
8th Int’l Symp. on Prog. Lang., Implementations, Logics, and Programs (PLILP’96)
Aachen, Germany, Sept. 1996, Springer LNCS Vol. 1140, pages 473-474.

Needed Narrowing in Prolog
(Extended Abstract)

Sergio Antoy
Portland State University

We discuss an implementation ofneeded narrowingdeployed in an extension [4] of the Gödel
compiler [6], which translates G̈odel source code into Prolog source code. Our implementation
is high-level, portable, and similar to, but more efficient than, [5] that in turn is an improvement
of [7].

Needed narrowing [3] is a sound, complete, and optimal strategy for semantic unification in
inductively sequential rewrite systems. Inductive sequentiality [1] amounts to the existence of
a definitional treeT for each operationf , i.e., a set of patterns partially ordered by subsump-
tion with the following properties up to renaming of variables.

– [root property] The minimum element, referred to as theroot, of T is f(X1, . . . , Xn),
whereX1, . . . , Xn are distinct variables.

– [leaves property] The maximal elements, referred to as theleaves, of T are all and only
(variants of) the left hand sides of the rules definingf . Non-maximal elements ofT are
referred to asbranches.

– [parent property] Ifπ is a pattern ofT different from the root, there exists inT a unique
patternπ′ strictly precedingπ such that there exists no other pattern strictly betweenπ
andπ′. π′ is referred to as theparentof π andπ as achild of π′.

– [induction property] All the children of a same parent differ from each other only at the
position of a variable, referred to asinductive, of their parent.

There exist operations with no definitional tree, and operations with more than one definitional
tree, examples are in [1]. The existence of a definitional tree of a functionf is decidable and
simple to decide in most practical situations.

Our implementation of needed narrowing maps each operationf into a family of Prolog pred-
icatesf0, f1, . . . such that iffi(u1, . . . , un, u) succeeds, thenu is a minimal head normal form
of f(u1, . . . , un). Like all modern approaches to the implementation of efficient narrowing,
the predicatesf0, f1, . . . are generated by a traversal of a definitional treeT of f . Clauses
are generated when a each node ofT is visited and depend on whether the node is abranch
or a leaf. The latter case further considers whether the corresponding rule right hand side is

This work has been supported in part by the National Science Foundation under grant CCR-
9406751. Author’s address: Dept. of Computer Science, P.O. Box 751, Portland, OR 97207,an-
toy@cs.pdx.edu .



a variable, a constructor-rooted term, or an operation-rooted term. Finally, half a dozen opti-
mizations, some of which were originally proposed in [5], are applied to the generated code.
A full account of the translation ofT into f0, f1, . . . is in [2].

The semantic unification of termst andu is computed by narrowing the equationt ≈ u to
true, where “≈” is defined by the equality rules of each sort [3]. Since these rules are induc-
tively sequential, we obtain the Prolog predicates defining equality as for any other operation.
We apply to this code a set of optimizations specialized for the relatively simple rules of “≈”.
We use a definition of equality, referred to assemi-strict, that is more general than [5,7], since
throughout our implementation variables are substituted by constructor terms only — a prop-
erty that also holds for G̈odel, whose compiler has been extended with our implementation.

Our implementation differs from [5] in that we adopt a less strict notion of equality, which re-
duces the size of the search space in some cases; we perform more optimizations, which make
better use of the built-in unification; and we take better advantage of mode information, which
avoids the creation of some choice points and the execution of some unnecessary predicate
calls.

We use the five equations proposed in [5, Sect. 7] to benchmark our implementation. The
following table shows the computation time for finding the first solution of an equation as
percent of the time required by Hanus’s code. The comparison with several other implemen-
tations of narrowing in Prolog can be inferred using the benchmarks in [5], where it is shown
that Hanus’s code is the fastest.

Equation E1 E2 E3 E4 E5 Aver.

% time 64 44 68 44 41 50

The benchmark shows that our code is twice as fast as [5]. The amount of memory allocated
by the two methods for computing the first solution of each equation is the same.

References

1. S. Antoy. Definitional trees. InProc. of the 4th Intl. Conf. on Algebraic and Logic programming,
pages 143–157. Springer LNCS 632, 1992.

2. S. Antoy. Needed narrowing in Prolog. Technical report TR 96-2, Portland State University, Portland,
OR, May 1996. Full version of this abstract accessible viahttp://www.cs.pdx.edu/ ˜ antoy .

3. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. InProc. 21st ACM Symposium
on Principles of Programming Languages, pages 268–279, Portland, 1994.

4. B. J. Barry. Needed narrowing as the computational strategy of evaluable functions in an extension
of Gödel. Master’s thesis, Portland State University, June 1996.

5. M. Hanus. Efficient translation of lazy functional logic programs into Prolog. InProc. Fifth Interna-
tional Workshop on Logic Program Synthesis and Transformation, pages 252–266. Springer LNCS
1048, 1995.

6. P. M. Hill and J. W. Lloyd.The G̈odel Programming Language. MIT Press, 1993.
7. R. Loogen, F. J. Ĺopez-Fraguas, and M. Rodrı́guez-Artalejo. A demand driven computation strategy

for lazy narrowing. InPLILP’93, pages 184–200, Tallinn, Estonia, August 1993. Springer LNCS
714.


