
Constructor-based Conditional Narrowing ∗

Sergio Antoy
Dept. of Computer Science

Portland State University

antoy@cs.pdx.edu

ABSTRACT
We define a transformation from a left-linear constructor-based con-
ditional rewrite system into an overlapping inductively sequential
rewrite system. This transformation is sound and complete for the
computations in the source system. Since there exists a sound and
complete narrowing strategy for the target system, the combination
of these results offers the first procedure for provably sound and
complete narrowing computations for the whole class of the left-
linear constructor-based conditional rewrite systems. We address
the differences between demand driven and lazy strategies and be-
tween narrowing strategies and narrowing calculi. In this context,
we analyze the efficiency and practicality of using our transforma-
tion for the implementation of functional logic programming lan-
guages. The results of this paper complement, extend, and occa-
sionally rectify, previously published results in this area.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; D.1.6 [Programming Techniques]: Logic Program-
ming; D.3.3 [Programming Languages]: Language Constructs
and Features—Control structures; D.3.4 [Programming Langua-
ges]: Processors—Optimization; F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Systems;
I.1.1 [Algebraic Manipulation]: Expressions and Their Represen-
tation—Simplification of expressions; I.2.2 [Automatic Program-
ming]: Program transformation

General Terms
Algorithms, Languages, Performance, Theory

Keywords
Functional Logic Programming Languages, Rewrite Systems, Nar-
rowing Strategies, Call-By-Need

∗This work has been supported in part by the National Science
Foundation grant INT-9981317.

Third International Conference on Principles and Practice of Declarative
Programming (PPDP’01), Firenze, Italy, Sept. 2001, pages 199–206.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright ACM 2001 1-58113-388-x /01/09...$5.00

1. INTRODUCTION
Functional logic programs are modeled, in large part, by rewrite

systems (TRSs). A key decision in the design of functional logic
languages is the class of TRSs chosen to model the programs. In
principle, power and generality are very desirable. In practice, ex-
treme power or the greatest generality are not necessarily a good
thing. To some extent, the situation that we are discussing parallels
the use of thegoto statement in imperative languages. While the
gotostatement offers the greatest control over the flow of execution,
its use has been considered “harmful.” In fact, a recently designed,
very successful imperative language has completely eliminated it
in favor of a more disciplined approach.

In the case of functional logic programming, the problem of a
large class of TRSs is the difficulty of both discovering a sound
and complete narrowing strategy and implementing it efficiently.
We limit the discussion to first-order computations and the focus to
strategies. Figure 1 summarizes the state of the art in this field. All
the TRSs in the figure areconstructor-based(follow the constructor
discipline [21]) andleft-linear. For the time being, we ignore whe-
ther they areconditional [8]. We will see later that this is not a
substantial characterization for our discussion.

The inductively sequential TRSs are the first-order component of
functional languages, such asML andHaskell, and the constructor-
based restriction of the strongly sequential TRSs [14, 15]. A sound
and complete strategy for this class isneeded narrowing[5]. The
needed narrowing strategy extends to narrowing the well-known
call-by-needoptimal rewrite strategy [15]. The extension, which is
conceptually surprisingly simple, preserves the optimality of [15]
for rewriting and extends it to the independence of computed an-
swers [5].

The weakly orthogonal TRSs include operations that expressor
parallelism. In this class, computations yield deterministic results,
but have no simple sequential strategy. A sound and complete strat-
egy for this class isparallel narrowing[4]. Parallel narrowing ex-
tends to narrowing an optimal rewrite strategy [22]. The exten-
sion to narrowing, which is unexpectedly complicated, preserves
the optimality of [22] for rewriting, but does not fully extend it to
narrowing.

The overlapping inductively sequential TRSs are interesting in
functional logic programming because they express non-determin-
istic computations, i.e., a same term can have distinct normal forms.
By contrast to the more traditional use of predicates for this pur-
pose, non-deterministic operations can be functionally composed
and computations, including those containing non-deterministic op-
erations, can be lazily executed. A sound and complete strategy for
this class isINS[3]. INSdoes not originate from a previous rewrite
strategy. INS conserves the simplicity of needed narrowing and
extends some of its optimality results modulo non-deterministic

199

WO

OIS
CB

IS

Figure 1: Containment diagram of rewrite systems modeling functional logic programs. The outer area, labeledCB, represents
the constructor-basedrewrite systems. The smallest darkest area, labeledIS, represents theinductively-sequentialrewrite systems.
These are the intersection (rules differing for a renaming of variables are considered equal) of theweakly-orthogonal, labeledWO,
and theoverlapping inductively-sequentialrewrite systems, labeledOIS.

choices.
The situation becomes cloudier for the whole class of the con-

structor-based TRSs. A strategy for this class is proposed in [1]
for non-deterministic functional computations in a logic program-
ming language. A generalization of [1] to narrowing computa-
tions and conditional rewrite rules is proposed in [17], but the pre-
sentation is limited to confluent TRSs and thus it excludes non-
determinism. Both strategies are based on structurally equivalent
definitional trees, thus we believe that they compute the same steps.
Little is known about the properties of these strategies. Probably,
both are sound and complete for the whole class of the constructor-
based TRSs. These strategies aredemand driven, rather thanlazy.
A calculus, rather than astrategy, is also known [11] for the con-
structor-based TRSs. This calculus is sound and complete forthe
solution of admissible goals.

This short summary shows that an important result is still miss-
ing, namely, a provably sound and complete narrowing strategy for
the constructor-based TRSs. The missing result is the contribution
of this paper.

In Section 2 we briefly recall background information and foun-
dations for understanding our results. In Section 3 we discuss in
some details the motivation of our work. In Section 4 we define
a transformation of TRSs. We transform a constructor-based con-
ditional TRS,R, into an overlapping inductively sequential TRS,
R′. Our transformation is sound and complete for the computa-
tions ofR. Thus, usingINS inR′ we obtain a sound and complete
narrowing procedure forR. Section 5 contains our conclusions.
The Appendix sketches the proof of a non-trivial result claimed in
Theorem 1.

2. FOUNDATIONS

2.1 Background
A rewrite system is a pair,R = 〈Σ, R〉, whereΣ is asignature

andR is a set ofrewrite rules. SignatureΣ is many-sorted, but for
the sake of simplicity we restrict our presentation to the unsorted

case. SignatureΣ is partitioned into a setC of constructorsymbols
and a setD of defined operationsor functions. The set ofterms
is constructed overΣ and a countably infinite setX of variables.
The set ofvaluesis constructed overC andX . We will see shortly
that every value is a normal form, but some normal forms may not
be values. Apattern is a termf(t1, . . . , tn) in which f ∈ D and
t1, . . . , tn are values. Anunconditional rewrite ruleis a pairl→ r,
wherel is a linear pattern andr is a term. As usual, we require that
any variable inr must occur inl, i.e.,Var(r) ⊆ Var(l). However,
this limitation which we will revisit later is unnecessarily restrictive
for narrowing computations. An unconditional TRS,R, defines a
rewrite relation→R on terms as follows:s →R t if there exists a
rewrite rulel → r in R, a substitutionσ and a contextC such that
s = C[lσ] andt = C[rσ].

A conditionalrewrite rule is a triplel → r ⇐ c, wherel andr
are defined as in the unconditional case andc is asequence of con-
ditions. Various options have been considered for the form of the
conditions [8]. Since we are interested in narrowing computations
in possibly non-terminating constructor-based TRSs, it is appropri-
ate to consider conditions consisting of sequences ofelementary
equational constraints, i.e., pairsu ≈ v, where the symbol “≈”
is an ordinary (infix, overloaded) operation, calledstrict equality,
defined for every constant constructorc and constructord of arity
n > 0 by the rules:

c ≈ c→ success

d(u1, ..., un) ≈ d(v1, ..., vn)→ u1 ≈ v1 & . . . & un ≈ vn (1)

wheresuccess is a new constructor symbol and& is a new infix
operation defined by the rule:

success & X→ X (2)

We call aTRS with equalityany TRS containing the strict equality
equations, (1), and their associated symbols and equation, (2). It
is easy to verify that an elementary equational constraintt ≈ u
evaluates tosuccess if and only if t andu evaluate to a same
value.

200

In the terminology of [8], the TRSs that we consider are similar
to type I, the difference being that in a type I TRS the sides of a con-
dition must evaluate to a common reduct, whereas we additionally
require that the common reduct is a value. With a trivial syntactic
change, we can also regard our TRSs as type IIIn by interpreting
u ≈ v asu ≈ v ∗→ success.

The definition of the rewrite relation for conditional TRSs is
fairly more complicated than for unconditional TRSs. We refer
to [8] for a classic approach. We say thats narrows to t with
substitutionσ, denoteds ;σ t, if σ is an idempotent construc-
tor substitution such thatsσ → t. It is usually required thatσ is
a most general unifier, but we waive this restriction because nar-
rowing with most general unifiers is suboptimal [5] (for a direct
example see [3, Ex. 12]). With this definition, narrowing is triv-
ially complete, but less operational. Computing narrowing steps is
the task of astrategy, the subject of the next section. Acomputa-
tion or evaluationof a terms is a narrowing derivations

∗
;σ t,

wheret is a value. Substitutionσ is called acomputed answerand
t is called a value or acomputed expressionof s.

2.2 Strategies and Calculi
A narrowing strategyis a partial mapping from terms to narrow-

ing steps. A key attribute of a strategy is “laziness”. This word has
been used with different meanings.Lazyfunctional languages com-
pute with infinite data structures because they execute only steps
that areneeded— which means that if they are avoided, compu-
tations may no longer be complete. The formalization of “need”
is subtle and depends on the class of TRSs operated upon by the
strategy. E.g., this notion for the inductively sequential TRSs is
stronger than for larger classes. In functional logic programming,
“ laziness” has been used (incorrectly in our opinion) in a weaker
sense that does not preserve the meaning of the word in functional
programming. Sometimes, “lazy” has been used as a synonym of
“demand driven”, a concept weaker than “needed”, which will be
explained shortly. In the rest of this paper, we use this word in the
stricter sense.

For both rewriting and narrowing, the various definitions ofneed
are based on whole computations, e.g., see [22, Def. 6] and [5,
Def. 10]. The rewrite rules obviously must play a role in deter-
mining whether a step is needed, but are not directly referenced by
the definition of needed step. By contrast, ademand driven[10,
p. 179] strategy determines whether to execute a step from the
rewrite rules, often from the rules’ left-hand sides only, e.g., see [1,
17]. In this case, properties of the entire computation play little or
no role in the definition of the strategy. Thus, a step executed by a
demand driven strategy is needed for the application of a rule to a
term, but the application of the rule may not be needed for comput-
ing the value of the term. A contrived instance of this situation is
presented in Example 3. A less contrived instance is in [3, Ex. 12].

Narrowingcalculi, e.g., LCN [20] for confluent TRSs, OINC [16]
for orthogonal TRSs and goals whose right-hand side is a ground
normal form, CLNC [11] for left-linear constructor-based TRSs,
have been investigated as alternatives to narrowingstrategies. A
common reason advocated to study a calculus rather than a strategy
is that “narrowing is a complicated operation” [19]. Calculi come in
various flavors, but generally they consist of a handful ofinference
or transformationrules for equational goals. Calculi ease the proofs
of soundness and completeness by simulating narrowing steps by
means of a small number of more elementary inference rules. This
fragmentation sometimes increases the non-determinism of a com-
putation and makes implementations less efficient. Some calculi
have been refined to alleviate this problem, e.g., LCNd [19] for left-
linear confluent constructor based TRSs with strict equality, and

S-OINC [16].
Strong optimality properties have been claimed for narrowing

strategies more often than for narrowing calculi. The implementa-
tion of narrowing is still the subject of active investigation, but we
would guess that, in general, strategies can be implemented more
easily and efficiently than calculi because strategies more directly
relate to the terms that are the object of a computation.

2.3 Semantic options
Two semantic options have been considered for non-deterministic

computations. One, referred to ascall-time choice, fixes the values
of terms at the time of a “call”. The other, referred to asrun-time
choice, is the usual rewrite semantics. Perhaps, a better name would
beneed-time choice, since both choices are executed at run-time.

The two semantics differ only when a non right-linear rewrite
rule creates several needed descendants of a same term with dis-
tinct reducts. The call-time choice reduces all the descendants to
a same reduct, whereas the need-time choice may reduce distinct
descendants to distinct reducts. Both semantics are easy to imple-
ment. The call-time choice is obtained by sharing the represen-
tation of the descendants of term. The need-time choice, being
ordinary rewriting, does not require any device.

The call-time choice has been advocated as the “most natural
way to combine non-deterministic choices with parameter pass-
ing” [11]. Indeed, in many cases, this is the only appropriate se-
mantics. However, we think that a functional logic language should
not impose either choice, since there exist situations where the call-
time choice is totally inappropriate. An example of this situation is
presented in the next section. Therefore, syntactic constructs in a
functional logic programming language should allow the program-
mer to choose either semantics depending on a program or selected
portions of a program.

2.4 INS
The last crucial component needed to understand our work is the

Inductively Sequential Narrowing Strategy, or INS. This strategy
is defined for the class of theoverlapping inductively sequential
TRSs [3]. Each operation in this class has left-hand sides that can
be organized in a definitional tree, but several distinct right-hand
sides are allowed for a same left-hand side. Operations defined by
rewrite rules of this kind support an expressive and natural formu-
lation of problems into programs.

Example 1.A program to generate (non-empty) regular expres-
sions over a given alphabet is the direct encoding of its specifica-
tion1. Using the notation of [3]:

regexp X→ X

| "(" ++ regexp X ++ ")"

| regexp X ++ regexp X

| regexp X ++ "*"

| regexp X ++ "|" ++ regexp X

where++ denotes concatenation. The following expression:

regexp ("0" | "1") ≈ t

evaluates tosuccess if and only if t is a well-formed regular ex-
pression over the alphabet{0, 1}, and thus it acts as a (rather rudi-
mentary) parser.

The strategy for computations in this class of TRSs isINS [3], a
conservative extension ofneeded narrowing[5]. Similar to needed

1The grammar underlying this specification is ambiguous and ig-
nores the usual operator precedence. These aspects are irrelevant
to our discussion.

201

narrowing,INS is sound, complete and efficiently implemented. It
preserves some of needed narrowing’s properties, such as a slightly
weaker notion of needed redex, but it does not preserve the opti-
mality of the number of steps or the disjointness of computed an-
swers. These desirable properties are lost due to thedon’t know
non-deterministic choices inherent to a problem, hence the loss ap-
pears to be unavoidable. One could argue thatINS performs the
best possible job under its intended conditions of employment.

3. MOTIVATION
Narrowing in left-linear constructor-based conditional TRSs is

discussed in [11]. We find the treatment in Section 8 of [11], which
deals with the “practicability of the [CRWL] approach,” unsatis-
factory. There, the authors acknowledge a “big gap” between their
presentation of a lazy narrowing calculus, CLNC, and the imple-
mentation of a programming language. Supposedly, this gap is to
be filled by a “suitable narrowing strategy.” More specifically, the
authors of [11] “strongly conjecture” the existence of “a theoret-
ical result that would guarantee soundness and completeness of a
demand driven strategy w.r.t. CRWL semantics” and “taking the
previous conjecture for granted, ... that any implementation of the
demand driven strategy (as presented in Ref. [17]) can be safely
used for the execution of CRWL-programs.”

Unfortunately, the presentation in [17] does not prove that the
demand driven strategy is sound, complete and/or efficient. We
do believe that this strategy is sound and complete. A proof of
these properties should be eased by this paper. We have reserva-
tions on the efficiency of this strategy. More generally, we doubt
the existence of sound and complete narrowing strategies for the
constructor-based TRSs which can be implemented with an effi-
ciency competitive w.r.t. lazy strategies. The lack of fundamental
results about the demand driven strategy presented in [17] is com-
pounded by some errors or imprecisions occurring in [11].

It is claimed [11, p. 82] that “CLNC-derivations proceed by out-
ermost narrowing.” We refute this claim since it is inconsistent with
the completeness of CLNC [11, Th. 7.2]. Outermost strategies are
incomplete for constructor-based TRSs. The operations occurring
in the following counterexample are all defined in [11, pp. 53-54].

Example 2.Consider all the outermost derivations of:

sorted(permute([1,2])) (t0)

The only available step oft0 yields:

sorted(insert(1,permute([2])) (t1)

There exists a unique outermost step oft1 which yields:

sorted([1|permute([2])]) (t2)

No matter what the remaining steps of a derivation oft2 are, term
false can no longer be reached fromt2. However, it is easy to
verify thatfalse can be reached fromt0.

We also dispute the use of the adjective “lazy” in CLNC.

Example 3.Consider the following left-linear constructor-based
TRS:

f(c) → c

f(X) → c

g → ...

and the termt = f(g). Should subtermg of t be evaluated?
Needed strategies, such as those discussed in [2], don’t, but demand
driven strategies, such as those discussed in [1, 17], and CLNC do.

In more general situations the discussion becomes even more com-
plicated. We are not aware of any meaningful notion of laziness for

computations in the constructor-based TRSs. We believe that the
laziness of a strategy, or a calculus, for this class of TRSs is only
wishful thinking.

While both of the above imprecisions are easy to fix—one can
simply drop the claims of outermostness and laziness—they are
symptomatic of a bigger problem. Calculi are not always well-
suited for an implementation, and the details of narrowing, in par-
ticular strategies, are complicated enough to deserve a careful in-
vestigation. This is the thrust of this paper.

4. TRANSFORMATIONS
In this section we present a transformation of TRSs and show

how it solves the problem at hand. The source TRS,R, is left-
linear, constructor-based and conditional. The target TRS,R′, is
overlapping inductively sequential. We show that anyusefulcom-
putation inR has a corresponding computation inR′. A sound,
complete and lazy strategy,INS [3], is available forR′. There-
fore, we provide all the components necessary to fill the “big gap”
mentioned in [11, Sect. 8].

4.1 Linearization
We consider exclusivelyleft-linearTRSs. The reader might won-

der whether this is a sensible or altogether necessary limitation.
Below, using an example, we show how we could transform a non
left-linear TRSs into left-linear one withsimilar meaning.

Example 4.Consider the following (non left-linear) rewrite rule:

f(X,X) → t

wheref is an operation andt is some term. According to this rule,
the termf(u,v) should be contracted whenu andv are “equal”.
There are two potential difficulties with this statement: the precise
meaning of “equal” and the degree to whichu and v should be
evaluated to determine whether they are equal.

The rule offers no hints on how much to evaluate each argument
of f. If at all, it seems to suggest not to evaluate them. Further-
more, the ordinary rewrite semantics would suggest to use unifica-
tion for testing the equality of the arguments. In functional logic
programming with non-strict semantics, the validity of an equation
is defined as strict equality on terms. This is the preferred crite-
rion of equality for lazy computations in non-terminating TRSs.
Therefore, a term such asf(u,u) should not be contracted unless
u evaluates to avalueeven if the term matches the rule’s left-hand
side.

Both the problems discussed above are eliminated by the follow-
ing rule:

f(X,Y) → t ⇐ X ≈ Y

According to this rule, the termf(u,v) is contracted whenu andv
are “strictly equal,” i.e., they evaluate to a same value. Furthermore,
the rules of≈, together with a sensible strategy, control the evalua-
tion of the arguments off to determine whether they are equal.

Thus, we could transform non left-linear TRSs into left-linear ones
as sketched by the above example since the left-linearized rewrite
rules capture the exact semantics that we desire. The potential
problem would be that the transformation would lose the ordinary
semantics of non left-linear rules. Therefore, it seems more ap-
propriate to exclude non left-linear TRSs from our treatment be-
cause their semantics is inappropriate for functional logic program-
ming. It should be obvious from this discussion that imposing left-
linearity does not entail any loss of computing power or program
expressiveness.

4.2 Deconditionalization

202

Our first task is to get rid of the conditions. Unconditional TRSs
are somewhat simpler than conditional ones. This has lead to var-
ious proposals of transformations of conditional TRSs into uncon-
ditional ones, e.g., [8, 12, 18]. The interest in conditional TRSs is
that some syntactic restrictions, e.g., type IIIn [8], of the conditions
of the rewrite rules ensure confluence. The TRSs we consider, and
in particular both the left-linear constructor-based TRSs and the
overlapping inductively sequential TRSs, are not confluent. Thus,
we have much more leeway in eliminating the conditions since we
need to preserve computations, but not confluence.

Definition 1. [Deconditionalization] IfR = 〈Σ, R〉 is a left-
linear constructor-based conditional TRS with equality, we define
a new TRS,R′ = 〈Σ′, R′〉, called thedeconditionalizationof R.
We introduce a new overloaded binary operation denoted byif,
i.e.,Σ′ = Σ ∪ {if}. The set of rulesR′ is defined by:

1. R′ contains every unconditional rule ofR

2. R′ contains the rule
if(success,X)→ X

3. If l→ r ⇐ c is a conditional rule ofR,R′ contains the rule
l→ if(c,r)

4. R′ contains no other rule

The following statements relate terms, values, rewrite relation, and
computations between a TRS and its deconditionalization.

THEOREM 1. LetR be a left-linear constructor-based TRS with
equality andR′ its deconditionalization.

1. R′ is a left-linear constructor-based unconditional TRS with
equality

2. The set of terms ofR is contained in the set of term ofR′

3. The set of values ofR is the same as the set of values ofR′

4. If t andv are respectively a term and a value ofR (and by the
previous points, ofR′), thent

∗→R v if and only ift
∗→R′ v

The most interesting consequence of the above statements is that
although both the set of terms and the rewrite relation inR may
differ from those inR′, the rewrite computations ofR can be sim-
ulated by those ofR′ because we care only about derivations that
terminate in a value. The same holds true for narrowing computa-
tions since the narrowing relation is sound and complete w.r.t. the
rewrite relation.

Theorem 1 allows us to restrict our attention to unconditional
TRSs only. From a theoretical standpoint, there is no gain in com-
putational power or expressiveness by considering conditional re-
write rules. From a practical standpoint, the syntax of a program-
ming language may preserve conditional rules if programmers find
them familiar or expressive enough.

4.3 Sequentialization
We now define the transformation from a constructor-based (un-

conditional) TRS into an overlapping inductively sequential TRS.
We observe that the constructor discipline “localizes” to single op-
erations many fundamental properties of TRSs. For example, a
TRSR is overlapping or weakly orthogonal or inductively sequen-
tial if and only if the set of rewrite rules defining each operation of
R is respectively overlapping or weakly orthogonal or inductively
sequential. This property allows us to define our transformation for
a single operation rather than for an entire TRS.

Definition 2. [f -sequentialization] LetR = 〈Σ, R〉 be a left-
linear constructor-based TRS andf a defined operation ofR. We
define a new TRS,R′ = 〈Σ′, R′〉, called thef -sequentialization
of R. If f is overlapping inductively sequential, thenR′ = R.
Otherwise, letRf be the set of the rewrite rules definingf in R
and letR1] R2] · · ·] Rn be a partition ofRf such that for all
i = 1, . . . , n, Ri is an overlapping inductively sequential set of
rewrite rules. LetR′i be the set of rewrite rules obtained fromRi
in which the occurrence off in the left-hand side is replaced by a
new symbol denoted byfi. Letρf denote the following rewrite rule

f(X1, . . . , Xk)→ f1(X1, . . . , Xk)
| · · ·
| fn(X1, . . . , Xk)

Let R′f = {ρf} ∪ R′1 ∪ · · · ∪ R′n. TRSR′ is defined byR′ =
(R−Rf) ∪R′f andΣ′ = Σ ∪ {f1, . . . , fn}.

Example 5.The following TRS defines operationinsert also
found in [11]:

insert(X,Ys) → [X|Ys]

insert(X,[Y|Ys]) → [Y|insert(X,Ys)]

Operationinsert is not overlapping inductively sequential. The
insert-sequentialization of the above rules is:

insert(X,Ys) → insert1(X,Ys) | insert2(X,Ys)

insert1(X,Ys) → [X|Ys]

insert2(X,[Y|Ys]) → [Y|insert(X,Ys)]

Observe that every operation in theinsert-sequentialized TRS is
overlapping inductively sequential (it is defined by a single rewrite
rule).

The following statements, analogous to those of Theorem 1, relate
terms, values, rewrite relation, and computations between a TRS
and one of its sequentializations.

THEOREM 2. LetR be a left-linear constructor-based TRS,f
a defined operation ofR andR′ thef -sequentialization ofR.

1. R′ is a left-linear constructor-based TRS

2. The set of terms ofR is contained in the set of term ofR′

3. The set of values ofR is the same as the set of values ofR′

4. If t andv are respectively a term and a value ofR (and by the
previous points, ofR′), thent

∗→R v if and only ift
∗→R′ v

The f -sequentialization of a TRS is an interesting transformation
because repeated applications of it lead to an overlapping induc-
tively sequential TRS. We formalize this claim below.

LEMMA 1. LetR = 〈Σ, R〉 be a left-linear constructor-based
TRS,f a defined operation ofR andR′ thef -sequentialization of
R.

1. Operationf inR′ is overlapping inductively sequential

2. Every operation inΣ′−Σ is overlapping inductively sequen-
tial

Definition 3. [Sequentialization] LetR = 〈Σ, R〉 be a left-linear
constructor-based TRS andf1, f2, . . . fn be an enumeration of all
the operations inΣ that are not overlapping inductively sequential.
LetR0 denoteR andRi denote thefi-sequentialization ofRi−1

for i = 1, . . . , n. TRSRn is called thesequentializationofR.

COROLLARY 1. The sequentialization of a left-linear construc-
tor-based TRS is overlapping inductively sequential.

203

4.4 Assessment
Given a constructor-based possibly conditional TRS,R, we have

shown how to construct an overlapping inductively sequential TRS,
R′, which defines the same computations ofR. As far as functional
logic computations are concerned, TRSR′ is preferable toR be-
cause we know a strategy forR′, INS [3], which has been proven
sound, complete and theoretically very efficient. StrategyINShas
two noteworthy properties:

1. Modulo non-deterministic choices,INSexecutes only needed
steps.

2. Modulo non-deterministic choices,INS is sequential.

Property (1) implies that computations do not execute useless steps.
Property (2) suggests that implementations ofINS should be sim-
pler and more efficient than those of strategies without this prop-
erty. The reason is that to achieve operational completeness, adon’t
knownon-deterministic choice requires splitting a computation into
parallel threads. However, each thread issequential. Sequentiality
is an elusive property [7]. Loosely speaking, it means that given
any termt, we determine the next step of the evaluation oft “by
looking at t only.” Therefore, each thread of computation origi-
nating from a non-deterministic choice is independent of any other
thread. This independence implies that little or no control between
threads is required and simplifies the implementation. Both prop-
erties makeINSan ideal strategy for functional logic computations
and a practical one, too. In fact, a recent implementation ofINS[6]
is conceptually simple, compact, efficient,operationallycomplete,
and easy to integrate with residuation as described in [13].

The final aspect of our work to consider is the possible loss of
efficiency and/or laziness incurred by the transformation of Sect. 4.
The deconditionalization does not add any overhead. In fact, the
proof of point (4) of Theorem 1 is based on the fact that the condi-
tion of a rewrite rule is equally evaluated by a TRS and its decon-
ditionalization. We see no reason why the implementations of the
two systems should differ in this aspect.

The sequentialization of a TRS, according to Definition 2, may
contain more defined operations and execute more steps for the
same computation. The additional operations increase the size of
a program, but pose no execution overhead. The number of addi-
tional steps can be precisely measured. Referring to the notation
of Definition 2, each step inR at the position of a term rooted
by a non overlapping inductively sequential operation requires two
steps inR′. The first of these two steps can be entirely eliminated
by an optimization that moves the non-deterministic choice up to
the caller. The following fragment of code shows this elimination
on an example.

Example 6.Continuing Example 5, operationinsert is called
by operationpermute, also found in [11], as follows:

permute([]) → []

permute([X|Xs]) → insert(X,permute(Xs))

If we replace the second rule ofpermute with the following one,
the additional step introduced by the sequentialization of the origi-
nal TRS is eliminated.

permute([X|Xs]) → insert1(X,permute(Xs))

| insert2(X,permute(Xs))

This transformation is always possible, since in thef -sequentializ-
ation of a TRS anyf -rooted term is a redex.

The above code can be further optimized. Everyinsert1-rooted
term is reducible. These reductions can be executed at compile
time, e.g., in the rewrite rules of a program. The consequence is

that operationinsert1 can be entirely eliminated as well. Further-
more, during thef -sequentialization of a TRS,useless rules[2,
Def. 17], such as that shown in Example 3, are easily discarded.
Thus, it is possible that some computations in the sequentialization
of a TRS are shorter than in the original TRS.

Non overlapping inductively sequential operations are less struc-
tured than overlapping inductively sequential ones. Going back to
our introductory analogy, they are analogous togotostatements in
an imperative program. The number of these operations should be
small in most programs and the number of steps involving these
operations should be small in most computations. Thus, even with-
out any optimization, the overhead introduced by sequentializing a
TRS should be small in most cases.

There is, though, one very specific situation in which sequential-
izing a TRS may be detrimental. Rewriting computations in weakly
orthogonal TRSs may require a non-deterministic choice of which
subterm of term should be evaluated. By contrast to overlapping
inductively sequential TRSs, these choices do not require splitting
a computation into parallel threads, which is an expensive task, be-
cause in weakly orthogonal TRSs critical pairs are trivial. Instead,
all the subterms of these non-deterministic choices are evaluated in
parallel within asinglethread of computation. Our transformation
constructs a TRS in which each subterm is evaluated in an indepen-
dent parallel thread of computation. Note that both CLNC and the
demand driven strategy presented in [17] have the same behavior;
thus our approach is still competitive even in this situation.

Parallel narrowing[4] is a strategy that behaves as efficiently as
theoretically possible in the situation we are discussing. It would
be feasible to include the relevant aspects of parallel narrowing in
our approach, but it remains to be proven that any theoretical ad-
vantage would be preserved in practice. Parallel narrowing is fairly
more complicated thanINS, therefore its implementations are fairly
less efficient. More important, it is possible to evaluate several sub-
terms in parallel in a single thread of computation only forrewrit-
ing steps, not for generalnarrowingsteps, i.e., when variables are
instantiated.

4.5 Extra variables
If l → r is a rewrite rule, it is usual to require thatVar(r) ⊆
Var(l). This condition is unnecessary in our framework. A vari-
able inr that does not occur inl is called anextravariable. We al-
low unrestricted extra variables in rewrite rules. An unconditional
rewriting or narrowing step should treat an extra variable as a con-
stant, i.e., the step should not instantiate it. A conditional step may
instantiate an extra variable if the variable occurs also in a condi-
tion. Letx be an extra variable of a rewrite rule,l→ r ⇐ c. When
this rule is fired on a termt, yielding t′, either variablex or some
instance ofx containing fresh variables may byintroducedin t′.
Sincet′ itself, rather thant, could be the initial term of a compu-
tation, neitherx nor other fresh variables in an instance ofx create
any significant conceptual problem.

5. CONCLUSION
We have presented an approach to narrowing computations in

left-linear constructor-based conditional TRSs. This class is the
largest ever proposed for functional logic programming. Our ap-
proach transforms a TRS in this class into a target TRS belonging
to a class for which there exists a sound, complete and relatively
efficient narrowing strategy. Our transformation adds little, if any,
overhead to most computations. Computations in the target systems
can be implemented with relative ease and efficiency. Therefore, in
addition to ensuring the soundness and completeness of computa-
tions, a non-negligible advantage of our approach is its practical-

204

ity. Our results support and complement previous efforts aimed at
using left-linear constructor based conditional TRSs for modeling
functional logic programs and aimed at using narrowing for imple-
menting functional logic computations.

Acknowledgement
I am grateful to Eva Ullan and the anonymous reviewers for their
comments and suggestions on the initial version of this paper.

6. REFERENCES

[1] S. Antoy. Non-determinism and lazy evaluation in logic
programming. In T. P. Clement and K.-K. Lau, editors,Logic
Programming Synthesis and Transformation (LOPSTR’91),
pages 318–331, Manchester, UK, July 1991.
Springer-Verlag.

[2] S. Antoy. Definitional trees. InProc. of the 3rd International
Conference on Algebraic and Logic Programming (ALP’92),
pages 143–157. Springer LNCS 632, 1992.

[3] S. Antoy. Optimal non-deterministic functional logic
computations. InProc. International Conference on
Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

[4] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation
strategies for functional logic languages. InProc. of the
Fourteenth International Conference on Logic Programming
(ICLP’97), pages 138–152. MIT Press, 1997.

[5] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing
strategy.Journal of the ACM, 47(4):776–822, July 2000.

[6] S. Antoy, M. Hanus, B. Massey, and F. Steiner. An
implementation of narrowing. InPrinciples and Practice of
Declarative Programming (PPDP’01), Sept. 2001. (In this
volume).

[7] S. Antoy and A. Middeldorp. A sequential strategy.
Theoretical Computer Science, 165:75–95, 1996.

[8] J. A. Bergstra and J. W. Klop. Conditional rewrite rules:
Confluence and termination.Journal of Computer and
System Sciences, 32(3):323–362, 1986.

[9] G. Boudol. Computational semantics of term rewriting
systems. In M. Nivat and J. C. Reynolds, editors,Algebraic
methods in semantics, chapter 5. Cambridge University
Press, Cambridge, UK, 1985.

[10] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi.
Kernel LEAF: a logic plus functional language.The Journal
of Computer and System Sciences, 42:139–185, 1991.

[11] J. C. Gonźalez Moreno, F. J. Ĺopez Fraguas, M. T. Hortalá
Gonźalez, and M. Rodrı́guez Artalejo. An approach to
declarative programming based on a rewriting logic.The
Journal of Logic Programming, 40:47–87, 1999.

[12] M. Hanus. On extra variables in (equational) logic
programming. InProc. Twelfth International Conference on
Logic Programming, pages 665–679. MIT Press, 1995.

[13] M. Hanus. A unified computation model for functional and
logic programming. InProc. of the 24th ACM Symposium on
Principles of Programming Languages (Paris), pages 80–93,
1997.

[14] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential
and inductively sequential term rewriting systems.
Information Processing Letters, 67(1):1–8, 1998.

[15] G. Huet and J.-J. Ĺevy. Computations in orthogonal term
rewriting systems. In J.-L. Lassez and G. Plotkin, editors,

Computational logic: essays in honour of Alan Robinson.
MIT Press, Cambridge, MA, 1991.

[16] T. Ida and K. Nakahara. Leftmost outside-in narrowing
calculi.Journal of Functional Programming, 7(2):129–161,
1997.

[17] R. Loogen, F. Ĺopez Fraguas, and M. Rodrı́guez Artalejo. A
demand driven computation strategy for lazy narrowing. In
Proc. 5th International Symposium on Programming
Language Implementation and Logic Programming
(PLILP’93), pages 184–200. Springer LNCS 714, 1993.

[18] M. Marchiori. Unravelings and ultra-properties. In
Proceedings of the Fifth International Conference on
Algebraic and Logic Programming (ALP’96), pages
107–121. Springer LNCS 1139, 1996.

[19] A. Middeldorp and S. Okui. A deterministic lazy narrowing
calculus.Journal of Symbolic Computation, 25(6):733–757,
1998.

[20] A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strong
completeness and eager variable elimination.Theoretical
Computer Science, 167(1,2):95–130, 1996.

[21] M. J. O’Donnell.Computing in Systems Described by
Equations. Springer LNCS 58, 1977.

[22] R. C. Sekar and I. V. Ramakrishnan. Programming in
equational logic: Beyond strong sequentiality.Information
and Computation, 104(1):78–109, May 1993.

205

Appendix
In this appendix, we informally discuss the proof of a non-trivial re-
sult of this paper. Most of our claims are relatively straightforward
to prove except for point 4 of Theorem 1. Although this statement
is somewhat intuitive, proving the “if” part requires a considerable
infrastructure.

A fundamental result for reasoning about rewrite derivations is
theParallel Moves Lemmaand the consequent notions ofdescen-
dant [15] and trace [9] of a term. We cannot apply these con-
cepts to our discussion since, in general, they do not hold for non-
orthogonal TRSs. The two crucial conditions, satisfied by orthogo-
nal TRSs, which ensure the Parallel Moves Lemma are left-linearity
and non-ambiguity. The left-linear constructor-based TRSs obvi-
ously satisfy the first condition, but not the second. However, as
we remarked in Section 4.3, the constructor discipline severely cur-
tails ambiguity. The left-hand sides of two rewrite rules can overlap
only at the root. Therefore, it is possible to formulate, even for this
large class, a weaker notion of the Parallel Moves Lemma and con-
sequently those of descendant and trace of a term. The key of this
formulation is to restrict the moves to “compatible” steps, as we
did in [3] for narrowing.

Two steps of a same term, sayt →p1,R1 u1 andt →p2,R2 u2,
arecompatibleif p1 = p2 impliesR1 = R2. In particular, steps at
distinct positions are always compatible, whereas steps at a same
position are compatible only if they use the same rewrite rule. In-
deed, we could further generalize this condition for weak ambigu-
ity, but this generalization is not necessary for our proof.

Coming to the proof of point 4 of Theorem 1, letR be a left-
linear constructor-based TRS with equality andR′ its decondition-
alization. Furthermore, lett andv be a term and a value inR such
thatA : t

∗→R′ v. The proof is by induction on acost function,
denoted byα, that takes a computation and returns a non-negative
integer.

Functionα tallies the “cost” in a derivation of applying rewrite
rules with the right-hand side rooted by theif symbol, i.e., decon-
ditionalized rewrite rules. Intuitively, the application of a decondi-
tionalized rewrite rule should have unit cost; hence the proof would
be an induction of the number of steps of a derivation that fire a de-
conditionalized rewrite rule. Unfortunately, a complication arises
in a special case. Initially, to ease understanding, we ignore this
complication and begin with this simple formulation ofα. Later,
we explain the complication and how it is solved by a refinement
of the cost function.

LetA : t
∗→ v a derivation inR′ and letA[i] denote the suffix of

A starting with thei-th term. We defineα(A[i]) = δ+α(A[i+1]),
whereδ = 1 if the rewrite rule applied to thei-th term ofA is
deconditionalized, andδ = 0 otherwise. As we said earlier, this
definition ofα simply counts the number of steps ofA that apply
a deconditionalized rewrite rule and the proof by induction on this
number.

The base case is trivial, since each step ofA can be executed inR
as well. For the induction case, without loss of generality, suppose
that t →p,R u

∗→ v, whereR = l → if(c, r). By definition,
u = t[if(c, r)σ]p for some substitutionσ. The potential problem
of this situation is that ifcσ cannot be evaluated tosuccess, we
cannot apply the rewrite rulel → r ⇐ c in R and thus prove that
t→ t[r]p

∗→R v. However, there is a solution.
Consider a derivation,B, in R′ that executes the same steps of

A except that every step at a position that originates withint|p,
i.e., it is a descendant or a trace of a term at or belowp in t, is
omitted. DerivationB is formalized with notions that depend on
the generalization of the Parallel Moves Lemma that we sketched

earlier. An intuitive formulation is to considert[]p, where is a
new irreducible symbol, and to execute every step ofA that can
still be executed inB. DerivationB is finite and there are only two
possible outcomes for its last term. If the last term ofB is v, then
the first step ofA can be avoided and by the induction hypothesis
t

+→R v. If the last term ofB is notv, then there exists a step ofA
that is possible because a term originating fromt|p is constructor-
rooted, whereas the corresponding step ofB is not possible because
of the presence of. This implies that inA, termif(c, r)σ is eval-
uated to a constructor-rooted term, and thereforecσ is evaluated to
success. Thus, there exists a derivationC : t

+→R′ t′
∗→R′ v,

wheret′ contains only operations in the signature ofR. If the cost
of the suffix ofC starting witht′ were smaller thanα(A), we could
apply the induction hypothesis in this case, too, and conclude that
t

+→R v. Unfortunately, this is not always the case ifα counts
the number of applications of deconditionalized rewrite rules in a
derivation.

Before we explain this point, observe that the failure ofB to
reducet to v does not imply thatt|p is needed, since there is no
notion of needed redex for the left-linear constructor-based TRSs.
It only implies thatt|p must be contracted within the context of the
steps ofA to reachv.

The cost of the suffix ofC starting witht′ is not always smaller
thanα(A), because the order in which the redexes of a term, sayt,
are contracted affects the total number of steps of a derivation oft
to a value. Contracting outer redexes may multiply the occurrences
of inner redexes and thus lengthen a derivation. Going back to the
proof sketch presented earlier, it could happen thatα(A) < α(C)
and thus it would be wrong to apply the induction hypothesis. To
correct the problem, it suffices to refine the functionα.

Since the problem stems from multiple occurrences of descen-
dants of a same redex, a classic approach is to bundle together
in a family all these descendants. A multistep contracting one or
more members of a same family is assigned unit cost regardless
of the size of the family. We have formalized this concept in [5,
Def. 17] for narrowing steps in inductively sequential TRSs. In the
present situation, we are only concerned with rewriting steps, but
the concept is slightly more complicated by the possibility that two
redexes with a same ancestor may have different contractums. To
solve this problem, we callmutual clonesthe redexes of a deriva-
tion that both have a same ancestor; hence, are in the same family
and have a same contractum. We assign unit cost to a multistep
that contracts a non-empty set of mutual clones, i.e., increasing the
number of mutual clones contracted in a step does not increase the
cost of the step. This is a sensible decision even in practice because
implementations of narrowing may (should) share mutual clones in
the representation of a term.

The formal definition of this more sophisticated cost function is
somewhat laborious, but conceptually no more complicated than
that in [5, Def. 17]. This definition fixes the defect of our initial
approximation of the induction case of the proof sketch presented
earlier since multiple occurrences of descendants of a same redex
no longer increase the cost of a suffix of a derivation.

Note that the call-time semantics implies that all members of a
same family are mutual clones—a condition that would somewhat
simplify the discussion. Our treatment, though, is not limited by
the semantic option that may be adopted for a functional logic lan-
guage or program. Both the overall structure of our proof and our
definition of cost accommodate the need-time semantics, too.

206

