left-hand side of any
rule becomes a pattern. It also seems sensible to allow con-
structor symbols only in the top-level signature to ensure
that only top-level symbols occur in the result of a compu-
tation.

4.4 Scoped Rewriting
In this section, we define the rewrite relation for a scoped

TRS. In an ordinary TRS 〈R,Σ〉, every term t in Term(Σ)
represents a computation. This computation is a sequence
of rewrite steps originating from t. By contrast, some terms
of a scoped TRS do not represent meaningful computations.
For example, referring to the scoped TRS defined by Dis-
play (3), the term appelem t, where t is some list, does not
represent a meaningful computation. If t is not [], some
steps are possible, but eventually the computation produces
a term with an occurrence of appelem []. This is a redex,
but no sensible replacement is available for it due to the
presence of an uninstantiated non-local variable, x, in the
right-hand side of the first rule of appelem.

As one would expect, to define the rewrite relation in a
scoped TRS one has to “carry around” the instantiations of
non-local variables. The challenging part is how to carry
around these instantiations and to access them in a practi-
cal way in an implementation of scoped rewriting. This is
non-trivial and novel. We already pointed out that the tra-
ditional techniques for statically bound, block-structured,
eager languages would not work for rewriting with some
non-innermost strategies. For our purpose, we associate a
substitution to certain positions of a term. These substitu-
tions are used for obtaining the instantiations of non-local
variables occurring in a redex replacement when a nested
rule is applied. In constructor TRSs, which we consider be-
cause programs in functional and functional logic languages
are modeled by this class, operation symbol occurrences can
be tracked along a computation. This works well since only
operation-rooted terms can be redexes. Thus, the substitu-
tion associated to a position “travels” with its position along
a computation. Let t→p,l→r,σ u be a step and q the occur-
rence of an operation symbol of t. The following exhaustive
and mutually exclusive cases track q in u:

• p 66 q: the position q is not at or below p. In this case,

the replacement of t|p does not “disturb” the position
q. The occurrence of u at q is called a descendant [14]
of the occurrence of t at q.

• p 6 q: the position q is at or below p. We distinguish
two subcases:

– p = q: in this case, u|p is the replacement of t|p.
The occurrence of u at q is a trace [7] of the oc-
currence of t at q. The trace of (an occurrence of)
an operation symbol can be either an operation
or a constructor symbol.

– p 6= q: considering only occurrences of operation
symbols simplifies this case. Since we consider a
constructor TRS, q cannot be in any redex pat-
tern of l. Hence, there is an occurrence, say p′,
of a variable, say x, in l and a possibly empty
position p′′ such that p p′ p′′ = q. If x does not
occur in r, then the occurrence of q in t is erased.
Otherwise, let q′ be an occurrence of x in r. The
replacement of t|p may relocate and/or multiply
the occurrence of t at q, but it does not “disturb”
it in any other way. Thus, in this case too, the
occurrence of p q′ p′′ in u is a descendant [14] of
the occurrence of t at q.

Every occurrence of an operation symbol in u is either a
descendant of a similar occurrence in t as discussed above,
or is created by the reduction of t. The created occurrences
are all and only of form p q′′ where q′′ is an occurrence of an
operation symbol in r.

Thus, along the terms of a computation, occurrences of
operation symbols can be created, evolve into descendants,
and since we are interested in computations that reach a
constructor term, they eventually vanish.

In passing, we observe that it would not be sensible to
track occurrences of constructor symbols. Consider the well-
known parallel-or operation defined by:

or True x = x

or x True = x

or False False = False

(7)

In functional logic languages there is no textual ordering in
the rewrite rules defining a function. For example, in Curry,
every rule applicable to a term must be non-deterministically
applied to ensure the completeness of a computation. The
term t = or True True rewrites to u = True. The term u is
a descendant of t|1 when t is rewritten by the second rule,
but it is a descendant of t|2 when t is rewritten by the first
rule.

An attribute, called level, is inductively defined for TRSs,
rules, and symbols. The level of a top-level TRS is 0. The
level of a TRS nested in a TRS R is 1 more than the level of
R. The levels of a rule and a symbol are the levels of the TRS
in which they are defined. In Display (3) the level of appelem
is 1, whereas the level of any other symbol is 0. Loosely
speaking, the level of a TRS and its rules and symbols is
the TRS’s depth in the tree-like hierarchy implicitly defined
by the nesting relation.

Let f be a level-n, n > 0, operation symbol. The con-
text of an occurrence of f in a term is a sequence of pairs
〈li → ri, σi〉, for 0 6 i < n, where li → ri is a level-i rewrite
rule and σi is a substitution for the variables of li. The con-
text of a term is a generic name for the set of contexts of

each occurrence of an operation symbol of the term. By defi-
nition, the context of any occurrence of a top-level symbol is
an empty sequence of pairs. Of course, not every context is
useful for rewriting. Below, we define a notion of usefulness
for the context of a term.

Let t be a term. Let p be the position of a redex of t, l→ r
a rewrite rule applicable to t|p, and v a non-local variable
of r defined by a level-i rewrite rule m. Our assumption of
unique identifiers of variables in the left-hand sides guaran-
tees that m is unique as well. We say that the context of t
is useful if and only if the i-th rule of the context of the root
of t|p is m. The context of any term consisting of top-level
symbols is trivially useful. The purpose of a context is to
provide instantiations of non-local variables.

For example, a useful context of the term appelem [] of
Display (3) is a sequence consisting of:

〈reverse (x:xs) = appelem (reverse xs), {x 7→ 3, xs 7→ []}〉

We will shortly show that this is a useful context created
during the evaluation of reverse [3].

The definition of the rewrite relation for scoped TRSs is
fairly more complicated than for ordinary TRSs because a
replacement may depend on a redex contracted earlier in a
derivation. Information about this redex must be saved for
later use and stored in a form easily accessible Let t0 be a
top-level term and t0 → · · · → tk → · · · a computation. We
define both tk and a useful context of tk by induction on k
as follows.

• Base case. The term t0 is given. By definition, the
context of t0 is the empty sequence for each occurrence
of an operation symbol. This context is trivially useful
for top-level symbols.

• Induction case. Let tk, k > 0, be a term of the compu-
tation. Let p be a position of tk, l→ r a level-n rewrite
rule, and σ a substitution such that σ(l) = tk|p. The
level of the symbol of tk at p is n, as well. By the
induction hypothesis, a useful context C is associated
to this symbol occurrence. C is a sequence of length
n − 1. We define tk+1 as tk[η(r)]p where η is defined
as follows. Let v be a variable of r. If v is local,
then η(v) = σ(v). Otherwise, v is defined by a unique
rewrite rule R of level m, m < n. The context C con-
tains R and an associated substitution σ′. We define
η(v) = σ′(v).

Now, we define the context of tk+1. Let q′ be the oc-
currence of an operation symbol in tk+1. If q′ descends
from a position q in tk, then the context of q′ is the
context of q. If q′ is created by the step, then let m be
the level of the root of tk+1|q′ . Let C′ be the context
obtained from C by appending the pair 〈l → r, σ〉 at
the end of C and taking the prefix of length m− 1 of
this list. By the induction hypothesis that C is useful
for q, it is simple to verify that C′ is useful for q′.

By way of example, we show how to obtain the context
of appelem [] discussed earlier, according to the definition.
Let reverse [3] be the initial term. The reduction,

reverse [3]→ appelem (reverse [])

associates the context,

〈reverse (x:xs) = appelem (reverse xs), {x 7→ 3, xs 7→ []}〉

to the occurrence of appelem. The inner reduction,

reverse []→ []

transfers the above context to appelem [] and gives the de-
sired result.

4.5 Abstract Implementation Extension
Our abstract implementation of rewriting with non-local

variables is obtained from the abstract implementation of
ordinary rewriting in Section 3 with a few modifications. We
had to add an attribute to symbols, a component to both
variable and non-variable terms, and to slightly modify the
replace function. These are exactly the same changes we
applied to a narrowing machine [3] for the compiler/inter-
preter which prompted our research.

We assume that the level attribute defined earlier is avail-
able for each symbol, including variables. The level of a
variable v is simply the level of the rewrite rule whose left-
hand side contains an occurrence of v. As we will see shortly,
the level of a variable is explicitly stored in its representa-
tion. For a program, the level of a symbol is easily computed
by the front end of a compiler.

A component, called context, was added to non-variable
terms. If 〈R, σ〉 is a pair in the context of a term, all that
is needed for the implementation described below is only
σ(R), i.e., the redex to which R was applied. Thus, the
context of a term is either another term, which occurred
earlier in a computation, or a distinguished value, denoted
by ⊥, which stands for “non-existent.” Since the context of
a term is a term itself, for any term t0 the context function
defines a finite or infinite sequence of terms, say t1, t2, . . .
such that, for all i > 0, ti+1 is the context of ti. It will be
easy to verify that the sequences of contexts that we create
are always finite because they have the following property:
if the level of the root of ti is n, then the level of the root of
ti+1 is n− 1.

A context is useful only for operation-rooted terms, but in
the following discussion we disregard this distinction for the
sake of simplicity. We remarked earlier that it is sensible
to define data constructors at the top-level only, thus the
context of a constructor-rooted term would be trivial in any
case.

We extend the abstract definition of a non-variable term
in (5) as follows, where the first argument of a Term is its
context.

root(Term(c, r, a1, . . . , an)) = r n > 0
arg(i,Term(c, r, a1, . . . , an)) = ai 1 6 i 6 n
cont(Term(c, r, a1, . . . , an)) = c n > 0

(8)

Furthermore, we overload the function cont to traverse a
chain of contexts:

cont(i, t) =

{
t if i = 0,
cont(i− 1, cont(t)) if i > 0 and t 6= ⊥.

The above definition generalizes the notion of context of a
term t to include t itself, i.e., the 0-th context of t is t. This
convention is convenient when t is a redex, i.e, an instance
of l for some rewrite rule l → r. In this case, any variable
in r is bound to a subterm of cont(i, t), for some i > 0.

Since both the left-hand and right-hand side of a rewrite
rule are terms they also have a context. These contexts are
never used in our abstract implementation. Thus, it could
seem sensible to define two kinds of terms, one without con-
texts for rewrite rules and one with contexts for rewriting

computations with non-local variables. We disregard this
optimization in this paper. In many practical implementa-
tions of functional logic programming languages that pro-
vide narrowing, redexes are found by automata which are
almost universally based on definitional trees [1]. These au-
tomata are obtained from the rewrite rules, but the rules
themselves do not play any explicit role. Thus, whether to
include or omit contexts in the rules becomes insignificant.

The level of a variable was added to its representation.
We extend the abstract definition of a variable term in (6)
as follows (the functions first and rest are unchanged):

occur(Var(l, p1, . . . , pn)) = (p1, . . . , pn) n > 1
level(Var(l, p1, . . . , pn)) = l n > 1

(9)

Now, we are ready to present the extended version of replace.
There are only two small differences with respect to the
original version: the argument of subterm is a context of
the redex in the generalized sense of cont(·, ·), rather than
the redex itself, and the construction of a term requires an
additional argument, a context of the redex in this case, too.

Term replace(Term t, Term r) {
Term subterm(Term t, Occurrence o) {
. . . as before . . .
}
if isVariable(r) {

int d = level(root(t)) - level(r);
return subterm(cont(d,t), occur(r));
} else {

int n = arity(root(r));
int d = level(root(t)) - level(root(r)) + 1;
return Term(cont(d,t),root(r),replace(t,arg(1,r)), · · · ,

replace(t,arg(n,r)));
}

}

For example, consider the following program whose purpose
is only to show our technique.

f x y z = g x

where g [] = h y

where h [] = k

h (u:us) = u : (h us)

g (v:vs) = v : (g vs)

k = z

We trace the computation of f [1] [2] [3]. To ease under-
standing, we label each occurrence of an operation symbol
with its level. Straight arrows pointing down denote rewrite
steps. Curved arrows link an operation-rooted term to its
context, another operation-rooted term.

f0 [1] [2] [3]

g1 [1]

1:g1 []

1:h2 [2]

1:2:h2 []

1:2:k1

1:2:3:[]

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

//

oo

oo

Every term of this computation has a single occurrence of
an operation symbol, hence both redexes and contexts are
easily and uniquely identified.

According to the definition, the context of f in the initial
term is the empty sequence, and it is not shown.

The replacement of f [1] [2] [3], g [1], is rooted by a
level-1 symbol. Its context is rooted by a level-0 symbol.
The replacement of g [1] contains the subterm g []. This
subterm has the same context as g [1].

The replacement of g [], h [2], is built by accessing a non-
local variable. Since the term h [2] is rooted by a level-2
symbol, its context is a term rooted by a level-1 symbol.

A variation of this example shows that a stack policy to
manage contexts is not adequate for every rewrite strat-
egy. Consider the pair (f [1] [2] [3], f [4] [5] [6]) and the
rewrite sequence that alternates steps of each component of
the pair. The level-0 context of either component must be
accessed well after the level-0 context of the other compo-
nent has been created. Thus, for this strategy, the creation
of a context at a given level cannot eliminate or hide the
creation of another context at the same level.

4.6 Correctness
In this section we address the correctness of our imple-

mentations. Since our implementation language is informal,
our discussion is informal too. It is presented only to ease
understanding and to increase the confidence in a new algo-
rithm. We assume that a TRS is left-linear and follows the
constructor discipline. For scoped TRSs, we assume that
the initial term of a computation is made up of top-level
symbols each of which has an empty, hence useful, context.

The correctness of the function match is expressed as fol-
lows: If t is a term and l is a linear term, then there exists
a substitution σ such that σ(l) = t if and only if match(t, l)
is true. The proof is by structural induction on l.

The correctness of the function replace for both ordinary
and scoped TRSs is expressed as follows: If l → r is a left-
linear rewrite rule, t is a term and σ is a substitution such
that σ(l) = t then replace(t, r) = σ(r). Preliminarily, we
observe that if v is a variable of l then subterm(t, occur(v)) =
σ(v). The proof is by induction on the length of occur(v).
The proof of the correctness of replace for ordinary TRSs is
by structural induction on r.

The extension to scoped TRSs includes two additional
computations: substituting local and non-local variables and
constructing the context of created occurrences of operation
symbols. We assume that the context of each occurrence of
an operation symbol of t is useful for the proof of correct-
ness and we prove that the context of each occurrence of an
operation symbol of replace(t, r) is useful.

The first computation is reduced to substituting local vari-
ables, in fact the same function subterm is evaluated, by re-
trieving the appropriate context. The second computation
is reduced to setting the context component of a term with
another term which is either the reduct or a context of the
reduct. Both computations rely on the function cont for re-
trieving the desired context. The proof is by case analysis
on the definition of the function cont.

4.7 Narrowing
Narrowing is a generalization of rewriting. A narrowing

step differs from a rewriting step in that a non-ground term
may be instantiated to create a redex before applying an
ordinary rewriting step. Referring to Display (4), the term
t = appelem t′ X, where t′ is some term and X is an uninstan-
tiated variable, cannot be reduced. However, if X is instan-
tiated by either [] or u:us, where u and us are terms, pos-
sibly uninstantiated variables, the corresponding instance of
t can be reduced.

Narrowing is the essence of functional logic programming.
It seamlessly integrates the two paradigms by supporting
the evaluation of functionally nested expressions contain-
ing uninstantiated logic variables and thus providing in a
functional-like setting both non-determinism and search. In
the last decade, a considerable effort has gone into the devel-
opment of evaluation strategies for narrowing computations.
Nowadays, suitable strategies exist, directly or through pro-
gram transformation, both for the whole class of the con-
ditional constructor TRSs and for several smaller classes of
interest for programming [2].

Narrowing strategies generalize rewriting strategies in that
given a term t, a strategy computes a set of triples of the
form 〈p, l → r, σ〉, where p is a non-variable position of t,
l→ r is a rule and σ is a unifier of t|p and l. Therefore, σ(t)
is reducible at p by l → r. When σ is the identity on the
variables of t, e.g., if t is ground, a narrowing step becomes
a rewriting step.

Most modern narrowing strategies for TRSs modeling func-
tional logic programs are based on definitional trees [1].
These strategies, similar to many practical strategies for
rewriting, e.g., [14], depend only on the left-hand sides of
a TRS’s rewrite rules. Therefore, they are independent of
the right-hand sides and in particular of the presence of non-
local variables. In a typical implementation, the narrowing
strategy computes the position, rule and instantiation of a
term. Any implementation of rewriting with non-local vari-
ables can be employed on the instantiated term.

5. EXPERIMENTAL RESULTS
This section describes some experiments that we conducted

to assess the practicality of rewriting with nested rewrite
rules. We think that the formalization discussed in Section 4
is important irrespective of the efficiency of its implementa-
tion, since it is the only formalization of nested blocks for
functional-like computations that includes non-determinism
and narrowing. However, it turns out that an implementa-

tion based on the concepts of the abstract implementation
of Section 4.5 is practical.

For our benchmarks, we used a virtual machine for func-
tional logic computations under development [3]. The ma-
chine is fairly sophisticated. It implements very efficient
pattern matching. It executes non-deterministic steps con-
currently to ensure the operational completeness of compu-
tations. It evaluates only once terms that can be shared
across concurrent computations. The instruction set of the
machine is relatively simple. It consists of a dozen instruc-
tions mostly for pattern matching and term building that
efficiently provide the functionality of functions match and
replace presented in Section 3.

The code generators for this machine and other imple-
mentations of functional logic languages, e.g., [11], lambda-
lifts nested rewrite rules even though this transformation
has been validated only empirically for non-deterministic
and narrowing computations. We have easy access to the
machine source code. Thus we modified both the machine’s
source code and the compiler’s generated bytecode to imple-
ment our formalization. We added a single instruction for
accessing non-local variables. The other modifications where
sparse and simple. We found programs that ran slower and
programs that ran faster. For programs that have no nested
rules, or were already lambda-lifted, the typical slowdown
was about 8%. This is the cost of carrying around a context
that is never used. For programs with some nested rules the
slowdown was smaller or in some cases there was a speedup.

To understand why a program with nested rules may run
faster, consider the following usual formulation of list con-
catenation:

append [] y = y

append (x:xs) y = x:append xs y
(10)

The second parameter is passed untouched through every
recursive call only to be returned by the final invocation of
append. The cost of passing this parameter can be avoided
at least partially. The following code defines the same list
concatenation of Display (10) using a scoped TRS with nested
rules.

append x y = appd x

where appd [] = y

appd (z:zs) = z:appd zs
(11)

To concatenate two lists, this version makes approximately
the same number of calls, but these calls are simpler because
only one parameter, instead of two, has to be passed and
therefore is more efficient.

For functional languages, the transformation from Dis-
play (10) to Display (11) is called lambda-dropping, which is
somewhat the inverse of lambda-lifting. Lambda-dropping
transforms recursive equations into a block structured func-
tional program. It is known [9] that lambda-dropping might
improve the efficiency of some computations. We performed
some experiments to quantify this claim in the setting of
scoped TRSs using the modified virtual machine. Our ex-
perimental results suggest that when enough parameters are
dropped there is a speedup and that the speedup increases
as more parameters are dropped. We ran our experiments
using the function f below which has no intuitive meaning,
but it allows us to estimate with reasonable accuracy the
cost of lambda-lifting/dropping one parameter. The func-
tion is intended to recursively call itself decrementing the
first parameter at each call until it is zero and then add to-

N 3 5 7 10
Speedup 1.06 1.16 1.29 1.43

Table 1: Speedup of accessing N arguments of function f ,
defined in the text, non-locally instead of locally.

Function append foldr
Speedup .99 .93

Table 2: Speedup, actually slowdown, of constructing and
carrying around a context that is never used for some pop-
ular functions.

gether the remaining parameters, which are not unchanged
in the recursive calls.

f(x0, . . . , xN) = if x0 == 0 then x1 + · · ·+ xN
else f(x0 − 1, . . . , xN)

We considered two implementations of f, fd and fl. For a
fair comparison, we take into account how a compiler would
efficiently compile the “if · then · else ·” operation and we
keep the dropped and lifted implementations as similar as
possible.

fd x0 ... xN = fdAux (x0 == 0) x0

where fdAux true x = x1 + ... + xN

fdAux false x = fdAux (x == 0) (x - 1)

fl x0 ... xN = flAux (x0 == 0) x0 ... xN

flAux true x0 ... xN = x1 + ... + xN

flAux false x0 ... xN =

flAux (x0 == 0) (x0 - 1) x1 ... xN

We ran fd with the virtual machine modified for scoped
TRSs and fl with the standard machine. We let N , the
number of parameters, be 3, 5, 7, and 10. The benchmarks
were run with x0, the number of recursive invocations, vary-
ing from 0 to 500,000 in increments of 20,000. We found
that the execution time increased nearly linearly with x0,
so we performed a linear regression on the data. To get the
speedup of the scoped TRS, we divided the slope obtained
for fl by that obtained for fd. Table 1 shows the speedups
we obtained.

We then performed a linear regression on the values of N
versus speedup data. The intercept was 0.91 and the slope
was 0.05. This suggests that if no parameters were passed
to fd and fl the scoped TRS would have a 9% slow down.
It also suggests that for each parameter added there would
be an additional 5% speedup in the scoped TRS.

To determine the cost of maintaining the context without
obtaining any benefit from it we repeatedly executed append

and the standard foldr (after transforming it into first-order
code) with lists from 0 to 300,000 elements in increments of
20,000 on both the scoped and the ordinary implementations
of rewriting. Once again we performed a linear regression
on the data and measured the speedup as the slope obtained
for the ordinary TRS divided by the slope obtained for the
scoped TRS. The results are summarized in Table 2.

We did not run any experiments to analyze memory use
because this was a difficult task using our implementation,
but we can make some pertinent observations. Storing the

context in a term takes as much memory, a pointer, as pass-
ing a parameter. Thus, if on average one can trade more
than one parameter for the context there will be some mem-
ory savings for terms. However, the terms that make up a
context may stay around longer before being garbage col-
lected. In general, a scoped TRS will need more heap space
than an ordinary TRS since it has to hold on to terms longer.

The context is needed only by functions that access non-
local variables. An optimizing compiler could detect some
situations in which the context is never used and therefore
the compiler could generate code which avoids the cost of
both building and carrying around the context, e.g., for func-
tions that have no nested functions and for functions that
have nested functions that do not access non-local variables.
More aggressive optimizations are also possible. The com-
piled code of our experiment did not include this or any
other optimization.

6. RELATED WORK
To our knowledge, this is the first attempt at formalizing a

notion of nested block with static binding for a TRS. Thus,
there is no closely related work to compare. A notion of
scoped dynamic rewrite rule is proposed in [20]. In that
context, “dynamic” means that a rule can be asserted and
retracted dynamically, i.e., while a term is being rewritten
with a given TRS, some rule may be added to and removed
from the TRS. Similar to our work, these dynamic rules may
refer to non-local variables, but by contrast to our work the
binding of the non-local variables is dynamic rather than
static.

Our work has some similarity with the closure conversion
transformation. A term in a scoped TRS holds the informa-
tion of both an ordinary term and the bindings of non-local
variables, which is equivalent to the usual environment of a
closure conversion. It is interesting to analyze how the en-
vironment is built and accessed. The traditional and most
straightforward structure for the environment is an array
indexed by integers associated to the variables. Our en-
vironment is structured in a hierarchical fashion and it is
built incrementally. Intuitively, these characteristics should
make it very efficient to maintain the environment perhaps
at the expense of accessing it. However, the patterns in
the rewrite rules of a program are seldom deep, thus the
binding of a non-local variable can be retrieved from the en-
vironment with only a few operations. Therefore, when seen
as a closure conversion our approach seems to offer a good
compromise between construction and access.

7. CONCLUSION
We have introduced a notion of a TRS in which some

rules can be nested within another rule. Nesting of rewrite
rules is intended to define a local scope with static binding
of variables. This formalism provides a rigorous semantics
for nested definitions in functional logic languages. The syn-
tax of this construct is identical in functional languages and
functional logic languages. The semantics in functional lan-
guages, nested function definitions in the lambda calculus, is
inadequate in functional logic languages because functional
logic languages support non-determinism and are executed
by narrowing.

We have formally defined the rewrite relation for scoped

TRSs. Our definition is a conservative extension of the or-
dinary rewrite relation. We have presented an abstract im-
plementation of ordinary rewriting and we have extended it
to scoped rewriting with simple adaptations. We have pre-
sented informal proofs of the correctness of our implementa-
tions. The principles behind our implementation of scoped
TRSs are quite different from those of block-structured im-
perative languages because the concepts of rewriting and
normalization are defined without involving a strategy. Thus,
our implementation must work for any strategy.

Since our notion of scoped TRS is interesting for func-
tional logic programming, we have performed benchmarks
for scoped rewriting with a virtual machine for narrowing
computations. We have found that our formalism can be
directly implemented with a modest effort and that its effi-
ciency is comparable with available alternatives.

8. REFERENCES
[1] S. Antoy. Definitional trees. In H. Kirchner and

G. Levi, editors, Proc. of the 3rd International
Conference on Algebraic and Logic Programming,
number 632 in Lecture Notes in Computer Science,
pages 143–157, Volterra, Italy, September 1992.
Springer-Verlag.

[2] S. Antoy. Evaluation strategies for functional logic
programming. In B. Gramlich and S. Lucas, editors,
Electronic Notes in Theoretical Computer Science,
volume 57. Elsevier, 2001.

[3] S. Antoy, M. Hanus, A. Tolmach, and J. Liu.
Architecture of a virtual machine for functional logic
computations. Preliminary draft, 2003. Available at
http://www.cs.pdx.edu/˜antoy/.

[4] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, 1998.

[5] M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term
Rewriting Systems. Cambridge University Press, 2003.

[6] P. Borovansky, C. Kirchner, H. Kirchner, P.-E.
Moreau, and C. Ringeissen. An overview of ELAN. In
C. Kirchner and H. Kirchner, editors, Electronic Notes
in Theoretical Computer Science, volume 15. Elsevier,
2000.

[7] G. Boudol. Computational semantics of term rewriting
systems. In M. Nivat and J. C. Reynolds, editors,
Algebraic methods in semantics, chapter 5, pages
169–236. Cambridge University Press, Cambridge,
UK, 1985.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. The
Maude 2.0 system. In R. Nieuwenhuis, editor,
Rewriting Techniques and Applications (RTA 2003),
number 2706 in Lecture Notes in Computer Science,
pages 76–87. Springer-Verlag, June 2003.

[9] O. Danvy and U. P. Schultz. Lambda-dropping:
transforming recursive equations into programs with
block structure. Theoretical Computer Science,
248(1–2):243–287, 2000.

[10] N. Dershowitz and J.-P. Jouannaud. Rewrite systems.
In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B, pages 243–320. Elsevier,
1990.

[11] M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj,
P. Niederau, R. Sadre, and F. Steiner. PAKCS: The
Portland Aachen Kiel Curry System, 2003.

[12] M. Hanus (ed.). Curry: An integrated functional logic
language (vers. 0.7.2). Available at
http://www.informatik.uni-kiel.de/˜curry, 2002.

[13] C. M. Hoffmann and M. J. O’Donnell. Pattern
matching in trees. JACM, 29:68–95, 1982.

[14] G. Huet and J.-J. Lévy. Computations in orthogonal
term rewriting systems. In J.-L. Lassez and
G. Plotkin, editors, Computational logic: essays in
honour of Alan Robinson, pages 395–443. MIT Press,
Cambridge, MA, 1991.

[15] T. Johnsson. Lambda lifting: Transforming programs
to recursive equations. In Second International
Conference on Functional Programming Languages
and Computer Architecture, pages 190–203, New York,
September 1985. Springer-Verlag.

[16] J. Klop. Term rewriting systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of

Logic in Computer Science, volume II. Oxford
University Press, 1992.

[17] F. López-Fraguas and J. Sánchez-Hernández. TOY: A
Multiparadigm Declarative System. In Proc. of
RTA’99, pages 244–247. Springer LNCS 1631, 1999.

[18] M. J. O’Donnell. Computing in Systems Described by
Equations. Springer LNCS 58, 1977.

[19] M. van den Brand, A. van Deursen, J. Heering, H. A.
de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. The ASF+SDF
meta-environment: A component-based language
development environment. In Proceedings of the 10th
International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 365–370.
Springer-Verlag, 2001.

[20] E. Visser. Scoped dynamic rewrite rules. In
M. van den Brand and R. Verma, editors, Electronic
Notes in Theoretical Computer Science, volume 59.
Elsevier, 2001.

