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Abstract. We introduce a framework for managing as a whole the space
of a narrowing computation. The aim of our framework is to find a
finite representation of an infinite narrowing space. This, in turn, al-
lows us to replace an infinite enumeration of computed answers with an
equivalent finite representation. We provide a semidecidable condition for
this result. Our framework is intended to be used by implementations
of functional logic programming languages. Our approach borrows from
the memoization technique used in the implementation of functional lan-
guages. Since narrowing adds non-determinism and unifiers to functional
evaluation, we develop a new approach based on graphs to memoize the
outcome of a goal.

Keywords Functional logic programming, Narrowing, Narrowing space, Com-
puted expression, Regular computed expression, Finite representation.

1 Introduction

A fundamental problem in the integration of functional and logic programming
is how to deal with the fact that the execution of a program may lead to the
evaluation of a functional expression containing uninstantiated logic variables.
Both narrowing and residuation have been proposed for this problem. Residua-
tion delays the evaluation of functional expressions that contain uninstantiated
logic variables. It is conceptually simple and relatively efficient, but incomplete,
i.e., unable to compute the results of a computation in some cases. By contrast,
narrowing is complete if an appropriate strategy is chosen but has the propensity
to generate infinite search spaces. When this situation arises, narrowing becomes
incomplete in practice in the sense that it cannot compute, with finite resources,
the complete solution of a goal. This paper partially fixes this problem.

The last decade has seen the discovery of many narrowing strategies, e.g.,
[2,4,6,8–11,13,14,16,17,20–24,26,27]. Recent optimality results [2,3] seem to sug-
gest that the contribution of narrowing strategies alone to the efficient execution
of functional logic computations has reached its theoretical limit. Yet, we will
explain with some examples that the application of these strategies leaves much
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to desire in practice. The focus of this paper is in “managing” a narrowing strat-
egy by aiming at a finite representation, in the form of a possibly cyclic graph, of
the narrowing space of a goal. While there is no guarantee that we will succeed,
if we do we are able to provide a simple finite representation of the set of the
goal’s computed expressions.

Section 3 describes our framework. We discuss how to finitely represent the
possibly infinite narrowing space of a goal, and prove soundness and completeness
of our representation. We investigate known and new techniques for increasing
the chances of obtaining a finite representation of a narrowing space. We show
how to obtain a finite representation of an infinite set of computed expressions
from a finite representation of a narrowing space.

2 Preliminaries

Rewriting, see [7,19] for tutorials, is a computational paradigm convenient for
studying functional and functional logic computations. A rewrite program is a
set of rewrite rules or oriented equations, pairs of terms denoted by l = r, where
l is a pattern and all the variables of r are in l. Rewriting a term t into u, written
as t → u, is the operation of obtaining u by replacing in t an instance of some
rule left-hand side l with the corresponding instance of the right-hand side r.
For example, consider the program that defines addition on the natural numbers
represented in unary notation,

0 + y = y

s x + y = s (x + y)

and term t defined as s (s 0) + 0. According to the second rule, instantiated
by {x 7→ s 0, y 7→ 0}, term t rewrites into s (s 0 + 0). Additional rewrite steps
eventually yield s (s 0) which is a normal form, i.e., it cannot be rewritten and
is understood to be the result of the computation.

Narrowing differs from rewriting by using unification instead of pattern match-
ing, but is identical to rewriting in most other aspects. For example, term t de-
fined as u+0 is narrowed into 0, written as u+0 ;{u7→0} 0, as follows. Term t is
first instantiated to 0 + 0 by {u 7→ 0}. Then, 0 + 0 is rewritten as usual. Choos-
ing instantiations and rewrites is the task of a narrowing strategy. Narrowing
is often used in functional logic programming for its ability to solve equations,
i.e., computing unifiers with respect to an equational theory [10]. For example,
consider the equation u + s 0 == s (s 0), where “==” denotes the equality
predicate. The second rule is applied to the equation by instantiating u to s w

obtaining s (w+ s 0) == s (s 0). Then, the first rule is applied by instantiating
w to 0. The resulting equation, s (s 0) == s (s 0), is trivially (syntactically)
true. The composition of {u 7→ s w} with {w 7→ 0} contains {u 7→ s 0} which is
the equation’s solution.

The functional expressions narrowed in the examples presented in this paper
are boolean expressions and are referred to as goals. Considering only goals is
not a limitation. To evaluate a functional expression t, regardless of its type, we
solve the equation (goal) t == x, where x is a new variable. The equality symbol
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“==” is an overloaded operator defined by a few rules for each type. Below we
show these rules for the natural numbers.

0 == 0 = true

s _ == 0 = false

0 == s _ = false

s x == s y = x == y

This definition, known as strict equality, is more appropriate than syntactic
equality when computations may not terminate. It is easy to generalize the
rules above to other types.

Our framework is largely independent of the narrowing strategy. In all our
examples we employ the strategy presented in [2].

3 The Framework

Memoization [25] is a technique aimed at improving the performance of func-
tional languages. A memoized function remembers the arguments to which it has
been applied together with the results it generates on them. If it is applied to
the same argument again it returns the stored result rather than repeating the
computation. Although memoization entails an overhead, it may provide sub-
stantial benefits. For example, consider the program that defines the Fibonacci
function:

fib 0 = 0

fib (s 0) = s 0

fib (s (s x)) = fib (s x) + fib x

It is easy to see that the computational complexity of fib is exponential in its
argument. The culprit is the third rule, since for any n > 1 it requires twice the
computation of fib (n−2). Memoization has a dramatic effect on the complexity
of fib. Once either one of the two addends originating from the right-hand side
of the third rule is computed, the other addend is computed in constant time.
Thus, the computational complexity of fib changes from exponential to linear.

Extending memoization to narrowing is not straightforward, since the result
of a narrowing computation can be an infinite collection of substitutions or com-
puted expressions. This situation creates new problems, but also the opportunity
for benefits greater than those arising in purely functional computations.

We introduce our framework with an example. Let us extend the definition
of addition given earlier with the rules defining the usual “less than or equal to”
relational operator.

0 <= y = true

s x <= 0 = false

s x <= s y = x <= y

Consider the goal u ≤ u+v, where u is an uninstantiated variable. The narrowing
computation of this goal non-deterministically takes either of two paths:

u ≤ u+ v
+

;{u7→0} true or u ≤ u+ v
+

;{u7→s w} w ≤ w + v
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(the superscript + stands for one or more narrowing steps). The second path
yields a goal equal to the original one, except for a renaming of w, hence the
goal’s narrowing space is infinite. It is easy to verify that a complete narrowing
strategy computes on u ≤ u+ v the infinite set of substitutions {{u 7→ 0}, {u 7→
s 0}, {u 7→ s (s 0)}, . . .}. If, during this computation, we recognize that w ≤
w + v is (a variant of) a problem that has been already tackled, we achieve
two major advantages: We save a good deal of computation, and we obtain a
finite representation of the narrowing space. This representation, shown in the
left part of Figure 1, is a graph whose edges are narrowing steps composed
with permutations, i.e., renaming of variables. The label of an edge shows the
substitution of its starting node’s variables.

u ≤ u + v true
{u 7→ 0}

s w ≤ s (w + v)

{w 7→ u}{u 7→ s w}

u + s 0 ≤ u s 0 ≤ 0
{u 7→ 0}

false

{}

s(w + s 0) ≤ s w

{w 7→ u}{u 7→ s w}

Fig. 1. Graph representation of the narrowing space of two goals.

A finite representation of the narrowing space has the potential of replacing
an infinite computation with a finite one. By analyzing the finite representation
of the narrowing space we infer that our goal is satisfied for all u. This allows us
to replace an infinite enumeration of the goal’s solutions with a single, simpler,
more general solution. Equally important, we may discover that a goal has no
solutions. For example, if we apply the same reasoning to the goal u+ s 0 ≤ u,
we obtain the finite representation shown in the right part of Figure 1. From it
we infer that the goal has no solutions. In contrast, the direct application of a
narrowing strategy to this goal keeps looking forever for a solution that does not
exist.

3.1 Space Representation

There are two differences between the functional evaluation of an expression
and narrowing which affect how to memoize functional logic computations. The
first difference concerns the outcome of a narrowing computation. In functional
logic programming one is interested in narrowing computations of the form
t0 ;σ1

t1 ;σ2
· · · ;σn

tn, where tn is a constructor term. The result of this
computation is the computed expression σ1 ◦ · · · ◦ σn []tn, i.e., tn is the normal
form of σn(· · ·σ1(t0) · · ·).

The second relevant difference concerns non-determinism. Functional compu-
tations are don’t care non-deterministic, i.e., for a complete evaluation strategy,
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all reduction choices lead to the same result. Functional logic computations are
don’t know non-deterministic, i.e., different narrowing choices lead to possibly
different results as shown in Figure 2. Narrowing computations are not linear se-
quences of steps, but rather trees of steps whose branches often cannot be joined
together. Non-determinism leads to a large, possibly infinite, set of results that
is inconvenient or impossible to store directly.

This consideration suggests a strategy of initially memoizing the results of
a single narrowing step of a goal, rather than trying to accumulate the entire
set of its computed expressions. We choose to store this information as a graph.
The vertices of the graphs are goals, i.e., terms being narrowed, and the edges
are narrowing steps between these goals. Generally, we are interested only in the
substitution of a narrowing step. Thus, we discard the rule and the position of
the step and we label an edge with the step’s substitution. Terms that differ only
by a renaming of variables are considered to be the same vertex. This decision,
of course, raises some concerns that we will address shortly.

Definition 1. Let g be a goal. A graph representation of the narrowing space
of g computed by a strategy S is a finite rooted directed labeled graph G such
that g is the root vertex of G, and if t is a vertex of G, t ;σ t′ according to
strategy S iff for some permutation µ, µ(t′) is a vertex of G and there is an edge
in G from t to µ(t′) with label σ ◦ µ.

There may exist many graph representations of the narrowing space of a goal.
Representations with a smaller number of vertices are more desirable in our
framework. A procedure that from a goal g attempts to construct a graph rep-
resentation of the narrowing space of g is straightforward to implement from
Definition 1.

We wish to reason about the narrowing derivations of a goal g by unfolding
(traversing paths of) a graph representation, when it exists, of g’s narrowing
space. Since a graph may identify terms that differ by a renaming of variables, it
could happen that the “derivations” that we unfold from the graph do not belong
to the narrowing space of g. In fact, this indeed happens in general. Consider a
program that computes the leftmost decoration of a binary tree.

leftmost (leaf x) = x

leftmost (branch l _) = leftmost l

A graph representation of the narrowing space of the goal leftmost t == c, where
t is an uninstantiated variable and c is a normal form of the decoration type,
has an edge beginning and ending at the goal itself with label {t 7→ branch t }.
This edge does not correspond to a narrowing step, since it is well-known that
the unifier of a narrowing step is an idempotent substitution. However, this is
not a problem for derivations ending in a constructor term, which are the only
derivations that we care about.

The narrowing space of a goal g computed by a strategy S is the set of the
narrowing derivations starting from g whose steps are computed by S. Since
every time that we use a rule R in a step we consider a variant of R with
new variables, narrowing derivations that differ only for a renaming of these
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variables compute equivalent substitutions, i.e., substitutions differing only by
permutations. If G is a labeled graph whose edges are labeled by substitutions,
the substitution computed by a path P of G is the composition of the labels of
P ’s edges.

Proposition 2. Let G be a graph representation of a goal’s g narrowing space
computed by a strategy S.

– If P is a non-empty path of G that connects g to a constructor term g′ and
computes δ, then g

+

;δ′ g
′, for some δ′ equivalent to δ. (Soundness)

– If g
+

;δ g′, where g′ is a constructor term, is a narrowing derivation com-
puted by S, then there exists a path P in G that connects g to g′ and computes
a substitution equivalent to δ. (Completeness)

Proof. (Soundness) The proof is by induction on the length of P . Base case: P
consists of a single edge. Since g and g′ are distinct vertices of G and g′ is either
true or false, the claim is immediate. Ind. case: Let P consist of an initial edge
(g, t) with label ρ followed by a non-empty path P ′ that computes substitution
ρ′. By definition of graph representation, there exists a permutation µ such that
ρ = σ◦µ and g ;σ µ−1(t) is a narrowing step. By the induction hypothesis, there

exists a substitution ρ̄′ equivalent to ρ′ such that t
+

;ρ̄′ g′. t
+

;ρ̄′ g′ implies that

µ−1(t)
+

;µ◦ρ′′ g′, for some substitution ρ′′ equivalent to ρ̄′. Since the equivalence
of substitutions is a transitive relation, ρ′ and ρ′′ are equivalent as well and
there exists a permutation τ such that ρ′ = ρ′′ ◦τ . Thus there exists a narrowing
derivation of g to g′ that computes the substitution σ ◦µ◦ρ′′. Since σ = ρ◦µ−1,
this is ρ◦ρ′′, i.e., ρ◦ρ′ ◦τ which is equivalent to the substitution computed by P .
(Completeness) By definition of graph representation, for each step of g

+

;δ g′

computed by S there is a corresponding edge in G, hence there is a path P ,
connecting g to g′, associated to the entire derivation. Using a technique similar
to that used in the proof of soundness, it can be verified that P computes a
substitution equivalent to δ. ut

There are a number of options to consider when building the narrowing space
of a goal. One is whether to look for a single computed expression or for an
enumeration of computed expressions. Another is whether to construct the nar-
rowing space depth-first (for efficiency) or breadth-first (for completeness). Some
of these options could be left to the programmer via annotations in a program or
could be decided from program analysis. A third option deserving further inves-
tigation is iterative deepening, which compromises between depth- and breadth-
first. We will discuss later how iterative deepening allows us to find all the
solutions of a goal for some goals that do not have a graph representation.

3.2 Space Analysis

The graph representation of the narrowing space of a computation may allow
us to infer properties of the entire computation. Every path from a goal to a
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constructor term gives us a computed expression. Cycles in the graph repre-
sentation of a narrowing space are particularly interesting, since they finitely
represent infinite sets of computed expressions. For example, let G denote the
graph representation of the narrowing space of u ≤ u+ v which is shown in the
left part of Figure 1. Any path of G consists of zero or more traversals of the loop
followed by the final edge reaching true. The substitution computed by this path
is {u 7→ sn 0}, where n is the number of loop traversals. In the above notation,
following a common practice, if f is a function from a type T into T , then fn x,
n > 0 stands for fn−1 (f x) and f0 x = x, for all x ∈ T . Thus, we conclude that
goal u ≤ u + v is solved for any natural number u, or in other words that the
goal’s computed expression is {} [] true. By contrast, plain narrowing enumerates
an infinite set of ground computed expressions of this goal.

Unfortunately, it does not always seem possible to simplify an infinite set of
substitutions to a single, more general substitution. For example, consider the
following program

double 0 = 0

double (s x) = s (s (double x))

half 0 = 0

half (s 0) = 0

half (s (s x)) = s (half x)

and the goal double (half u) == u, where u is an uninstantiated variable. The
narrowing space of this goal is shown in Figure 2. Using the notation discussed
earlier, we finitely represent the set of computed expressions of this goal with
the following two computed expression-like formulas {u 7→ s2n 0} [] true and
{u 7→ s2n+1 0} [] false, where n ranges over N. These formulas are clear and
intuitive, but ad hoc to this example.

To obtain a finite representation of the set of computed expressions of a goal
g, when g’s narrowing space has a graph representation, we introduce a new
concept. We regard a graph representation of a narrowing space as a finite state
machine—both are finite rooted directed labeled graphs. If we apply to a graph
representation of a narrowing space a standard algorithm for the construction
of a regular expression associated to a finite state machine, we obtain expres-
sions, which by analogy with regular expressions, we call regular substitutions.
Regular substitutions represent possibly infinite sets of substitutions. If we use
regular substitutions instead of plain ones in computed expressions, we get reg-
ular computed expressions, which represent possibly infinite sets of computed
expressions. The notation is familiar and fairly intuitive. For example, the infi-
nite set of computed expressions of the goal of Figure 2 is entirely represented
by the two regular computed expressions {u 7→ s (s u)}∗ ◦ {u 7→ 0} [] true and
{u 7→ s (s u)}∗ ◦ {u 7→ s 0} [] false.

Definition 3. Regular substitutions, rs for short, are expressions defining sets
of substitutions as follows: If σ is a substitution, then the regular substitution
σ denotes the set of substitutions {σ}. It will be clear from the context whether
we talk about σ as a regular substitution or as a substitution. If σ and η are
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double (half u) == u

double 0 == 0

{u 7→ 0}

{}

0 == 0

{}

true

double 0 == s 0

{u 7→ s 0}

{}

0 == s 0

{}

false

double (s (half w)) == s (s w)

{u 7→ s (s w)}

{}

s (s (double (half w))) == s (s w)

{}

s (double (half w)) == s w

{w 7→ u}

Fig. 2. Graph representation of the narrowing space of double (half u) == u.

regular substitutions, then

(σ) | (η) is an rs denoting the set σ ∪ η

(σ)(η) or (σ) ◦ (η) is an rs denoting the set {σ′ ◦ η′ | σ′ ∈ σ, η′ ∈ η}
(σ)∗ is an rs denoting the set {{}} ∪ σ ∪ σ ◦ σ ∪ · · ·

A regular computed expression, RCE for short, of a goal g is a pair σ []t, where σ

is a regular substitution and, for all σ′ ∈ σ, σ′ []t is a computed expression of g.
The use of parentheses can be reduced using standard conventions on precedence
and associativity of regular expression operators.

Proposition 4. If the narrowing space of a goal g has a graph representation,
then the set S of computed expressions of g has a finite representation.

Proof. Regard the graph representation of the narrowing space of g as a finite
state machine M where the states are goals, the initial state is g, the final states
are constructor normal forms, the moves are narrowing steps between the goals
(modulo renaming), and the inputs are the substitutions of the above narrowing
steps. The elements of S are all and only the pairs σ []n, where n is a final state
and σ is a regular expression defining the inputs accepted by M that terminate
in n. Since the number of final states of M is finite, the set S is finite as well. ut

A semidecision procedure for the existence of a finite representation of the set S

of computed expressions of a goal g is trivial. First, attempt to construct a graph
representation G of g’s narrowing space. If this construction terminates, compute
the set S of regular computed expressions accepted by G. Propositions 2 and 4
are the basis for the correctness of this procedure.

3.3 Memoization

Representing the narrowing space of a goal as a graph and regarding this graph
as a finite state machine allows us to obtain a finite representation of the goal’s
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computed expressions. This is crucial to memoization in functional logic pro-
gramming. If we have to solve a goal a second time, it would be unnecessarily
wasteful to analyze the graph again to retrieve the goal’s computed expressions.
To obtain a performance similar to that of memoization in functional languages,
we use the graph representation of a goal’s narrowing space to compute a table-
like structure in which each vertex of the graph is mapped to its set of computed
expressions. These expressions are computed by a straightforward application of
Proposition 4. From the graph of Figure 2 we obtain the following table. As in
the previous section, we use the intuitive notation of RCEs.

double (half w) == w

double (s (half w) == s (s w)
s (s (double (half w))) == s (s w)
s (double (half w)) == s w

{{w 7→ s
2n 0} [] true,

{w 7→ s
2n+1 0} [] false}

for n ∈ N

double 0 == 0
0 == 0

{{} [] true}

double 0 == s 0
0 == s 0

{{} [] false}

Fig. 3. Memoization of the goals occurring in the narrowing space of Figure 2.

We could memoize functional logic computations also without our frame-
work. However, without our framework some difficulties arise. If narrowing a
goal yields a sequence of computed expressions that are not all computed at the
same time, then the association between a goal and its computed expressions
is dynamic. Creating and maintaining a dynamic association is computationally
more complicated and expensive. Retrieving the association at different times
might produce different results. Later results could be more informative than
earlier results, since more computed expressions may become known, a situation
that we think is undesirable in a declarative environment.

3.4 Simplification

It is well known that simplification rules reduce the size of the narrowing space
of certain goals [15]. A simplification rule is a rewrite rule used to perform
deterministic steps during a narrowing derivation. For example, referring to the
program of Section 2, we can extend the definition of the addition operator with
the following simplification rules.

y + 0 = y

y + (s x) = s (y + x)

Simplification rules are beneficial to reduce the size of a goal’s narrowing space
only when, in a narrowing step, they are used in place of, rather than in addition
to, standard rules. To preserve the completeness of narrowing when simplification

9



rules are used in this fashion, no term can have an infinite derivation in which
only simplification rules are applied, a condition not always easy to ensure in
practice. Not surprisingly, it turns out that simplification rules are also useful in
our approach.

For example, the narrowing space of the goal u+ v == v + u is infinite and
does not have a finite representation in our framework. The reason is that goals
of the form sn u == u + sn 0, for increasing values of n, keep being created.
However, if we use the above simplification rules, we obtain a (finite) graph
representation of the narrowing space. This graph is small and simple, and it
allows us to infer the computed expression {} [] true.

Since our framework thrives on cycles, it is interesting to explore the effects
of non-terminating simplification rules. Take for example the rule

x+y = y+x (1)

that subsumes both the simplification rules for addition proposed earlier, but
cannot be used in the classic approach [15]. If we use this rule in place of the
defining rules of “+” we immediately get a cycle, but nothing else. If we use this
rule in addition to the defining rules of “+” we increase the out-degree of many
vertices when we attempt to compute the graph representation of the narrowing
space. Neither alternative seems profitable. To benefit from using the above rule,
it is necessary to perform a more sophisticated analysis of the narrowing space.
This will be discussed at the end of the next section.

3.5 Fertilization

It is clear from the previous section that techniques which prune the narrowing
space are doubly beneficial in our framework, since they may prune portions of
space that have no finite representation. Pruning all these portions makes the
difference between a finite and an infinite representation of a goal’s narrowing
space. A powerful technique to this end has its roots in induction. To introduce
this technique, consider again our first goal, u ≤ u + v. We can prove it by
induction on u as follows. There are two cases. Base case: Prove the goal for
u = 0. Ind. case: Prove the goal for u = s w assuming w ≤ w + v. Both cases
are proved directly by rewriting. The analogy with a narrowing computation is
striking. During the construction of a graph representation, we use an induction
hypothesis when we find in the graph being constructed a variant of the current
goal. In the following we show that when the goal is an equation, it is possible
to do better.

A recursive constructor is a data constructor of a type T that has an argu-
ment of type T . For example, successor and cons are recursive constructors of
natural numbers and lists, respectively. Automated theorem provers, e.g., [5,12],
recognize recursive constructors and create induction hypotheses. When the goal
is an equation, theorem provers apply an induction hypothesis by replacing in
the current goal an instance of the equation’s left-hand side with the corre-
sponding instance of the right-hand side or vice versa. This operation is called
“fertilization” in [5]. We show, in Figure 4, how fertilization allows us to finitely
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u + v == v + u

v == v + 0

{u 7→ 0}

s (w + v) == v + s w

{u 7→ s w}

s w == s (w + 0)

{v 7→ s w}

{w 7→ v}

0 == 0

{v 7→ 0}

{}

true

s (v + w) == v + s w

s w == s w

{v 7→ 0}

s (s (t + w)) == s (t + s w)

{v 7→ s t}

{t 7→ v}

Fig. 4. Partial graph representation of the narrowing space of u + v == v + u. The
narrowing space of s w == s w, omitted from the figure, has a graph representation
and computed expression {} [] true. To contain the size of the figure, some steps are
performed in parallel. The double vertical line denotes the fertilization step.

represent the narrowing space of u+v == v+u. Fertilization involves the terms
connected by a double vertical line. The equation s (w + v) == v + s w can
be considered the reduct of the inductive case of a proof that w + v == v + w.
Hence, the latter is an inductive hypothesis. Consequently, we can replace w+ v

with v + w and we obtain s (v + w) == v + s w, which turns out to be easier
to solve. Note that in the replacement of terms originating from fertilization,
variables must be intended as Skolem constants, thus their names matter.

The practicality of fertilization for the execution of functional logic programs
will have to be assessed. However, fertilization has some immediately apparent
potential advantages with respect to simplification. Simplification rules must be
coded by the programmer, whereas fertilization rules originate spontaneously
during the execution of a program. When a goal is being narrowed, we expect
that only a small number of fertilization rules will originate, a number definitely
smaller than the cardinality of a useful set of simplification rules. Furthermore,
each simplification rule must be tried on every subgoal, whereas fertilization rules
are applied more selectively. In [5] a fertilization rule is used only once and then
discarded, a policy that further speeds up a computation. Finally, simplification
rules must be terminating, whereas fertilization rules have no such a requirement.

Earlier we considered x + y == y + x as a simplification rule. Using this
rule, in addition to the defining rules of “+”, to solve u + v == v + u yields a
representation, not necessarily a finite one, of the goal’s narrowing space that
obviously embeds the graph of Figure 4. By analyzing a large enough portion of
this representation, we discover, as we did earlier, that {} [] true is a computed
expression. Clearly, this entirely solves the goal, since it is its most general solu-
tion. Consequently, we have found a finite representation of the set of the goal’s
computed expressions, even if the goal’s narrowing space has no finite represen-
tation in our framework. Here is where iterative deepening pays off. We work
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on the construction of a graph representation of a goal’s narrowing space until
a predetermined amount of resources has been consumed. Then we analyze the
possibly incomplete graph representation of the narrowing space. If we determine
that all the goal’s computed expressions have been found, e.g., using the RCE
calculus presented in the next section, there is no need to complete the construc-
tion of the graph. In this way, we succeed in finding a finite representation of a
goal’s set of computed expressions even for some goals that do not have graph
representations of their narrowing spaces. For example, this situation happens
for u + v == v + u when we use the non-terminating simplification rule of dis-
play (1). Note that according to the rules defining “==”, the goal u+v == u+v

is not solved, though the sides of the equation are syntactically equal.

3.6 RCE Calculus

Up to this point, for the sake of intuition and readability, we adopted a cavalier
attitude toward the computation and presentation of the finite representation of
an infinite set of computed expressions. Presenting to the user precise and easy
to read RCEs is a challenging problem.

From a graph representation of a goal’s narrowing space, we obtain a finite
representation of the goal’s set of computed expressions with any algorithm that
computes the regular expression accepted by a finite state machine. The major
difference with respect to standard regular expressions is that the alphabet sym-
bols are replaced by substitutions and the concatenation of symbols is replaced
by the composition of substitutions. Regular expressions can be simplified to be
more readable. These simplifications improve the readability of RCEs as well. In
addition, substitutions are objects much richer than alphabet symbols and their
composition gives rise to a whole new class of simplification rules. We discuss
some of these rules and show how their application allows us to determine, me-
chanically and rather easily, that the computed expression of u + v == v + u,
the goal of Figure 4, is {} [] true.

Figure 1 shows a common pattern for recursive types such as natural num-
bers, lists, and trees. This pattern consists of a loop with an exit. While many
goals may have complicated graph representations of their narrowing spaces, of-
ten these graphs embed a loop with an exit. For example, this situation occurs
twice in Figure 4 and once more in its omitted portion. We generalize these loops
with exits as follows. Let T be a recursive type. Partition the constructors of T
into a set {r1, . . . ri} of recursive constructors, a notion discussed in Section 3.5,
and a set {n1, . . . , nj} of non-recursive constructors. If c is a constructor of T , let
c̄ denote the linear term c(v1, . . . , vn) where n is the arity of c and v1, . . . , vn are
distinct variables. It can be verified by induction that the regular substitution

({u 7→ r̄1} | . . . | {u 7→ r̄i})
∗ ◦ ({u 7→ n̄1} | . . . | {u 7→ n̄j}) (2)

defines all the instances of type T and consequently can be simplified to the
identity substitution. Referring to the left part of Figure 1, we simplify ({u 7→
s w} ◦ {w 7→ u})∗ ◦ {u 7→ 0} to the identity after explicitly composing the two
substitutions in parentheses.
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A second useful simplification rule, which we use to simplify the RCE com-
puted for the goal of Figure 4, is the following. Let T be a type and u a variable
of type T . Consider the regular substitution

{u 7→ t1} | . . . | {u 7→ tn} (3)

If the set of terms {t1, . . . , tn} is complete for (the constructors of) T in the
sense of [18], then the regular substitution of display (3) defines all the instances
of type T [18, Lemma 3], and consequently can be simplified to the identity
substitution. Referring to Figure 4, we first simplify the substitution of the goal’s
RCE by repeatedly applying the simplification rule of display (2) thus obtaining
{u 7→ 0} | {u 7→ s w}. Since the set {0, s w} is complete for the type of u, using
the simplification rule of display (3) we reduce this regular substitution to the
identity.

While finding “the simplest” presentation of an RCE may be impossible or
impractical, we obtain good improvements with the above simplification rules.

4 Conclusions

We have presented a framework for narrowing akin to memoization in functional
programming. The key feature of our framework is its ability, in some cases, to
provide a finite representation of an infinite narrowing space. This, in turn, allows
us to finitely represent the set of a goal’s computed expressions and to associate
this set to the goal. This association plays the same role of the association of a
computation with its result present in the memoization of functional languages.

A major advantage of our framework is its potential to find computed ex-
pressions more efficiently than plain narrowing alone and/or to find computed
expressions that are more general than those obtained by plain narrowing alone.
These two features are closely interrelated. Referring to the first example of
Figure 1, consider the goal

u ≤ u+ v ∧member(u, l)

where u is an uninstantiated variable, “∧” is the conjunction operator, and
member is a predicate that checks whether its first argument, an element, occurs
in its second argument, a list of elements. If l is a long list of big numbers, plain
narrowing solves this goal inefficiently, regardless of which goal is selected first,
since a large number of narrowing steps are needed in each case. Our framework
speeds up this computation tremendously, since only a handful narrowing steps
are needed. This speed up is achieved without asking the programmer to supply
evaluation annotations or mode declarations or other similar devices that may
make a program less general and/or less declarative and/or more difficult to
understand and code.

Equally important, our framework may quickly find that a goal cannot be
solved (its computed expression is {} [] false) where plain narrowing alone searches
forever. The right part of Figure 1 contains an example that proves this point.
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Our framework accommodates techniques, or even extends them and pro-
motes new ones, intended to reduce the size of the narrowing space. We lim-
ited our detailed discussion to simplification and fertilization. Generalization [5],
similar to fertilization, turns out to be useful in some situations. Inductive in-
ference [1] allows us to detect situations in which simply performing further
narrowing steps to find a graph representation of the narrowing space is useless.
For example, in the space of u+ v == v+ u computed without using simplifica-
tion and/or fertilization rules, it is possible to infer the infinite sets of subgoals
sn u == u+ sn 0, for n ∈ N.

An interesting aspect of our framework is the language, substantially identical
to that of regular expressions, used to finitely represent possibly infinite sets of
substitutions. This language, in addition to the well-know simplification rules of
regular expressions, allows new simplification rules specific to substitutions. We
have only superficially discussed how to present RCEs to the user. This appears
to be mostly a syntactic, though non trivial, issue. A more substantial problem
is how to use RCEs internally when their substitutions cannot be simplified to
usual ones, but contain the “or” or the Kleene closure operators. This could be
solved by extending the notion of a term. The implications of this extension on
unification and other components of a functional logic language require further
study.
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