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Abstract

Narrowing is the operational principle of languages that
integrate functional and logic programming. We pro-
pose a notion of a needed narrowing step that, for in-
ductively sequential rewrite systems, extends the Huet
and Lévy notion of a needed reduction step. We de-
fine a strategy, based on this notion, that computes
only needed narrowing steps. Our strategy is sound
and complete for a large class of rewrite systems, is op-
timal w.r.t. the cost measure that counts the number of
distinct steps of a derivation, computes only indepen-
dent unifiers, and is efficiently implemented by pattern
matching.

1 Introduction

In recent years, most proposals with a sound and com-
plete operational semantics for the integration of func-
tional and logic programming languages [5, 10] were
based on narrowing, e.g., [6, 15, 17, 19, 37, 44]. Narrow-
ing, originally introduced in automated theorem proving
[46], solves equations by computing unifiers with respect
to an equational theory [14]. Informally, narrowing uni-
fies a term with the left-hand side of a rewrite rule and
fires the rule on the instantiated term.

Example 1 Consider the following rewrite rules defin-
ing the operations “less than or equal to” and addition
for natural numbers, which are represented by terms
built with 0 and s:

0 ≤ X → true R1

s(X) ≤ 0 → false R2

s(X) ≤ s(Y ) → X ≤ Y R3

0 +X → X R4

s(X) + Y → s(X + Y ) R5

21st ACM Symposium on Principles of Programming
Languages. Portland, Oregon, Jan. 1994, pages 268-279.

The rules of “≤” will be used in following examples.
To narrow the equation Z + s(0) ≈ s(s(0)), rule R5

is applied by instantiating Z to s(X). To narrow the
resulting equation, s(X + s(0)) ≈ s(s(0)), R4 is ap-
plied by instantiating X to 0. The resulting equation,
s(s(0)) ≈ s(s(0)), is trivially true. Thus, {Z 7→ s(0)} is
the equation’s solution.

A brute-force approach to finding all the solutions of
an equation would attempt to unify each rule with each

non-variable subterm of the given equation. The result-
ing search space would be huge even for small rewrite
programs. Therefore, many narrowing strategies for
limiting the size of the search space have been pro-
posed, e.g., basic [25], innermost [15], outermost [12],
outer [49], lazy [9, 36, 44], or narrowing with redun-
dancy tests [31]. Each strategy demands certain condi-
tions of the rewrite relation to ensure the completeness
of narrowing (the ability to compute all the solutions of
an equation.)

Our contribution is a strategy that, for inductively se-
quential systems [1], preserves the completeness of nar-
rowing and performs only steps that are “unavoidable”
for solving equations. This characterization leads to the
optimality of our strategy with respect to the number
of “distinct” steps of a derivation. Advantages of our
strategy over existing ones include: the large class of
rewrite systems to which it is applicable, both the op-
timality of the derivations and the independence of the
unifiers it computes, and the ease of its implementation.

The notion of an unavoidable step is well-known for
rewriting. Orthogonal systems have the property that
in every term t not in normal form there exists a re-
dex, called needed, that must “eventually” be reduced
to compute the normal form of t [24, 30, 39]. Further-
more, repeated rewriting of needed redexes in a term
suffices to compute its normal form, if it exists. Loosely
speaking, only needed redexes really matter for rewrit-
ing in orthogonal systems. We extend this fact to nar-
rowing in inductively sequential systems, a subclass of
the orthogonal systems.

Restricting our discussion to this subclass is not a
limitation for the use of narrowing in programming lan-



guages. Computing a needed redex in a term is an un-
solvable problem. Strongly sequential systems are, in
practice, the largest class for which the problem be-
comes solvable. Inductively sequential systems are a
large constructor-based subclass of the strongly sequen-
tial systems.

After some preliminaries in Section 2, we present our
strategy in Section 3. We formulate the soundness and
completeness results in Section 4. We address our strat-
egy’s optimality in Section 5. We compare related work
in Section 6. Our conclusion is in Section 7. Due to
lack of space we omit the proofs of the theorems, but
the interested reader will find them in [3].

2 Preliminaries

We recall some key notions and notations about rewrit-
ing. See [11, 29] for tutorials.
Terms are constructed w.r.t. a given many-sorted sig-

nature Σ. We write Var(t) for the set of variables occur-
ring in a term t. Equational logic programs are gener-
ally constructor-based, i.e., symbols, called constructors,
that construct data terms are distinguished from those,
called defined functions or operations, that operate on
data terms (see, for instance, the Equational Interpreter
[40] and the functional logic languages ALF [19], BA-
BEL [37], K-LEAF [16], LPG [6], SLOG [15]). Hence,
we assume that R is a constructor-based term rewriting

system consisting of rewrite rules of the form l → r,
where l is an innermost term, i.e., the root of l is an
operation and the arguments of l do not contain any
operation symbol.

Substitutions and unifiers are defined as usual [11],
where we write mgu(s, t) for the most general unifier of
s and t. We write σ ≤ σ′[V ] iff there is a substitution τ
with σ′(x) = τ(σ(x)) for all variables x ∈ V . Two sub-
stitutions σ and σ′ are independent on a set of variables
V iff there exists some x ∈ V such that σ(x) and σ′(x)
are not unifiable.

An occurrence or position p is a path identifying a
subterm in a term. t|p denotes the subterm of t at posi-
tion p, and t[s]p denotes the result of replacing t|p with
s in t.

A term rewriting system R is orthogonal if for each
rule l → r ∈ R the left-hand side l does not contain
multiple occurrences of one variable (left-linearity) and
for each non-variable subterm l|p of l there exists no rule
l′ → r′ ∈ R such that l|p and l′ unify (non-overlapping).

A rewrite step t→p, l→r s is the application of the rule
l → r to the redex t|p, i.e., s = t[σ(r)]p for some sub-
stitution σ with t|p = σ(l). A term is in normal form

if it cannot be rewritten. Functional logic programs
compute with partial information, i.e., a functional ex-
pression may contain logical variables. The goal is to
compute values for these variables such that the expres-

sion is evaluable to a particular normal form, e.g., a
constructor term [16, 37]. This is done by narrowing.

Definition 1 A term t is narrowable to a term s if there
exist a non-variable position p in t (i.e., t|p is not a
variable), a variant l → r of a rewrite rule in R with
Var(t)∩Var(l → r) = ∅ and a unifier σ of t|p and l such
that s = σ(t[r]p). In this case we write t ;p, l→r,σ s. If
σ is a most general unifier of t|p and l, the narrowing

step is called most general. We write t0
∗
;σ tn if there

is a narrowing sequence t0 ;p1,R1,σ1
t1 ;p2,R2,σ2

· · · ;pn,Rn,σn
tn with σ = σn ◦ · · · ◦ σ2 ◦ σ1.

Since the instantiation of the variables in the rule l→ r
by σ is not relevant for the computed result of a narrow-
ing derivation, we will omit this part of σ in the example
derivations in this paper.

Example 2 Referring to Example 1,

A+B ;Λ,R5,{A7→s(0),B 7→0} s(0 + 0)

and

A+B ;Λ,R5,{A7→s(X)} s(X +B)

are narrowing steps of A + B, but only the latter is a
most general narrowing step.

Padawitz [42] too distinguishes between narrowing and
most general narrowing, but in most papers narrowing
is intended as most general narrowing (e.g., [25]). Most
general narrowing has the advantage that most general
unifiers are uniquely computable, whereas there exist
many independent unifiers. Dropping the requirement
that unifiers be most general is crucial to the defini-
tion of needed narrowing step, since these steps may be
impossible with most general unifiers.

Narrowing solves equations, i.e., computes values for
the variables in an equation such that the equation be-
comes true, where an equation is a pair t ≈ t′ of terms of
the same sort. Since we do not require terminating term
rewriting systems, normal forms may not exist. Hence,
we define the validity of an equation as a strict equal-
ity on terms in the spirit of functional logic languages
with a lazy operational semantics such as K-LEAF [16]
and BABEL [37]. Thus, a substitution σ is a solution

for an equation t ≈ t′ iff σ(t) and σ(t′) are reducible
to a same ground constructor term. Equations can also
be interpreted as terms by defining the symbol ≈ as a
binary operation symbol, more precisely, one operation
symbol for each sort. Therefore all notions for terms,
such as substitution, rewriting, narrowing etc., will also
be used for equations. The semantics of ≈ is defined by
the following rules, where ∧ is assumed to be a right-
associative infix symbol, and c is a constructor of arity
0 in the first rule and arity n > 0 is the second rule.

c ≈ c → true

c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → ∧ni=1(Xi ≈ Yi)
true ∧X → X
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These are the equality rules of a signature. It is easy to
see that the orthogonality status of a rewrite system is
not changed by these rules. The same holds true for the
inductive sequentiality, which will be defined shortly.
With these rules a solution of an equation is computed
by narrowing it to true—an approach also taken in K-

LEAF [16] and BABEL [37]. The equivalence between
the reducibility to a same ground constructor term and
the reducibility to true using the equality rules is ad-
dressed by Proposition 1.

Our strategy extends to narrowing the rewriting no-
tion of need. The idea, for rewriting, is to reduce in
a term only certain redexes which must be reduced to
compute the normal form of t. In orthogonal term
rewriting systems, every term not in normal form has a
redex that must be reduced to compute the term’s nor-
mal form. The following definition [24] formalizes this
idea.

Definition 2 Let A = t→u, l→r t′ be a rewrite step of
some term t into t′ at position u with rule l → r. The
set of descendants (or residuals) of a position v by A,
denoted v \A, is

v \A =























∅ if u = v,
{v} if u 6≤ v,
{up′q such that r|p′ = x}

if v = upq and l|p = x,
where x is a variable.

The set of descendants of a position v by a rewrite
derivation B is defined by induction as follows

v \B =

{

{v} if B = ∅,
⋃

w∈v\B′ w \B′′ if B = B′B′′.

A position u of a term t is called needed iff in every
rewrite derivation of t to a normal form a descendant of
t|u is rewritten at its root.

A position uniquely identifies a subterm of a term. The
notion of descendant for terms stems directly from the
corresponding notion for positions.

A more intuitive definition of descendant of a position
or term is proposed in [30]. Let t

∗
→ t′ be a reduction

sequence and s a subterm of t. The descendants of s
in t′ are computed as follows: Underline the root of s
and perform the reduction sequence t

∗
→ t′. Then, every

subterm of t′ with an underlined root is a descendant of
s.

Example 3 Consider the operation that doubles its ar-
gument by means of an addition. The rules of addition
are in Example 1.

double(X) → X +X R6

In the following reduction of double(0 + 0) we show, by
means of underlining, the descendants of 0 + 0.

double(0 + 0)→Λ,R6
(0 + 0) + (0 + 0)

The set of descendants of position 1 by the above re-
duction is {1, 2}.

3 Outermost-needed narrowing

An efficient narrowing strategy must limit the search
space. No suitable rule can be ignored, but some posi-
tions in a term may be neglected without losing com-
pleteness. For instance, Hullot [25] has introduced ba-

sic narrowing, where narrowing is not applied at po-
sitions introduced by substitutions, Fribourg [15] has
proposed innermost narrowing, where narrowing is ap-
plied only at an innermost position, and Hölldobler [22]
has combined innermost and basic narrowing. Narrow-
ing only at outermost positions is complete only if the
rewrite system satisfies strong restrictions such as non-
unifiability of subterms of the left-hand sides of rewrite
rules [12]. Lazy narrowing [9, 36, 44], akin to lazy eval-
uation in functional languages, attempts to avoid un-
necessary evaluations of expressions. A lazy narrowing
step is applied at outermost positions with the excep-
tion that inner arguments of a function are evaluated,
by narrowing them to their head normal forms, if their
values are required for an outermost narrowing step.
Unfortunately, the property “required” depends on the
rules tried in following steps, and looking-ahead is not
a viable option.

We want to perform only narrowing steps that are
necessary for computing solutions. Naively, one could
say that a narrowing step t ;p, l→r,σ t′ is needed iff p is
a position of t, σ is the most general unifier of t|p and
l, and σ(t|p) is a needed redex. Unfortunately, a sub-
stantial complication arises from this simple approach.
If t′ is a normal form, the step is trivially needed. How-
ever, some instantiation performed later in the deriva-
tion could “undo” this need.

Example 4 Referring to Example 1, consider the term
t = X ≤ Y + Z. According to the naive approach, the
following narrowing step of t at position 2

X ≤ Y + Z ;2,R4,{Y 7→0} X ≤ Z

would be needed, since X ≤ Z is a normal form. This
step is indeed necessary to solve the inequality if s(x),
for some term x, is eventually substituted for X, al-
though this claim may not be obvious without the re-
sults presented in this note. However, the same step
becomes unnecessary if 0 is substituted for X, as shown
by the following derivation, which computes a more gen-
eral solution of the inequation without ever narrowing
any descendant of t at 2.

X ≤ Y + Z ;Λ,R1,{X 7→0} true

Thus, in our definition, we impose a condition strong
enough to ensure the necessity of a narrowing step, no
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matter which unifiers might be used later in the deriva-
tion.

Definition 3 A narrowing step t ;p,R,σ t′ is called
needed or outermost-needed iff, for every η ≥ σ, p is the
position of a needed or outermost-needed redex of η(t),
respectively. A narrowing derivation is called needed

or outermost-needed iff every step of the derivation is
needed or outermost-needed, respectively.

Our definition adds, with respect to rewriting, a new di-
mension to the difficulty of computing needed narrowing
steps. We must take into account any instantiation of
a term in addition to any derivation to normal form.
Luckily, as for rewriting, the problem has an efficient
solution in inductively sequential systems. We forgo
the requirement that the unifier of a narrowing step be
most general. The instantiation that we demand in ad-
dition to that for the most general unification ensures
the need of the position irrespective of future unifiers.
It turns out that this extra instantiation would eventu-
ally be performed later in the derivation. Thus we are
only “anticipating” it, and the completeness of narrow-
ing is preserved. This approach, however, complicates
the notion of narrowing strategy.

According to [12, 42], a narrowing strategy is a func-
tion from terms into non-variable positions in these
terms so that exactly one position is selected for the
next narrowing step. Unfortunately, this notion of nar-
rowing strategy is inadequate for narrowing with arbi-
trary unifiers, which, as Example 4 shows, are essential
to capture the need of a narrowing step.

Definition 4 A narrowing strategy is a function from
terms into sets of triples. If S is a narrowing strategy, t
is a term, and (p, l → r, σ) ∈ S(t), then p is a position
of t, l → r is a rewrite rule, and σ a substitution such
that t ;p, l→r,σ σ(t[r]p) is a narrowing step.

We now define a class of rewrite systems for which there
exists an efficiently computable needed narrowing strat-
egy. Systems in this class have the property that the
rules defining any operation can be organized in a hi-
erarchical structure called definitional tree [1], which is
used to implement needed rewriting. This note gener-
alizes that result to narrowing.

The symbols branch, rule, and exempt, used in the
next definition, are uninterpreted functions used to clas-
sify the nodes of the tree. A pattern is an innermost
term contained in each node.

Definition 5 T is a partial definitional tree, or pdt,
with pattern π w.r.t. a constructor-based rewrite sys-
tem R iff one of the following cases holds:

T = branch(π, o, T1, . . . , Tk), where π is a pattern, o
is the occurrence of a variable of π, the sort of
π|o has constructors c1, . . . , ck, for some k > 0,

and for all i in {1, . . . , k}, Ti is a pdt with pattern
π[ci(X1, . . . , Xn)]o, where n is the arity of ci and
X1, . . . , Xn are new variables.

T = rule(π, l→ r), where π is a pattern and l→ r is
a rewrite rule in R such that l = π.

T = exempt(π), where π is a pattern and l 6≤ π for
every rule l→ r in R.

T is a definitional tree of an operation f iff T is a pdt

with f(X1, . . . , Xn) as the pattern argument, where n
is the arity of f and X1, . . . , Xn are new variables.

We call inductively sequential an operation f of a
rewrite system R iff there exists a definitional tree T
of f such that the rules contained in T are all and only
the rules defining f in R. We call inductively sequential
a rewrite system R iff any operation of R is inductively
sequential.

Example 5 We show a pictorial representations of def-
initional trees of the operations defined in Example 1.
A branch node of the picture shows the pattern of a cor-
responding node of the definitional tree. A leaf node of
the picture shows the right sides of a rule contained in
a rule node of the tree. The occurrence argument of a
branch node is shown by emboldening the corresponding
subterm in the pattern argument.

X1 ≤ X2

0 ≤ X2

true

s(X3) ≤X2

s(X3) ≤ 0

false

s(X3) ≤ s(X4)

X3 ≤ X4

Y1 + Y2

0 + Y2 s(Y3) + Y2

Y2 s(Y3 + Y2)

Inductively sequential systems are constructor-based
and strongly sequential [1]. We conjecture that these
two classes are the same. Inductively sequential systems
model the first-order functional component of program-
ming languages, such as ML and Haskell, that establish
priorities among rules by textual precedence or speci-
ficity [28]. We now give an informal account of our
strategy.
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The patterns of a definitional tree are a finite set par-
tially ordered by the subsumption preordering and com-
plete in the sense of [23]. Let t = f(t1, . . . , tk) be a term
to narrow. We unify t with some maximal element of
the set of patterns of a definitional tree of f . Let π de-
note such a pattern, τ the most general unifier of t and
π, and T the pdt in which π is contained. If T is a rule
pdt , then we narrow τ(t) at the root with the rule con-
tained in T . If T is an exempt pdt , then τ(t) cannot be
narrowed to a constructor-rooted term. If T is a branch
pdt , then we recur on τ(t|o), where o is the occurrence
contained in T and τ is the anticipated substitution.
The result of the recursive invocation is suitably com-
posed with τ and o. The details of this composition are
in the formal definition presented below.

We derive our outermost-needed strategy from a
mapping, λ, that implements the above computation.
λ takes two arguments, an operation-rooted term t
and a definitional tree T of the root of t, and non-
deterministically returns a triple, (p,R, σ), where p is
a position of t, R is either a rule l → r of R or the
distinguished symbol “?”, and σ is a substitution. If
R = l → r, then our strategy performs the narrowing
step t ;p, l→r,σ σ(t[r]p). If R = ?, then our strat-
egy gives up, since it is impossible to narrow t to a
constructor-rooted term.

In the following definition, pattern(T ) denotes the
pattern argument of T .

Definition 6 The function λ takes two arguments,
an operation-rooted term t and a pdt T such that
pattern(T ) and t unify. The function λ yields a set
of triples of the form (p,R, σ), where p is a position of
t, R is either a rewrite rule or the distinguished symbol
“?”, and σ is a unifier of pattern(T ) and t. Thus, let t
be a term and T a pdt in the domain of λ. The func-
tion λ is defined by strong arithmetical induction on the
number of occurrences of operation symbols in t and by
structural induction on T in Figure 1. The function
λ is well-defined in the third case since, by the defini-
tion of pdt , there exists a proper subpdt Ti of T such
that pattern(Ti) and t unify if t|o is constructor-rooted
or a variable. Similarly, λ is well-defined in the fourth
case since this case can only occur if t|o is operation-
rooted. In this case τ|Var(t) is a constructor substitution
since π is a linear innermost term. Since t is operation-
rooted and o 6= Λ, τ(t|o) has fewer occurrences of oper-
ation symbols than t. Since t|o is operation-rooted, so
is τ(t|o). By the definition of pdt , pattern(T ′) ≤ τ(t|o),
i.e., pattern(T ′) and τ(t|o) unify. This implies that λ is
well-defined in this case too.

As in proof procedures for logic programming, we have
to apply variants of the rewrite rules with fresh variables
to the current term. Therefore, we assume in the fol-
lowing that the definitional trees contain new variables
if they are used in a narrowing step.

The computation of λ(t, T ) may entail a non-deter-
ministic choice when T is a branch pdt—the integer i
when t|o is constructor-rooted or a variable. The substi-
tution τ when t|o is operation-rooted is the anticipated
substitution guaranteeing the need of the computed po-
sition. It is pushed down in the recursive call to λ to
ensure the consistency of the computation when t is non-
linear. The anticipated substitution is neglected when
t|o is not operation-rooted, since the pattern in Ti is an
instance of π. Hence, σ extends the anticipated substi-
tution.

Example 6 We trace the computation of λ for the ini-
tial step of a derivation of X ≤ Y + Z, which was dis-
cussed in Example 4.

λ(X ≤ Y + Z, branch(X1 ≤ X2, 1, . . .))
λ(X ≤ Y + Z, branch(s(X3) ≤ X2, 2, . . .))

λ(Y + Z, branch(Y1 + Y2, 1, . . .))
λ(Y + Z, rule(0 + Y2,R4))
(Λ,R4, {Y 7→ 0, Y2 7→ Z})

(Λ,R4, {Y 7→ 0, Y2 7→ Z})
(2,R4, {X 7→ s(X3), X2 7→ 0 + Z, Y 7→ 0, Y2 7→ Z})

(2,R4, {X 7→ s(X3), X2 7→ 0 + Z, Y 7→ 0, Y2 7→ Z})

We are interested only in narrowing derivations that end
in a constructor term. Our key result is that if λ, on
input of a term t, computes a position p and a substitu-
tion σ, and η extends σ, then η(t) must “eventually” be
narrowed at p to obtain a constructor term. “Eventu-
ally” is formalized by the notion of descendant, which,
initially proposed for rewriting [24], is extended to nar-
rowing simply by replacing →u, l→r with ;u, l→r,σ in
Definition 2.

Theorem 1 Let R be an inductively sequential rewrite

system, t an operation-rooted term, and T a definitional

tree of the root of t. Let (p,R, σ) ∈ λ(t, T ) and η extend

σ, i.e., η ≥ σ.

1. In any narrowing derivation of η(t) to a construc-

tor-rooted term a descendant of η(t|p) is narrowed
to a constructor-rooted term.

2. If R = l → r, then t ;p,R,σ σ(t[r]p) is an outer-

most-needed narrowing step.

3. If R = ?, then η(t) cannot be narrowed to a con-

structor-rooted term.

We say that a narrowing derivation is computed by λ
iff for each step t ;p,R,σ t′ of the derivation, (p,R, σ)
belongs to λ(t, T ). The function λ implements our nar-
rowing strategy as discussed next. The theorem shows
(claim 2) that our strategy λ computes only outermost-
needed narrowing steps. The theorem, however, does
not show that the computation succeeds, i.e., a narrow-
ing step is computed for any operation-rooted, hence ex-
pectedly narrowable, term. This requirement may seem
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λ(t, T ) 3







































































(Λ, R,mgu(t, π)) if T = rule(π,R);

(Λ, ?,mgu(t, π)) if T = exempt(π);

(p,R, σ) if T = branch(π, o, T1, . . . , Tk),
t and pattern(Ti) unify, for some i, and
(p,R, σ) ∈ λ(t, Ti);

(o · p,R, σ ◦ τ) if T = branch(π, o, T1, . . . , Tk),
t and pattern(Ti) do not unify, for any i,
τ = mgu(t, π),
T ′ is a definitional tree of the root of τ(t|o), and
(p,R, σ) ∈ λ(τ(t|o), T

′).

Figure 1: Definition of λ

essential, since to narrow a term “all the way” a strategy
should compute a narrowing step, when one exists. In-
deed, in incomplete rewrite systems, λ may fail to com-
pute any narrowing step even when some step could be
computed.

Example 7 Consider an incompletely defined opera-
tion, f , taking and returning a natural number.

f(0)→ 0

The term t = f(s(f(0))) can be narrowed (actually
rewritten, since it is ground) to its normal form, f(s(0)).
The only redex position of t is 1 · 1, but λ returns the
set {(1, ?, {})}.

The inability of λ to compute certain outermost-needed
narrowing steps is a blessing in disguise. The theorem
(claim 3) justifies giving up a narrowing attempt as soon
as the failure to find a rule occurs—without further at-
tempts to narrow t at other positions with the hope
that a different rule might be found after other nar-
rowing steps or that the position might be deleted [7]
by another narrowing step. If (p, ?, σ) ∈ λ(t, T ), no
equation having σ(t) as one side can be solved. Any
amount of work applied toward finding a solution would
be wasted. This is an opportunity for optimization. In
fact σ(t) may be narrowable at other positions different
from p and an equation with σ(t) as a side may even
have an infinite search space. However, any amount of
work applied toward finding a solution would be wasted.

Example 8 Consider the following term rewriting sys-
tem for subtraction:

X − 0 → X R1

s(X)− s(Y ) → X − Y R2

This term rewriting system is inductively sequential and
a definitional tree, T , of the operation “−” has an ex-

empt node for the pattern 0 − s(X), i.e., the system is
incomplete and (Λ, ?, {}) ∈ λ(0−s(X), T ). Therefore we

can immediately stop the needed narrowing derivation
of the equation 0− s(X) ≈ Y −Z while there would be
infinitely many narrowing derivations for the right-hand
side of this equation.

The definition of our outermost-needed narrowing strat-
egy does not determine the computation space for a
given inductively sequential rewrite system in a unique
way. The concrete strategy depends on the definitional
trees, and there is some freedom to construct these.
For a discussion on how to compute definitional trees
from rewrite rules and the implications of some non-
deterministic choices of this computation see [1]. As
we will show in Section 5, this does not affect the op-
timality of our strategy w.r.t. computed solutions. But
in case of failing derivations a definitional tree which is
“unnecessarily large” could result in unnecessary deriva-
tion steps.

E.g., a minimal definitional tree of the operation
“−” in Example 8 has an exempt node for the pattern
0 − s(X). However, Definition 5 also allows a defini-
tional tree with a branch node for the pattern 0− s(X)
which has exempt nodes for the patterns 0 − s(0) and
0 − s(s(X1)). Our strategy would perform some un-
necessary steps if this definitional tree were used for
narrowing the term 0 − s(t), where t is an operation-
rooted term. These unnecessary steps can be avoided
if all branch nodes in a definitional tree are useful, i.e.,
there is at least one rule node in each branch subpdt .

However, the non-determinism of the trees of certain
operations makes it possible that some work may be
wasted when a narrowing derivation computed by λ
terminates with a non-constructor term. The problem
seems inevitable and is due to the inherent parallelism
of certain operations, such as ≈; this issue is discussed
in some depth in [1, Display (8)]. The problem occurs
only in terms with two or more outermost-needed nar-
rowing positions, one of which cannot be narrowed to a
constructor-rooted term.
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4 Soundness and completeness

Outermost-needed narrowing is a sound and complete
procedure to solve equations if we add the equality rules
to narrow equations to true. The following proposition
shows the equivalence between the reducibility to a same
ground constructor term and the reducibility to true

using the equality rules.

Proposition 1 Let R be a term rewriting system with-

out rules for ≈ and ∧. Let R′ be the system obtained

by adding the equality rules to R. The following propo-
sitions are equivalent for all terms t and t′:

1. t and t′ are reducible in R to a same ground con-

structor term.

2. t ≈ t′ is reducible in R′ to ‘true’.

The soundness of outermost-needed narrowing is easy
to prove, since outermost-needed narrowing is a special
case of general narrowing.

Theorem 2 (Soundness of outermost-needed narrow-
ing) Let R be an inductively sequential rewrite system

extended by the equality rules. If t ≈ t′
∗
;σ true is

an outermost-needed narrowing derivation, then σ is a

solution for t ≈ t′.

Outermost-needed narrowing instantiates variables to
constructor terms. Thus, we only show that outermost-
needed narrowing is complete for constructor substitu-
tions as solutions of equations. This is not a limitation
in practice, since more general solutions would contain
unevaluated or undefined expressions. This is not a lim-
itation with respect to related work, since most general
narrowing is known to be complete only for irreducible
solutions [42], and lazy narrowing is complete only for
constructor substitutions [16, 37]. The following the-
orem shows the completeness of our strategy, λ, and
consequently of outermost-needed narrowing.

Theorem 3 (Completeness of outermost-needed nar-
rowing) Let R be an inductively sequential rewrite sys-

tem extended by the equality rules. Let σ be a con-

structor substitution that is a solution of an equation

t ≈ t′ and V be a finite set of variables contain-

ing Var(t) ∪ Var(t′). Then there exists a derivation

t ≈ t′
∗
;σ′ true computed by λ such that σ′ ≤ σ[V ].

The theorem justifies our earlier remark on the rela-
tionship between completeness and anticipated substi-
tutions. Any anticipated substitution of a needed nar-
rowing step is irrelevant or would eventually be done
later in the derivation, and thus, it does not affect
the completeness. Anticipating substitutions is appeal-
ing, even without the benefits related to the need of a
step, since less general substitutions are likely to yield
a smaller search space to compute the same set of solu-
tions.

5 Optimality

In Section 3 we showed that our strategy computes only
necessary steps. We now strengthen this characteriza-
tion by showing that our strategy computes only neces-
sary derivations of minumum length. The next theorem
claims that no redundant derivation is computed by λ.

Theorem 4 (Independence of solutions) Let R be an

inductively sequential rewrite system extended by the

equality rules, e an equation to solve and V = Var(e).

Let e
+

;σ true and e
+

;σ′ true be two distinct deriva-

tions computed by λ. Then, σ and σ′ are independent

on V .

We now discuss the cost and length of a derivation
computed by our strategy.

If p is a needed position of some term t, then in any
narrowing derivation of t to a constructor term there is
at least one step associated with p. If this step is de-
layed and p is not outermost, then several descendants
of p may be created and several steps may become nec-
essary to narrow this set of descendants, e.g., see Ex-
ample 3. However, from a practical standpoint, if terms
are appropriately represented, the cost of narrowing t at
(some descendant of) p is largely independent of where
the step occurs in the derivation of t. We formalize this
viewpoint, which leads to another optimality result for
our strategy.

Definition 7 Let t ;pi, li→ri,σi ti, for i in some set
of indices I = {1, . . . , n}, be a narrowing step such
that for any distinct i and j in I, pi and pj are dis-
joint and σi ◦ σj = σj ◦ σi. We say that t is narrow-
able to t′ in a multistep, denoted t ;〈pi,li→ri,σi〉i∈I

t′,
iff t′ = ◦ i∈I σ

i(((t[r1]p1)[r2]p2) . . . [rn]pn), where ◦ i∈I σ
i

denotes the composition σn ◦ . . . ◦ σ2 ◦ σ1 (the order is
irrelevant.)

When we want to emphasize the difference between a
step as defined in Definition 1 and a multistep, we re-
fer to the former as elementary. Otherwise, we identify
an elementary step with a multistep in which the set of
narrowed positions has just one element. A narrowing
multistep can be thought of as a set of elementary steps
performed in parallel. In fact, the conditions that we
impose on the positions and substitutions of each ele-
mentary step from which a multistep is defined imply
that in a multistep the order in which substitutions are
composed and positions are narrowed is irrelevant.

To claim that our strategy is optimal, we assign a
“cost” to both a step and a derivation. By convention,
an elementary step has unit cost. However, it does not
seem appropriate, for practical reasons, to set the cost
of a multistep equal to the number of positions narrowed
in the step. We will justify our choice after giving our
definition of cost.
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For any set I and equivalence relation ∼ on I, |I| de-
notes the cardinality of I, and I/∼ denotes the quotient
of I modulo ∼.

Definition 8 Let α =
t0 ;〈pi

1
,Ri

1
,σi

1
〉i∈I1

t1;〈pi
2
,Ri

2
,σi

2
〉i∈I2

· · · be a narrowing

(multi)derivation. The symbol ∼n denotes the equiv-
alence relation on In defined as follows: for any i and j
in In, i∼n j iff the subterms identified by these indices
have a common ancestor, more precisely, there exists
some m, less than n, such that for some position q in tm,
both ◦ k∈In+1

σkn+1(tn|pi
n+1

) and ◦ k∈In+1
σkn+1(tn|pj

n+1

)

are descendants of ◦ k∈Im+1
σkm+1(tm|q).

We call a family any maximal subset of equivalent
indices. The cost of the n-th step of α is the number
of families in In, i.e., |In/∼n|. The cost of α, denoted
cost(α), is the total cost of its steps.

We say that a family is complete iff it cannot be en-
larged, and we say that a step is complete iff all its
families are complete, more precisely, In is complete iff
if i is in In, then for any position q of ◦ k∈In

σkn+1(tn−1)
such that pin and q have a common ancestor in some
term of α, there exists some j in In such that q = pjn.
We say that a derivation is complete iff all its steps are
complete.

If I is the set of indices of a narrowing step and i and
j belong to I, then i∼ j iff pi and pj are, using an
anthropomorphic metaphor, blood related. A complete
derivation is characterized by narrowing complete “fam-
ilies,” i.e., sets containing all the pairwise blood related
subterms of a term. Note that the blood related sub-
terms of a term are all equal and that their positions
are pairwise disjoint, thus all of them can be included
in a multistep. Our choice of cost measure is suggested
by the observation that if t ;p,R,σ t′, and q and p are
blood related positions, then narrowing t at q “when t
is being narrowed at p” involves no additional computa-
tion of a substitution and/or a rule, and consequently no
additional computation of a substituting term (the in-
stantiation of the right side of a rule,) since the reducts
of blood related subterms are all equal, too. This im-
plies that all the members of a family could be “shared”
in the representation of t. When this is being done (as
in efficient implementations of narrowing [19]), a multi-
step entailing a whole family does not differ, in practice,
from an elementary step.

Theorem 5 If α = t
∗
;σ u is a complete outermost-

needed narrowing multiderivation of a term t into a con-
structor term u, then α has minimum cost. I.e., for any

multiderivation β = t
∗
;σ u, cost(α) ≤ cost(β).

Elementary steps are easier to understand and to imple-
ment than multisteps. To achieve optimality, we need
multisteps only as far as blood related terms are con-
cerned. Full sharing of blood related subterms implies

that no family ever contains more than a single member,
in practice, and thus any elementary step becomes triv-
ially complete. In turn, this equates derivations of min-
imum cost with those of minimum length. Techniques
for rewriting “terms” with shared subterms go under the
name of term graph rewriting [47] and adapting them
to narrowing, for the systems we are considering, poses
no major problem [4].

6 Related work

There are three research topics related to our work: (1)
the concept of need as the foundation of laziness, (2)
strategies for using narrowing in programming, and (3)
implementations of narrowing in Prolog.

6.1 Narrowing and need

Seminal studies on the concept of need in rewriting ap-
pear in [24, 39]. Subsequent variations and extensions,
e.g., [7, 21, 27, 30, 33, 40, 41, 45, 48], do not address nar-
rowing, but limit the discussion to rewriting. We have
introduced a concept of need for narrowing that extends
a similar concept for rewriting. We have shown that the
concept of need for narrowing is inherently more com-
plicated than that for rewriting. In orthogonal systems,
a reduction step has one degree of freedom, the selection
of the position, but a narrowing step has two, both the
position and the unifier.

We have discussed only inductively sequential sys-
tems. Further research will extend this class to strongly
sequential and/or weakly orthogonal systems. The ex-
tension to weakly orthogonal systems would weaken
our strong optimality result, but include additional
non-determinism. Sekar and Ramakrishnan [45] pro-
pose necessary sets as a generalization of the notion
of need for weakly orthogonal systems. Antoy [1] sug-
gests rewriting necessary sets of redexes using parallel

definitional trees and a function analogous to λ. This
approach can be extended to narrowing without major
problems.

6.2 Narrowing strategies

The trade-off between power and efficiency is central to
the use of narrowing, especially in programming. To this
aim, several narrowing strategies, e.g., [9, 12, 13, 14, 15,
16, 18, 20, 22, 31, 35, 36, 37, 38, 44, 49] have been pro-
posed. The notion of completeness has evolved accord-
ingly. Plotkin’s classic formulation [43] has been relaxed
to completeness w.r.t. ground solutions (e.g. [15]) or
completeness w.r.t. strict equality and domain-based in-
terpretations, as in [16, 37]. The latter appear more ap-
propriate for narrowing as the computational paradigm
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of functional logic programming languages in the pres-
ence of infinite data structures and computations.

We briefly recall the underlying ideas of a few major
strategies and compare them with ours using the follow-
ing example. We choose a strongly terminating rewrite
system with completely defined operations, otherwise
all the eager strategies would be immediately excluded.

Example 9 The symbols a, b, and c are constructors,
whereas f and g are defined operations.

f(a) → a R1

f(b(X)) → b(f(X)) R2

f(c(X)) → a R3

g(a,X) → b(a) R4

g(b(X), a) → a R5

g(b(X), b(Y )) → c(a) R6

g(b(X), c(Y )) → b(a) R7

g(c(X), Y ) → b(a) R8

The equation to solve is g(X, f(X)) ≈ c(a). Our strat-
egy computes only three derivations, only one of which
yields a solution.

g(X, f(X)) ≈ c(a) ;1,R4,{X 7→a} b(a) ≈ c(a)

g(X, f(X)) ≈ c(a) ;1,R8,{X 7→c(X1)} b(a) ≈ c(a)

g(X, f(X)) ≈ c(a) ;1.2,R2,{X 7→b(X1)}

g(b(X1), b(f(X1))) ≈ c(a)
∗
;{} true

Basic narrowing [25] avoids positions introduced by
the instantiations of previous steps. Its completeness,
and that of its variations, e.g., [20, 22, 31, 35, 38], is
known for convergent rewrite systems (see [35] for a sys-
tematic study.) This strategy may perform useless steps
and computes an infinite search space for our bench-
mark example.

Innermost narrowing [15] narrows only innermost
terms. It is ground complete only for strongly terminat-
ing constructor-based systems with completely defined
operations. It may perform useless steps and it com-
putes an infinite number of derivations for our bench-
mark example.

Outermost narrowing [12, 13] narrows outermost
operation-rooted terms. This strategy is complete only
for a restrictive class of rewrite systems. It computes
no solution for our benchmark example.

Outer narrowing [49] selects an inner position only
when a step at an outer position is impossible. This
strategy is complete for constructor-based systems.
Outer narrowing behaves as needed narrowing on the
benchmark example, however the strategy is not char-
acterized as computing needed steps. Furthermore,
[49] describes the enumeration of derivations for E-
matching, but not the computation of derivations for

general E-unification.

Lazy narrowing [9, 16, 18, 37, 36, 44], similar to outer,
narrows an inner term only when the step is demanded
to narrow an outer term. For these strategies, the qual-
ifier “lazy” is used as a synonym of “outermost” or “de-
mand driven,” rather than in the technical sense we pro-
pose. The completeness of these strategies is generally
expensive to achieve: [18] requires an ad-hoc implemen-
tation of backtracking, with the potential of evaluat-
ing some term several times; [16] requires flattening of
functional nesting and a specialized WAM-like machine
in which terms are dynamically reordered; [37] requires
a transformation of the rewrite system which, for our
benchmark example, increases the number of operations
and lengthen the derivations.

To summarize, the distinguishing features of our strat-
egy are the following: with respect to eager strategies,
completeness for non-terminating rewrite systems; with
respect to the so-called lazy strategies, a sharp char-
acterization of laziness; with respect to any strategy,
optimality and ease of computation.

6.3 Narrowing in Prolog

Implementations of narrowing in Prolog [2, 8, 26, 32]
are proposed as a prototypical and portable integration
of functional and logic languages. For example, [8, 26]
have been proposed as an alternative to the specialized
machines required for K-LEAF [16] and BABEL [37] re-
spectively. The most recent proposals [2, 32] are based
on definitional trees and appear to compute needed
steps for inductively sequential systems, although both
methods neither formalize nor claim this property. The
scheme in [2] computes λ directly by pattern matching.
The patterns involved in the computation of λ are a su-
perset of those contained in a definitional tree. This is
suggested by claim 1 of Theorem 1 that shows a “strong”
need for the positions computed using λ—not only the
terms at these positions must be eventually narrowed,
but they must be eventually narrowed to head normal

forms. The resulting implementation takes advantage
of this characteristic and its performance appears to be
superior to the other proposals.

7 Concluding remarks

We have proposed a new narrowing strategy obtained by
extending to narrowing the well-known notion of need
for rewriting. Need for narrowing appears harder to
handle than need for rewriting—to compute a needed
narrowing step one must also look ahead a potentially
infinite number of substitutions. Remarkably, there is
an efficiently algorithm for this computation in induc-
tively sequential systems.
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We have contained our discussion to narrowing oper-
ation-rooted terms. This limitation shortens our discus-
sion and suffices for solving equations. Extending our
results also to constructor-rooted terms is straightfor-
ward. To compute an outermost-needed narrowing step
of a constructor-rooted term it suffices to compute an
outermost-needed narrowing step of any of its maximal
operation-rooted subterms.

We have shown how our strategy is easily imple-
mented by pattern matching, and we have reported,
in the previous section, its good performance in Pro-
log with respect to other similar attempts. We have
also shown that our strategy computes only indepen-
dent and optimal derivations. Although all the previ-
ously proposed lazy strategies have the latter as their
primary goal, our strategy is the only one for which this
result is formalized and proved.

We want to conclude with a general assessment of
the “overall quality” of the narrowing strategy used by
a programming language. The key factor is the trade-off
between the size of the class of rewrite systems for which
the strategy is complete and the efficiency of its com-
putations. We prove both completeness and optimality
for inductively sequential systems. We believe that it
is possible to extend our result to strongly sequential
systems and, in a weaker form, to weakly orthogonal
systems.
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