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Abstract

We describe the implementation of needed narrowing deployed in a compiler of a
functional-logic language and present a few related concepts and results. Our im-
plementation is obtained by translating rewrite rules into Prolog source code and
optionally applying a set of optimizations to this code. We benchmark the effec-
tiveness of each individual optimization. We show that our implementation is more
efficient than all other previously proposed similar implementations. We measure
both execution times, as is customarily done, and memory allocation that turns out
to be a significant factor. We solve equations using a semi-strict equality relation
that generalizes classic strict equality with sometimes a smaller search space. We
give a new, more declarative and accessible formulation of a definitional tree, a cru-
cial concept of our approach, and we present a simple algorithm to build definitional
trees. We briefly explore a notion of simplification that is applicable to and some-
times beneficial for computations in inductively sequential systems, where classic
simplification is not applicable.
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1 Introduction

We describe the implementation of an advanced narrowing strategy, needed narrowing [3], in Pro-
log. Our implementation has been deployed in an extension [4] of the Gddel compiler [12], which
translates Godel source code into Prolog source code. Our implementation is high-level, portable,
similar in scope to previously proposed implementations [1, 5, 6, 13, 15, 17] and more efficient.

Narrowing is a widely used procedure for performing functional computations in a logic program-
ming environment [10]. The appeal of narrowing for this task stems from its ability to evaluate
functional expressions containing uninstantiated logic variables. Functions are defined by rewrit-
ing [7, 14]. A narrowing step rewrites a functional expression after possibly instantiating some of
its variables. A narrowing strategy selects in an expression both the instantiation of its variables
and its redex, and is aimed at ensuring desirable properties such as the efficiency and completeness
of computations.

Narrowing is employed in functional-logic programming mainly to solve equations. Consider the
following rewrite system, where upper case identifiers denote the variables.

0O+X — X
s(X)+Y — s(X+Y) double(X) — X+ X
0< — true half(0) — 0
s( ) <0 — false half(s(0)) — 0
s(X)<s(Y) — X<V half (s(s(X))) —  s(half (X))

For example, narrowing computes solutions to the equation X <Y 4+ Z = true as follows. There
are three (most general) substitutions that create a redex in the equation: {X +— 0}, {Y — 0},
and {Y — s(Y7)}. The first substitution yields 0 < Y + Z ~ true which is reduced to true ~ true
by the first rule of < and eventually to true. Thus, {X — 0} is a solution of the equation. The
other substitutions allow us to rewrite the right subterm of <. For example, the third substitution
yields X < s(Y1) + Z =~ true which is reduced to X < s(Y1 + Z) =~ true by the second rule
of 4+. Further narrowing steps applied to this equation compute solutions that composed with
{Y + s(Y7)} compute solutions of the initial equation.

In Section 2 we make precise the scope of our discussion. In Section 3 we recall the needed narrowing
strategy. In Section 4 we describe the generation of Prolog code that solves equations by needed
narrowing. In Section 5 we describe several transformations of the Prolog code intended to improve
the efficiency of computations. In Section 6 we measure the efficiency of our technique. In Section
7 we compare our technique with related work. In Section 8 we discuss future directions of our
work.

2 Scope

We consider many-sorted, constructor based, inductively sequential rewrite systems. The first two
concepts are standard notions of rewriting defined, e.g., in [7, 14]. The third concept is defined



in [2] and recalled in the next section.

We consider a rewrite system with rules R and signature ¥. R may be non-terminating, hence
some terms over ¥ may not have a normal form. Under these conditions it is appropriate to define
the validity of an equation as follows. The equality rules of ¥ are defined below, where A is a new
right associative, infix symbol and there is one rule for each constructor ¢ in X.

trueNX — X
cxc — true Ve/0 € X
C(Xl,...,Xn)%C(Yl,...,yn) — (X1%Y1)AA(Xn%Yn) VC/HEE

The equality rules define an equivalence on terms referred to as strict equality and commonly used
when computations may not terminate [8, 16]. A solution of an equation ¢ & u is a substitution o
such that o(t ~ u) rewrites to true using both R and the equality rules of ¥. A literal application
of the equality rules may lead to an inefficient enumeration of all the narrowing derivations of a
term. We correct this problem, in practice, by extending the above rules with

X~X — true

and imposing that only constructor substitutions are acceptable for X.

We limit our discussion to unconditional rewrite systems. However, extending our discussion to
conditional rewrite systems, e.g., as done in [15], does not create significant problems. Indeed, our
implementation is applied conditional systems in [4].

3 Needed Narrowing

Needed Narrowing [3] is an optimal strategy in the sense that only unavoidable steps are performed
to find the solutions of equations. It is defined for inductively sequential rewrite systems. Each
operation in these systems is associated with a structure called definitional tree. Below, we recall
this concept, central to our approach, in a more declarative form than in [2]. An algorithm to build
definitional trees is presented in Appendix A.

A pattern is a term of the form f(t1,...,t,), where f is a defined operation and, for all 7, ¢; is a
constructor term. A definitional tree of an operation f is a non-empty set 7 of patterns partially
ordered by subsumption and having the following properties up to renaming of variables.

e [root property] The minimum element, referred to as the root, of 7 is f(Xi,...,X,), where
Xi,..., X, are distinct variables.

e [leaves property] The maximal elements, referred to as the leaves, of 7 are all and only
(variants of) the left hand sides of the rules defining f. Non-maximal elements are referred
to as branches.

e [parent property] If 7 is a pattern of 7 different from the root, there exists in 7 a unique
pattern 7’ strictly preceding 7 such that there exists no other pattern strictly between m and
7' ' is referred to as the parent of m and 7 as a child of 7.

e [induction property] All the children of a same parent differ from each other only at the
position of a variable, referred to as inductive, of their parent.



There exist operations with no definitional tree, and operations with more than one definitional
tree, examples are in [2]. The existence of a definitional tree of a function f is decidable and simple
in most practical situations. An operation is called inductively sequential if it has a definitional tree.
A rewrite system is called inductively sequential if all its operations are inductively sequential. The
inductive sequentiality of a rewrite system R is obtained at no cost by establishing a priority on
the rules of R based on either textual ordering or specificity, as done in most functional languages
with pattern matching.

The adjective “inductive” is motivated by the fact that, for completely defined operations, the
children of a pattern are obtained by “doing a data type induction” on the inductive variable of
their parent. This variable is typeset in boldface in the examples. The trees of the operations <
and + are pictorially shown below.

X1 < Xo Yi+Ys
0< Xy s(X3) < X2 0+Ys s(Y3) + Ya
5(X3) <0 s(X3) < s(Xy)

Definitional trees make it particularly easy to operationally define needed narrowing. Let ¢t =
f(t1,...,tx) be an operation-rooted term to narrow. We most-generally unify ¢ with some non-
deterministically chosen maximal pattern 7 in a definitional tree 7 of f. Let o be one such unifier.
If 7 is a leaf of 7, o(t) is a redex and we reduce it. If 7 is a branch of 7, we consider the subterm
u of o(t) matched by the inductive variable of 7. u cannot be a variable. If u is operation-rooted,
we attempt to narrow u to a head normal form. If w is constructor-rooted, we fail, since it can
be shown [3] that o(t) cannot be narrowed at the top, which is necessary to solve any equation of
which ¢ is a side.

For example, consider the term ¢t = X <Y + Z discussed in our introductory example. Let 7 be
the definitional tree of the operation < shown earlier. The maximal elements of 7 that unify with
t are 0 < Xy and s(X3) < Xo. The first pattern is a leaf, thus, t{X +— 0} can be reduced at the
root. The second pattern is a branch and X5 is its inductive variable, thus, we attempt to narrow
Y + Z, the subterm of s(X3) < Y + Z matching Xo. As seen in this example, needed narrowing
does not always chooses most general unifiers.

4 Code Generation

Our implementation maps each defined operation f of an inductively sequential rewrite system R,
into a predicate fy of a Prolog program. If the type of f is t; X to X --- X t, — ¢, then the type
of foist] X to X -+ x t, X t. The predicate fy invokes a finite set of auxiliary predicates f1, fo,...
depending on f, too. If f;(uy,...,un,u) succeeds, i > 0, then u is a head normal form (minimal in
a sense not discussed in this paper) of f(uy, ..., uy,).

We define fy, fi1,... as the output of the procedure CodeGen, defined shortly, on input f. CodeGen
takes two arguments: p and A. p is a natural number indexing the predicate identifier f and N is
a subtree of a definitional tree of f. CodeGen is recursive. The values of p and A in the initial call
to CodeGen are 0 and 7, a definitional tree of f. The value of p in recursive calls to CodeGen is
the next yet unused index in the generation of fy, f1,....

A shallow constructor term is a term ¢(X1,. .., X,,), where ¢ is a constructor, m > 0 is the arity of



cand Xq,...,X,, are fresh variables. If m = 0, the term is simply c¢. We call shallow constructor
term enumeration of sort s an enumeration ci, ..., c; of all the shallow constructor terms of a sort
s, up to variable renaming.

A head normal form is a term t such that no descendant of ¢ will ever be a redex. In constructor
based system “useful” head normal forms are constructor-rooted terms. In the following discussion,
we consider uninstantiated variables head normal forms, too, since both our implementation and
the Godel compiler in which it is embedded instantiate variables to constructor-rooted terms only.

The computation of CodeGen depends on whether or not A is a leaf of 7. Several optimizations
of the code produced by CodeGen will be discussed in the next section.

1. Case N is a branch of 7

Let m = f(t1,...,t,) be the pattern at the root of N, let ¢; be the inductive variable of the pattern,
and let s be the sort of ¢;. The clauses generated by CodeGen are called to evaluate to head normal
form a functional expression exp = f(uz,...,u,) that is known to unify with 7!. The first problem
is to find whether 7w is maximal among the patterns of 7 that unify with exp. Let u denote the
i-th argument of exp. i.e., the subterm of exp matching ¢;. We consider three subcases:

e u is operation-rooted: then 7 is maximal.
e u is a variable: then all the children of N contain maximal patterns unifying with exp.

e u is constructor-rooted: then at most one child of N contains maximal patterns unifying with
exp (exactly one child if f is completely defined).

Thus, the clauses generated by CodeGen must determine which of the above subcases u satisfies
and in each case dispatch an appropriate clause to continue the computation of needed narrowing
of exp.

The detection of the subcase satisfied by u is performed via unification by a set of clauses whose
heads differ only at the i-th argument. In these clauses, shown below, ci,...,¢; is a shallow
constructor term enumeration of sort s, and R is a new variable.

fplt, ..., X, ... ty, R) i—var(X), !, ... 0
fp(tl,...,cl,...,tn,R):—!,... 1
fp(tl,...,Cj,...,tn,R>:—!,... J
Folti, . X, .t R) i— ... j+1

The cut makes these clauses mutually exclusive. Now, we describe the code of the yet undefined
portions of the bodies.

Clause number 0 is completed as follows
ot ... X, oty R) i—var(X), !, fpo(ti,..., X, ..., tn, R).
where f,,, is a new predicate defined by j clauses identical to clauses 1 to j of f,, but without the

cut. As shown shortly, this code executes a descent down some non-deterministically chosen path
of N’ where some maximal patterns unifying with exzp can be found.

IThis fact is obviously true for the root pattern of 7 and can be shown to be invariant through recursive calls of
CodeGen.



The k-th clause, for k in 1,..., 7, is either

fp(tl,...,ck,...,tn,R) = !, fpk(tl,...,ck,...,tn,R).

or
fp(tl7---uck7---;tn; ) = !, fazl

The first clause is generated when N has a child, say N}, whose pattern has a variant of ¢, at the
position of the inductive variable of 7. In this case, f,, is a new predicate generated by the call
CodeGen(pk, Ny). This code executes a descent down the unique path of ' where some maximal
patterns unifying with exp can be found. Otherwise, CodeGen generates the second clause. In
this case it can be shown that exp cannot be narrowed to a head normal form because f is not
completely defined.

The last clause of f, is executed only when the i-th argument of exp, unified with the variable X,
is an operation-rooted term. Clause number j + 1 is defined as follows

fp(tlv' . '7X7" . 7tn7R) = ftps(XaH)vfijrl(tlv'- . 7H7"' 7tn7R)'

where ftp,, defined later, evaluates the functional expression instantiating X to head normal form
and binds this value to Y, and f,. ., is a new predicate defined by j + 1 clauses identical to clauses
0 to j of fp.

In our examples, we use more expressive names than indexing the translated function’s identifier.
Below, we show the predicate add generated from the operation + defined in the introduction. The
clauses defining add_10 are shown later. The clauses defining add_1s are similarly computed. The
clauses defining add_1v and add_1h are easy to compute from the definition of add.

add(A,B,C) :- var(A), !, add_1v(A,B,C).
add(0,B,C) :- !, add_10(0,B,C).
add(s(A),B,C)) :- !, add_1s(s(4),B,C).
add(A,B,C) :- ftp_nat(A,H), add_1h(H,B,C).

2. Case N is a leaf of 7

Let m = f(t1,...,t,) be the pattern of N and | — r the rule of R such that [ and 7 are variants.
Let o be a renaming substitution such that f(¢1,...,t,) — " = o(l — r). We consider three
exhaustive and mutually exclusive subcases, i.e., whether r’ is a variable, or a constructor-rooted
term, or an operation-rooted term.

2.1 Case 1’ is a variable, say X. There exists a unique occurrence of X in tq,...,t,. Let s be
the sort of X and let c1,...,¢c; be a shallow constructor term enumeration of sort s. CodeGen
generates the following j + 2 clauses

Ip(ti, .o tn, X) = var(X),!.

fp(t].la"'7tln)cl) = ' 1
fp(tj17"'7tjn7cj) =L j
fp(tlv' . '7tnaR) :_ftps(Xv H)?fq(t/177t/n>R) ]+ 1

where tpr, 1 < h < 7, 1 < k < n, is identical to t; except for the instantiation of X to ¢y, t; is
identical to tj, except for the replacement of X with H, and f, is a new predicate defined by j + 1
clauses equal to clauses 0 to j of f.



If one of these clauses succeeds, the last argument of f}, is a head normal form. This is obvious for
clauses 0 to j. For clause j + 1, this property is a consequence of the definitions of ftps, presented
shortly, and of f,.

For example, the clauses generated by the first rule of 4+ are

add_10(0,B,B) :- var(B), !.

add_10(0,0,0) :—- !.

add_10(0,s(B),s(B)) :- !.

add_10(0,B,C) :- ftp_nat(B,H), add_10_2h(0,H,C).

2.2 Case 1’ is a constructor-rooted term. CodeGen generates the following single clause.

fo(ta, - o tn, ).

If this clause succeeds, the last argument of f,, is obviously a head normal form.

2.3 Case 1’ is an operation-rooted term. Let 7’/ = g(uq, ..., un). CodeGen generates the following
single clause, where R is a fresh variable and gg is the predicate generated by Codegen on input g.

oty . s tn, R) :— go(ut, ..., um, R).

If this clause succeeds, then it can be shown by induction on its proof tree that R is instantiated
to a head normal form.

Definition of ftp

We have used in the previous clauses a family of predicates, ftp,, where s is a sort, that we now
define. For each each sort s, for each defined operation g whose range is s, we define the following
clause of ftp,.

ftr (9(Xq,..., X5), R) :—= !, go(X1,...,Xpn, R).

This clause is executed during the evaluation of exp when it is necessary to evaluate a subexpression
of the form g(t1,...,t,). The execution of this clause invokes the predicate gg generated by CodeGen
on input g. If this clause succeeds, R is instantiated to a head normal form of g(ti,...,t,).

For example, the clauses of ftp,,,; for the operations + and half are shown below, where, as usual,
we denote the binary addition with its standard infix operator, and the corresponding predicate
generated by CodeGen with add.

ftp_nat(A+B,H) :- !, add(A,B,H).
ftp_nat(half(A),H) :- !, half(A,H).

Strict Equality

Equations are solved by narrowing them to true. The equality rules presented in Section 2 define
a set of operations, A and =, where s ranges over the sorts of X, that are inductively sequential.
CodeGen applied to these operations generates Prolog clauses that can be used to compute head
normal forms. Indeed, the only head normal form they compute is true, thus, CodeGen gives us
the Prolog code for solving equations with no additional machinery.

In practice, we use a “specialized” version of CodeGen, that improves the code in several ways. In
particular



e The family of Prolog predicates ~; is binary. These predicates succeed rather than returning
true in a third argument.

e If both arguments of ~;, are uninstantiated variables, then a4 unifies these variables and
succeeds. Since our approach only substitutes variables with constructor terms?, this compu-
tation is consistent with our discussion in Section 2.

e Ag,/A1,...are not generated. In their places we use the boolean conjunction already available
in Prolog.

e We apply to =; the optimizations discussed in the next section and an additional optimiza-
tion, discussed later, applicable to functions that have more than one definitional tree.

The code implementing the strict equality predicate for natural numbers is shown in Appendix B.

5 Optimizations

In this section we describe some transformations of the code generated by CodeGen that are
intended to improve the efficiency of computations. Except where explicitly stated, we describe
each optimization independently of the other. In many cases, several optimizations can be applied
to the same predicate. Constructor elimination and first argument indexing are borrowed from [11].
Some optimizations are not straightforward and we have only the space to sketch them and show
an example.

Rule call elimination

CodeGen on input of a leaf node outputs a predicate defined by only one clause in two of the three
cases discussed earlier. A call to this clause is easily unfolded. For example, the second rule of +
generates only

add_1s(s(A),B,s(A+B)).

The predicate add_1s is called from one clause of add, namely
add(s(A),B,C)) :- !, add_1s(s(A),B,C).

We unfold this call and avoid the definition of add_1s altogether. The result simply becomes
add(s(A),B,s(A+B)) :- !.

Constructor elimination

Our implementation may generate predicates all of whose invocations and defining clause heads
have a same argument rooted by a same constructor, possibly a constant. In this case, the argument
may be replaced by the sequence of the argument’s arguments. For example, an auxiliary predicate,
that we identify with half_1s, generated by the rules of the defined operation half, is defined by

half_1s(s(A),B) :- var(pA), !,
half_1s(s(0),B) :- !,

2This property also holds for Gédel, whose compiler has been extend with our implementation.



half_1s(s(s(A)),B) := ', ...
half_1s(s(A),B) :- ftp_nat(A,H),

The first argument of half_1s is always rooted by the constructor s. half_1s is optimized as
follows, assuming that suitable changes are made in the bodies of these clauses and in the call to
this predicate.

half_1s(A,B) :- var(d), !,
half_1s(0,B) :- !, ..
half_1s(s(A),B) - !,
half_1s(A,B) :- ftp_nat(A,H),

Constant arguments can be entirely eliminated. For example, the predicate add_10 discussed in
the previous section becomes

add_10(B,B) :- var(B), !.

add_10(0,0) :- !.

add_10(s(B),s(B)) :- !.

add_10(B,C) :- ftp_nat(B,H), add_10_2h(H,C).

First argument indexing

Most Prolog compilers index the clauses of a predicate by hashing on the principal functor of its
first argument. If a pattern 7 has an inductive variable, the predicate’s arguments can be permuted
so that the argument corresponding to the inductive variable of 7 is the first. For example, the
clauses of < when the first argument is rooted by s are invoked by

leq(s(a),B,C) :- !, leq_1s(s(4),B,0C).
and are defined by

leq_1s(s(A),B,C) :- var(B), !,
leq_1s(s(A),0,C) :- !,
leq_1s(s(A),s(B),C) = !, ...
leq_1s(s(A),B,C) :- ftp_nat(B,H),

Swapping the arguments of leq_1s takes better advantage of indexing, i.e.,

leq_1s(B,s(A),C) :- var(B), !,
leq_1s(0,s(A),C) :- !,
leq_1s(s(B),s(A),C) :- !, )
leq_1s(B,s(A),C) :- ftp_nat(B,H),

This optimization can be performed also for the clauses generated by a rule whose right hand side
is a variable, e.g., the first rule of +.

Ftp elimination

The definition of the ftp family of predicates can be eliminated by instantiating the inductive
argument in the head of a predicate with all the operation-rooted patterns. For example, the last
clause of add can be replaced by the following clauses.



add (X+Y,B,C) :- !, add(X,Y,H), add_1h(H,B,C).
add (half (A),B,C) :- !, half(A,H), add_1h(H,B,C).

Eager discrimination

The case analysis performed by the code output by CodeGen on the inductive variable of an
argument may be anticipated to the calling function, when the called function appears on the right
hand side of a rule. For example, double is implemented by a single clause

double(A,B) :- add(A,A,B).

The first argument of add corresponds to the inductive variable of the pattern from which add
is generated. We anticipate to double the case analysis that would be performed by add on this
argument. In conjunction with the rule call elimination optimization, the predicate add is no longer
invoked by double. The resulting clauses are shown below.

double(X,Y) :- var(X), !, double_1v(X,Y).

double_1v(0,0). % add(0,0,Y)

double_1v(s(X),s(X+s(X))). % add(s(X),s(X),Y)
double(0,0) :- !. % add(0,0,Y)
double(s(X) ,s(X+s(X))) :- !. % add(s(X),s(X),Y)
double(A,B) :- !, ftp_nat(A,H), double_1h(H,B).

double_1h(X,Y) :- var(X), !, double_1v(X,Y).

double_1h(0,0) :- !. % add(0,0,Y)

double_1h(s(X),sX+s(X))) - !. % add(s(X),s(X),Y)

Variable unflattening

Patterns with constructor-term arguments that are non-shallow yield predicates with clauses that
are never invoked when a non-shallow argument is matched by a variable, since variables are
instantiated only by shallow constructor terms through our implementation. Clauses that are never
invoked can be eliminated and the remaining clause can be generated as if the subtree involved in
the generation were flat. For example, the code generated for the operation half is

half(A,B) :- var(A), !, half_1v(A,B).
half_1v(0,B) :- half_10(0,B).
half_1v(s(A),B) :- half_1s(s(A),B).

The definition of half_1s includes clauses where the first argument’s argument is not instantiated
to a variable. These clauses are never executed. The predicate half_1v is defined as follows to
avoid the resulting potential inefficiency.

half_1v(0,B) :- half_10(0,B).
half_1v(s(0),B) :- half_1s0(s(0),B).
half_1v(s(s(A)),B) :- half_1ss(s(s(4)),B).



6 Benchmark

We present a benchmark intended both to assess the benefits of the optimizations discussed in
Section 5, and to compare our implementation with other similar implementations. Our measures
are obtained using the popular SICStus 2.1 Prolog interpreter/compiler. All code is compiled. Since
system time measures are subject to some imprecision, the values that we report in the following
tables are the averages of 12 executions of the same goals.

We report both the relative execution time and the absolute amount of allocated memory for finding
the first solution of the following equations originally proposed in [11, Sect. 7]. As in [11], natural
numbers are represented by 0/s-terms. The function one is defined in [11, Example 2].

10000 < 10000 + 10000 = true Fy
1000 € X + X = true FEy

400 + X < (X +200) + X ~ true Es
2000 < 1000 + (X 4+ X) = true E,
double(double(one(10000))) ~ X Es

The following table summarizes our findings with respect to execution time. Lines 1 to 6 measure
the effects of a each optimization. A tabular entry contains the time of the computation as percent
of the time taken by the unoptimized code. Line 7 refers to the code with all the optimizations
combined. Line 8 shows, in the same scale, the performance of the code proposed in [11]. The
comparison with several other implementations of narrowing in Prolog can be inferred using the
benchmarks in [11], where it is shown that Hanus’s code is the fastest.

F Es FEs Ey Es | Aver.
1 | Rule call elim. 83 7 83 77 61 76
2 | Constr. elim. 72 65 76 66 7 72
3 | Indexing 72 80 78 79 100 82
4 | Ftp elim. 93 94 93 94 84 92
5 | Eager discr. — — — — 25 —
6 | Var. Unflat. — — — — — —
7 | All opt. 36 35 43 35 11 32
8 | Hanus code 56 79 63 79 27 61

Eager discrimination, line 5, is effective only for F5. Variable unflattening, line 6, is not effective
for the above equations, but, e.g., reduces by 25% the computation time to solve half(X) =~ k,
where k is an integer literal.

The following table summarizes our findings with respect to memory allocation. Each tabular entry
shows, in megabytes, the amount of memory allocated during the computation of the first solution
of each equation.
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0 | Plain 0.680 0.054 0.052 0.130 4.000
1 | Rule call elim. || 0.440 0.034 0.035 0.086 0.800
2 | Constr. elim. 0.280 0.022 0.027 | 0.058 0.800
3 | Indexing 0.680 0.054 0.052 0.130 4.000
4 | Ftp elim. 0.680 0.054 0.052 0.130 4.000
5 | Eager discr. 0.680 0.054 0.052 0.130 1.600
6 | Var. Unflat. 0.680 0.054 0.052 0.130 4.000
7 | All opt. 0.280 0.022 0.027 | 0.058 0.800
8 | Hanus code 0.280 0.022 0.027 | 0.058 0.800

7 Related Work

The last ten years have seen a wealth of results on the foundations and applications of narrowing.
The main thrust of this paper is the implementation of narrowing in Prolog, which has received
considerable attention within this area [1, 5, 6, 13, 15, 17]. Our benchmark indicates that our
implementation is almost twice as fast as Hanus’s implementation [11]. A similar benchmark in [11]
indicates that Hanus’s implementation is faster, sometimes substantially, of all other previously
published similar implementations. Hanus’s implementation is partly inspired by [15]. Both [11, 15]
also propose implementations of narrowing for the larger class of the constructor based, weakly
orthogonal rewrite systems and also include sharing, which avoids multiple evaluations of equal
terms. Extending our implementation to this larger class of systems and including sharing is
possible as well using, e.g., the same approaches as [11, 15].

There are some noticeable differences between our approach and [11]. Our implementation adopts
a less strict notion of equality that reduces the size of the search space in some cases. Our imple-
mentation allows us to perform more optimizations. Our implementation takes better advantage
of mode information. Similar to [11] we consider an uninstantiated variable to be a head normal
form. However, we process variables and constructor-rooted terms with different predicates, since
there are choice points that must be created for variables, but can be avoided for constructor-rooted
terms. This discrimination is not performed in [11]. Our implementation makes better use of the
built-in unification, where [11, 15] define a predicate, hnf/2, to evaluate an expression exp to a head
normal form. If exp is already a head normal form, hnf/2 returns it unchanged. Hnf/2 detects
by unification whether to evaluate exp. Our implementation defines a similar predicate, ftps/2.
However, we perform the unification required to discover whether to evaluate exp before calling
ftps /2. Thus, we save the cost of the call when no evaluation of exp is necessary.

8 Future work

Hanus [9] has shown that adding deterministic rewrite steps to certain non-eager narrowing strate-
gies may reduce infinite search spaces to finite ones. Unfortunately, needed narrowing cannot be
improved by this technique. The benefits of this idea seems to originate from postponing the
non-deterministic instantiation of variables in favor of more deterministic computations. We have
explored some extensions of Hanus’s idea suitable to needed narrowing.

Terms containing a function with distinct definitional trees may have distinct needed narrowing
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steps. In this case, the choice of the step may affect the efficiency of a computation. Following
Hanus’s lead we choose, at run-time, the “more deterministic” step. An opportunity for this
strategy is offered by the ubiquitous strict equality. When one and only one side of an equation is a
variable, we postpone its instantiation until the other side has been evaluated to head normal form.
This strategy makes the instantiation deterministic and yields a marginal efficiency improvement.

Commutative operations, even if they do not have distinct definitional trees, offer a similar op-
portunity. Consider, for example, the evaluation of ¢ + u to head normal form. If £ is a variable,
our and most other implementations non-deterministically instantiate it. In this situation, if u is
a head normal form, Hanus has shown the benefits of applying simplifying rewrite rules that do
not require the (immediate) instantiation of ¢. We investigate a slightly more general approach.
We define a partial ordering relation on terms, referred to as more deterministic than, and, if u
is more deterministic than ¢, we evaluate u + t instead of ¢ + u. For suitable definitions of “more
deterministic than” this approach encompasses both delaying the non-deterministic instantiation
of a variable in an equation and applying a simplifying rewrite rule to an addition. Note that
commuting the arguments of a commutative operation, such as addition, may change the set of the
solutions of an equation. We argue, however, that this situation should never occur in well-behaved
programs.

Below we show the results of a preliminary benchmark of this idea. We generate Prolog clauses
from the rules of + as usual, however, before executing these clauses, we swap the arguments of
+ if the second argument is more deterministic than the first argument. The “more deterministic
than” ordering ranks constructor-rooted terms as the most deterministic ones, variables as the least
deterministic ones, and operation-rooted terms in between these to groups. This is more general
than using simplifying rules. The next table shows both time and memory allocation results.

E1 E2 E3 E4 E5
Time 220 ) 3 8 155
Memory 100 145 115 117 100

The values of each tabular entry show the performance of simplifying code as a percentage of non-
simplifying code. In three equations the speed up is remarkable. Furthermore, the search spaces of
both Fy and E4 become finite. The simplifying code computes all the solutions of these equation
in a fraction of the time needed to compute the first solution without simplification.
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Appendix A

We describe an algorithm that builds a definitional tree of an operation f from f’s rules’s left hand
sides. The merits of this algorithm are its simplicity and the fact that the only information it
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requires is to distinguish variables from non-variable symbols. This was a crucial consideration for
coding the algorithm within an existing compiler with encapsulated information. The algorithm is
potentially inefficient, since it relies on non-deterministic choices. The algorithm’s non-determinism
can be limited or entirely eliminated at the expense of further computation (and a more complicated
description). We assume that the rewrite system is left linear and non-overlapping.

There are two major steps, referred to as “chaining” and “merging”, in the computation of a
definitional tree of f. The first step builds, for each left hand side [ of a rule of f, a “chain” of
[, which is a convenient representation of what could be, if some constraints were ignored, a path
from the root of a tree of f down to [. More precisely, a chain is a sequence [lo, p1,l1,p2, -, Pk, k]
such that Iy = f(X1,...,X,), [k is a variant of [, and for all j = 1,...,k, px is the position of a
shallow constructor term in [, and [p_; is obtained from [ by replacing this term with a variable.

For example, consider the operation < defined in the introduction. A chain of s(X) < s(Y), the
left hand side of the third rule of <, is [X] < Xo,1,5(X3) < X2,2,5(X3) < s(Xy)]. Ignoring the
positions, this chain is indeed a path from the root of a tree of < down to a variant of s(X) < s(Y).
Note, however, that [X; < X2,2, X7 < s(X4),1,s(X3) < s(Xy)] is also a chain, but there is no tree
of < in which this chain represents a path.

The second step of the algorithm verifies whether all the chains of f can be “merged” into a
definitional tree. If the merging succeeds, a tree of f is generated in the process. Merging chains is
a recursive computation that takes a set S of “shortened” chains of f such that the head elements
of the chains are variants of each other®. A chain is shortened by removing an even number of
elements from its front. If S is a singleton and its chain contains only one term, say [, then the
merging succeeds, and the (sub)tree 7g generated by S consists of the leaf I. Otherwise, we check
whether the first position (second element) is the same in all the chains of S.

If this condition is false, the merging step fails. If this condition is true (remember that all the
chains in S begin with variant terms), a variant of the head of a chain in S is the root of the
(sub)tree 7g generated by S. Then, each chain in S is shortened by removing its first two elements,
the leading term and the following position. The shortened chains of S are partitioned into subsets
such that the heads of the chains in each subset are variants. Each resulting subset is merged to
give a child of 7g.

For example, an initial set of chains of < is {[X1 < X2,1,0 < Xo], [V1 < Y5,1,5(Y3) < V3,2, 5(Y3) <
0],[Z1 € Z2,1,5(Z3) < Z2,2,5(Z3) < s(Z4)]}. Since the first position of each chain is the same, i.e.,
1, X7 < X5 is the root of the tree. The chains are stripped of their first two elements and partitioned
into the two sets, {[0 < X2]} and {[s(Y3) < Y3,2,s(Y3) < 0], [s(Z3) < Z2,2,5(Z3) < s(Z4)]}. The
first set yields the leftmost leaf of the tree of < shown in Section 3. The second set can be merged
too and yields the entire right subtree of the root.

Appendix B

The following code implements the strict equality predicate on natural numbers that we described
in the text. If both arguments of strict_eq nat are variables, they are unified and the predicate
succeeds. This policy, which deviates from the standard definition of strict equality, is consistent
with the property that the rest of our implementation instantiates variables only to constructor
terms. All the optimizations discussed in Section 5 are included in the following code.

3All the chains in the initial set of chains begin with variant terms, and this property is invariant for any set of
this kind subsequently processed during the merging.
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strict_eq_nat(X,Y) :- var(X), !, sen_r_2v(Y,X).

sen_r_2v(Y,X) :- var(Y), !, X=Y. % semi strict, really

sen_r_2v(0,0) :- 1I.

sen_r_2v(s(Y),s(X)) :- !, sen_r_2v(Y,X).

sen_r_2v(Y,X) :- ftp_nat(Y,H), sen_r_1h 2v(H,X).
sen_r_1h_2v(Y,X) :- var(Y), !, X=Y. % semi strict, really

sen_r_1h_2v(0,0) :- !.
sen_r_1h_2v(s(Y),s(X)) :- sen_r_2v(Y,X).

strict_eq_nat(0,Y) :- !, sen_10(Y).
sen_10(0) :- I,
sen_10(s(_)) :- !, fail.
sen_10(Y) :- ftp_nat(Y,0).
strict_eq_nat(s(X),Y) :- !, sen_r_2s(Y,X).
sen_r_2s(Y,X) :- var(Y), !, Y=s(Z), strict_eq_nat(X,Z).
sen_r_2s(0,_) :- !, fail.
sen_r_2s(s(Y),X) :- !, strict_eq_nat(X,Y).

sen_r_2s(Y,X) :- ftp_nat(Y,s(Z)), strict_eq_nat(X,Z).
strict_eq_nat(X,Y) :- ftp_nat(X,H), sen_1h(H,Y).

sen_1h(X,Y) :- var(X), !, sen_r_2v(Y,X).

sen_1h(0,Y) :- !, sen_10(Y).

sen_1h(s(X),Y) :- sen_r_2s(Y,X).
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