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Abstract. The expressive power of functional logic languages supports high-
level specifications as well as efficient implementations of problems inatine s
language. If specifications are executable, they can be used both dpioit
typical implementations and as contracts for checking the reliable exeaftion
implementations intended to satisfy the specification. In this paper, we ggopo
a practical framework to support this general approach to codingdiééiss

the notions of specifications and contracts for functional logic progriagnend
present a tool that supports the development of declarative pragrased on
these notions.

1 Introduction

Functional logic programming languagéd [3,15] support @evdpectrum of program-
ming styles. One can apply logic programming features likkedeterminism and logic
variables to specify the basic knowledge about a problemietritie run-time system
search for appropriate solutions. Or one can use a detestiifunctional) program-
ming style to implement sophisticated and efficient aldonis [22].

The combination of both styles can be leveraged for inckesd@bility: high-level
(“obviously correct”) specifications can be formulated andtional logic programs.
Since these specifications are executable, they can seiméialsprototypical imple-
mentations. Executable specifications are useful to rueraxgnts which may expose
defects and ultimately raise the confidence that a speddicaaptures the intent. If
the direct execution of the specification is too inefficiemtg can choose more efficient
data structures (e.g., balanced search trees insteadsyfdisd/or better algorithms for
production software. In this case, the initial specificatiemains valuable since one
can use it as an oracle to test the implementation on a latge &est datal[8,13] or to
check, via run-time assertions, that the implementatidrabes as intended on particu-
lar executions.

In this paper we show the feasibility of this idea by formagspecifications, con-
tracts, and assertions, by showing some important rebetween them, and by pro-
viding tools to support this approach to program design aveldpment. The concrete
language for our presentation is the multi-paradigm datika language Curry [17].
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We demonstrate that Curry can be used as a wide-spectrumdged5] for software
development. In particular, we have implemented a tool ¢fther transforms a speci-
fication into an executable program or, if the implementatibthe specification is also
provided, into a contract attached to this implementation.

Although we assume familiarity with the general conceptfuattional logic pro-
gramming [3,15], we review in the next section the conceptgial for this paper.
Sectior B8 presents the fundamental notions of our framevildr& corresponding tool
support is sketched in Sectibh 4 together with some examples

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Cufryi [17] extendn-strict functional pro-
gramming languages such as HasKell [23] with logic progrargrfeatures, e.g., non-
determinism and equational constraints. Consequentlyy®@as a Haskell-like syntx
extended by the possible inclusion of free (logic) varialieconditions and right-hand
sides of defining rules. The operational semantics is baseahooptimal evaluation
strategyl[1] which is a conservative extension of lazy fioral programming and (con-
current) logic programming.

Expressiongn Curry programs contaioperationgdefined functions);onstructors
(introduced in data type declarations), aratiables(arguments of operations or free
variables). The goal of a computation is to obtain a valueoofies expression, where
avalueis an expression that does not contain any operation. Natertta functional
logic language expressions might have more than one vakitochondeterministically
defined operations. For instance, Curry containk@ceoperation defined by:

X?_=X

_?y=y
Thus, the expressiord“? 1” has two values0 and1l. If expressions have more than
one value, these values are typically constrained by condiin the rules defining op-
erations according to the program intentrdle has the form ¥ ¢, ...t, | ¢ = ¢”
wherec is aconstraint i.e., an expression of the built-in tyj8eccess. For instance,
the trivial constrainsuccess is a value of type&Success that denotes the always satis-
fiable constraint. Arequational constraing, =: = e, is satisfiable if both sides, and
e, are reducible to unifiable values. Furthermore; iindc, are constraints;; & c; de-
notes their concurrent conjunction (i.e., both constszmé concurrently evaluated) and
c1 & co denotes their sequential conjunction (i®.,is evaluated after the successful
evaluation ofc,).

Nondeterministic expressions could cause a semanticailgaibpbwhen bound to
variables. Consider the operations

coin=07?1
double x = x + x
Standard term rewriting produces, among others, the di&miva

3 Variables and function names usually start with lowercase letters and tiesnaf type and
data constructors start with an uppercase letter. The applicatifriaof is denoted by juxta-
position (“f e”).



double coin — coin+coin - O+coin— O0+1— 1

whose resultis unintended. Therefore, Galez-Moreno et all [14] proposed the rewrit-
ing logic CRWL as a logical foundation for declarative pragraing with non-strict
and nondeterministic operations. This logic specifiesdakktime choicesemantics
[18] where values of the arguments of an operation are datethibefore the operation
is evaluated. In a lazy strategy, this is naturally obtaibgdharing. For instance, the
two occurrences afoi n in the derivation above are shared so thatibl e coi n” has
only the resultso or 2. Since standard term rewriting does not conform to the oeen
call-time choice semantics, other notions of rewritingdnbeen proposed to formalize
this idea, like graph rewriting [11,12] or let rewriting [[L%or our purposes, it is suffi-
cient to use a simple reduction relation that we sketch witlgiving all details (which
can be found in[[19]).

To cover non-strict computations, expressions can alstagothe special symbol
1 to represenundefined or unevaluated values partial valueis a value contain-
ing occurrences of . A partial constructor substitutioiis a substitution that replaces
variables by partial values. gontextC|[-] is an expression with some “hole”. Then the
reduction relation we use throughout this paper is definddlksvs (conditional rules
are not considered for the sake of simplicity):

Clfo(t1)...o(t,)] — Clo(r)] ft1...t, — rprogram rule,
o partial constructor substitution
Cle] — C[4]

The first rule models the call-time choice: if a rule is apglithe actual arguments of
the operation must have been evaluated to partial valuessé&tond rule models non-
strictness by allowing the evaluation of any subexpressi@n undefined value (which
is intended if the value of this subexpression is not demands usual~ denotes
the reflexive and transitive closure of this reduction ielatThe equivalence of this
rewrite relation and CRWL is shown in [19].

Sometimes we usket -expressions to enforce the call-time choice semantics. In
order to avoid the explicit handling dfet -expressions in the reduction relation (as
proposed in[[19]), we considért -expressions as syntactic sugar for auxiliary func-
tions. For instance, the definition

f x =let z=coimx in z+coin

is syntactic sugar for
f x =g (coi nxx)
g z = z+coin
whereg is a fresh name.

In nondeterministic programming, it is sometimes usefutxamine the set of all
the values of some expression. A “set-of-values” operatioplied to an arbitrary ar-
gument might produce results that depend on the degree liagizam of the argument
(see [6] for a detailed discussiorget functionovercome this probleni [2]. For each
defined functioryf, fs denotes the corresponding set functifg encapsulates the non-
determinism off, but excludes the potential nhondeterminism of the argugtent/hich
f is applied. For instance, consider the operatiegOr Pos defined by:

negQ Pos x = -Xx ? X



Then ‘negOr Poss 2" evaluates to the sdt 2,2}, i.e., the nondeterminism originating
from negOr Pos is encapsulated into a set. HowevergOr Poss (1?2) " evaluates

to two different setg- 1,1} and{- 2,2} due to its nondeterministic argument, i.e., the
nondeterminism originating from the argument producefedift sets. The typsetis
abstract, i.e., the implementation is hidden, but thereopezations, e.g., to determine
whether a set is emptysEnpt y, or an element belongs to a set.

3 Specifications and Contracts

Our framework to support the development of reliable detiae programs is based on
the idea of using a single language for specifications, eotgr and implementations.
Specifications differ from programs because they may be etenchinistic and/or re-
fer to existentially quantified quantities. A functionaflo language such as Curry is
appropriate to express specifications because it is namdeistic and it has equation-
solving capabilities.

Using the same language makes specifications and impletiogistaimilar. In fact,
a specification is like any other operation but with a spetdiicso that the specification
is more versatile:

— If there is only a specification but no implementation of armpion, the specifica-
tion can be used as an initial implementation for this opemnat
— If there are both a specification and an implementation ofperation, the specifi-
cation can be used to check the implementation in two diffenays:
Dynamic checking: If the implementation computes some result when the opera-
tion is executed, test whether this result conforms to tleeifipation.
Static checking: If one formally proves that the implementation is correattw.
the specification, run-time checking is not necessary.

We distinguish between a specification and a contract forperation. Aspecifica-
tion describes precisely the intended meaning of an operatiomeler, acontract
describes conditions that must be satisfied by the implestient These conditions
can be weaker than a specification. Contracts have beemlurcied in the context of
imperative and object-oriented programming languagektf2iimprove the quality of
software. Typically, a contract consists of both a pre- apdstcondition. Therecon-
dition is an obligation for the arguments of an operation applcafl hepostcondition
is an obligation for both the arguments of an operation apfibn and the result of the
operation application to those arguments. Intuitivelg #pplication of or call to each
operation must satisfy its precondition, and, if both thecpindition is satisfied and the
operation returns a result, this result must satisfy thégooslition. When a contract is
checked at run-time, the pre- and postcondition are calisértions

Specifications, preconditions, and postconditions arepeddent notions sepa-
rately useful for software development. A preconditiondoroperation states general
restrictions on arguments that must be satisfied in ordepptydhis operation. Hence,
a specification is intended only for inputs satisfying thegandition. Likewise, a post-
condition must only be satisfied for these inputs. In a styptged language, a type
restriction on arguments can be considered a preconditiareneral, one is interested



in preconditions that are more expressive than a traditiypa system. For instance,
a precondition for a factorial function could require thguanent to be non-negative.
A postcondition is some requirement on all the results of peration. It could be a
type restriction, but it could also be much stronger. Fotainse, a postcondition for an
operation to sort a list of values could state that the lep§the output list is identical
to the length of the input list. If a postcondition specifilsaad only the intended re-
sults of an operation, it can be considered a specificatisrw@dwill see later, we can
exploit the logic programming features of our language &cexe a postcondition as a
prototypical implementation by generating result valusss$ying the postcondition.

The following definition fixes the notions discussed so far.the sake of simplicity,
we formally define our notions only for unary operations,thetextension to operations
with several arguments is straightforward and, thus, it lél used in the subsequent
examples.

Definition 1 (Specification, Contract).Let f be an operation of type — /. A spec-
ification for f is an operationf¢P<¢ of typer — 7’. A preconditionfor f is an op-
eration fP¢ of typer — Bool. A postconditionfor f is an operationf??st of type
7 — 7 — Bool. A precondition and postcondition pair is also calledantractfor
the operation. If a precondition is not explicitly definelde tmost general precondition
“fpPre. = True”is assumed.

Similarly to other proposals for assertions or contractfdactional (logic) programs
(e.g., [7.9,18]), we define pre- and postconditions as Bovlalued functions. An ex-
ception is [[4] where constraints are used as conditions lwhias motivated by the
use of postconditions as specifications instead of an unecpiispecification as in this
work.
As an example, consider an operatienr t , to sort a list of integers. The type of

sort is:

sort :: [Int] — [Int]
Since we have no further requirements on arguments (ajpantifs type), our precon-
dition for sort is the constant operatin

sort’pre :: [Int] — Bool

sort’pre _ = True
As an example for a postcondition, we require that the leftie input and output
lists must be equal:

sort’post :: [Int] — [Int] — Bool

sort’ post xs ys =length xs == length ys
However, an unequivocal specification states that thetrefabr t is a permutation in
ascending order of its input:

sort’spec :: [Int] — [Int]

sort’spec xs | sorted ys =ys where ys = permxs
This specification requires the definition of permutationsl aorted lists which are
easily formalized in Curry €=: " denotes the less-than-or-equal-to constraint):

4 Note that in the concrete syntax we use in our tool (see below) we \ripe e instead of
fP"¢ (and similarly for postconditions and specifications).



perm[] =]
perm(x:xs) = ndinsert x (permxs)
where ndi nsert x ys =X:Yys
ndinsert x (y:ys) =y : ndinsert x ys

sorted [] = success

sorted [_] = success

sorted (x:y:ys) = x<=y &sorted (y:ys)
We can use the specificatiar t * spec to sort lists since it is a Curry program and,
as such, executable. Obviously, it is inefficient for langés| so we implement it more
efficiently using the well-known quicksort algorithm:

sort :: [Int] — [Int]

sort [] =]

sort (x:xs) =sort (filter (<x) xs) ++ [x] ++sort (filter (>X) Xxs)
If we apply our tool, DSDCurry, to this program, the speciiiza is transformed into
an additional postcondition and all existing pre- and pmstiitions are attached to the
sor t operation for dynamic assertion checking. The assertibasked during the ex-
ecution of this transformed program reveal an error in oylémentation:

SortC sort [5,1, 26,5, 3]

BERRCR Postcondition of operation ’sort’ violated for:

[51,26/53 — [12375,6]
If we correct the error, by replacing the conditipnx) with (>=x), the transformed
program executes as intended and without error messages.

Before discussing some details of our tool, we have to defiagtecise meaning
of correct implementations and violated assertions. Ineirafive or strict functional
languages, this seems obvious. However, in a functiona lagguage like Curry, op-
erations might have multiple results or reduce to infinitactures (i.e., their evaluation
does not terminate). In order to support contract checkisg ia these situations, we
have to prepare an appropriate setup.

First, we consider the possible violation of contracts. iDbsly, a preconditiorf?™¢
is violated for some expressierif f7"¢ e is reducible tdral se, since we want to avoid
any calls on operations where the argument does not satisfyrecondition. For post-
conditions, the situation is less clear for nondetermimfsinctions. Consider a value
such thatf?" v is reducible tarr ue, f v = vy, f v — va, andfP°s v v; = Tr ue, but
fPost vy > Fal se, i.e., one resulty,, satisfies the postcondition but another result
for the same inputy., does not satisfy the postcondition. In a complete impldmen
tion, all results of an operation could be produced. Thessfare propose the strong
view thatanyresult that a function produces must satisfy the functipo'stcondition.

Definition 2 (Violation). Let f be an operation of type — 7/, f77¢ and f7°* be pre-
and postconditions fof, ande an expression of type. A violation of the precondition
fPre of f ate is a derivation off?" e to Fal se. Aviolation of the postconditiorf?°s!
of f ateis a derivation of

let x =einnot (77 x) || fPt x (f X)
to Fal se, wherex is a fresh variable.

The definition of a postcondition violation considers thetfthat a violation should
be reported only if the precondition holds for the given amgat. Note that the



| et -expression is reasonable for nondeterministic argumsinse the condition
“not (fP"° e) || fP" e (f e)"is different from the one given in the above defi-
nition if e is nondeterministic. For instance, consider

idpost x y = x==y

idx =x

e=07?71
Then'i d’ post e (id e)”reduces to botlTr ue andFal se whereas

let x =einidpost x (id x)
cannot reduce t&al se due to the call-time choice semantics. The intent is that the
postcondition should be satisfied for the same values usibe iprecondition; thus, our
definition captures this demand.

Next we have to define the correctness of an implementatioh agiven specifi-
cation. A simple approach could require that #aduesof the specification are all and
only thevaluesof the implementation. However, this is not reasonable far-strict
languages. For instance, consider

nung spec n = n : nuns spec (n+l)
Sincenuns’ spec does not reduce to a value (its evaluation does not tern)ijretg
other operation (of the same type) that does not reduce tlua weuld be correct w.r.t.
this specification, e.g.:

nuns N =n: nuns n
Obviously, this is not intended. If we put the specification éhe implementation in an
identical context (e.g., by applying &ke 2" to nuns’ spec andnuns), then we might
obtain different results. This motivates the following défon.

Definition 3 (Equivalence, Correctness)Let f1, f> be operations of type — 7'. f;

is equivalento f; iff, for any expressioii; , Fy = viff By = v, wherev is a value and

E, is obtained fromE; by replacing any occurrence gf with f>. An implementation
f is correctw.r.t. a specificationf*P<¢ iff f and f*P¢¢ are equivalent when applied to
expressions satisfyinff .

The correctness of an implementation w.r.t. a specificatiggoses an equality of two
sets of result values. The implementation could producel@evamore or less times
than the specification in the sense that the same expresaidishbstantially” distinct
derivations to the same value. Furthermore, equivalentatipas could differ in con-
texts that do not yield any result. For instance, the evaloaif one operation could
diverge where an equivalent operation might terminate wifhilure or some excep-
tion.

Intuitively, two operations are equivalent if it is impdsis to detect any difference
between them in any application context. If operations dgnaduce values or produce
some values as well as failures, the consideration of arnicgpipin context is important.
For instance, consider the following alternative impletaéion of sorting a list based
on an operatiomdSor t ed that is the identity on sorted lists:

sort’ xs =idSorted (permxs)
where idSorted [] =[]
idSorted [x] =[x]
idSorted (x:y:ys) | x<=y = x : idSorted (y:ys)



Although this implementation only returns values that ameesl lists, it is not correct
w.r.t. the specificatiosor t’ spec. For instance, consider the operatiosrad that re-
turns the first element of the list. Then there is a derivation
head (sort’ [2 3 1]) = head (idSorted [2 3,1])

% head (2 : idSorted [3,1])

52
whereas head (sort’spec [2,3,1])” cannot be reduced te. The implementa-
tionsort’ is incorrect with respect to the specification of sort: if wanvto compute
the minimum of a list by sorting the list and taking the firgraknt, the previous deriva-
tion shows that we obtain an unintended result.

Specifications can be used to verify programs. This is a cexrtpkk that could be
supported by proof systems. In this paper we exploit the gntgpthat specifications
are executable so that we can use them to detect an incoresmitn of the imple-
mentation. For this purpose, we use a specification as aaaiitr an implementation.
Thus, if we detect a violation at run-time, we can deducetti@tmplementation is not
correct. This demands for a postcondition that is generited a specification. In a
naive approach, we could try to define such a postcondition as

fpo.st X y = y c fgpec X
i.e., the postcondition checks whether the actual resitiit the set of all the results
according to the specification. Unfortunately, this simgédinition does not work as
intended due to the following problems:

1. For partially defined operations, this postconditionlddae violated even though
the implementation is correct. For instance, considerithele example
head spec (x: ) =x

head (x: ) =x
Obviously,head is correct w.r.thead’ spec. However, the seftead’ specs []
is empty so that the conditiorhéad [] € head’ specs []” could reduce to

Fal se. Therefore, this condition should be checked only if theuaktesult is a
value and not a failure. However, the implementation ©f fay not require the
evaluation of its left argument when its right argument ispe;ﬁ

2. The membership test requires the decision that two estitie equal. Since in func-
tional logic languages, this test is evaluated by striciditjuon (finite) values, the
test will never be successful for operations deliveringniitdi structures.

The first problem can be handled by the addition of an equigy‘y==y". Since the
equality “==" comparesvalues the test is successful onlyyfis a value. This has the
consequence that postconditions are not checked for éadases. From a conceptual
point of view, it would be better to exclude such cases by @iate preconditions.
Since the test for such an exclusion is undecidable in gengeaadd this sufficient
condition to the postcondition.

The second problem can be handled in part by avoiding the aosgm of complete
results, and comparing only some computed parts, insteadhis purpose, we define
a postcondition that is parametric w.r.t. some observaijmratiory.

5 Although this problem can be avoided by excluding the applicdtemd [] using an appro-
priate precondition, in general it is difficult to avoid failing computations b3cpnditions.



Definition 4. Let f*P¢¢ be a specification of type — 7’ and g an operation of type
7' — 7", Thepostconditionf?>** generated fronf***“ w.r.t. g is defined by
ot xy=letz=gy

g a=g (f7a
in z=z=z && z € g5 X

If we useg = i d (the identity function), the generated postcondition &sechether
a resulty is a value and it is contained in the set of all the results @iiog to the
specification. For instance, consider

f'spec =071

f=120
The generated postconditigﬁ‘a“ requires that each value of the implementatiois
contained in the s€i0, 1}.

If we know that a specification is deterministic, i.e., itigigat most one result for a
given input, then we can provide a simpler postconditioraiitt using an observation
operation and set functions:

fpost X y = y - fspec X
Although this definition does not support the detection ofations for failed compu-
tations (if the evaluation of fails, the evaluation of?°** x y also fails so that it will
never reduce tBal se), it might report violations when computing infinite strupts, if
the equality is checked in a demand-driven manner (e.gexpiessiofi1. . ] ==[ 2. . ]
evaluates tdal se). Hence, this optimized formulation is supported by out.too

The use of a postcondition generated from a specificatiohéclcan implementa-
tion is justified by the following propositions. The first pasition shows that equiva-
lent operations have the same violations.

Proposition 1. Let fP°t be a postcondition fof. If f is equivalent tof’ and there is
a violation of the postconditiorf??st for f at e, then there is also a violation of the
postconditionfr°st for f’ ate.

The next proposition shows that any postconditfgfis! derived from a specification
f®Pec cannot cause any violation whe#°s? is used to check an execution pf*ec,

Proposition 2. If fg‘)s“ is the postcondition generated frofii**“ w.r.t. some operation
g, then there is ne such that there is a violation of the postconditiﬁ_g‘?st for fsrec at
€.

As a consequence, we can use the postcondition generatedffits¢ to detect an
incorrect implementation:

Corollary 1. Let fg"st be the postcondition generated frgfff<c w.r.t. some operation
g. If there is a violation ofﬁ;“t for f ate, thenf is not correct w.r.t.f*rec.

Similarly to testing, the correctness of an implementatiannot be determined by in-
dividual executions of a program. Nevertheless, we carmr infen a satisfied postcon-
dition which is generated fronfi*?¢¢ and an observation operatigrthat the observed
part of the computation is correct w.r.t. the specification:



Proposition 3. Let fg’ost be the postcondition generated froftf<c w.r.t. some opera-

tion g ande an expression such thgt°** e (f ¢) - True. Then there is a value
withg (f e) = sandg (f7°° e) > s.

Now we are ready to put this theoretical framework into a toddupport the develop-
ment of reliable declarative programs.

4 Tool Support

In this section we discuss a tool, DSDCfrpased on the ideas described in the previ-
ous sections. Basically, the tool transforms a Curry modiileontaining specifications,
pre- and/or postconditions for some operations into a nesyC@uoduleM C providing

the same interface, but where some operations are checkatstthe provided spec-
ifications and/or contracts. Providing specifications andbntracts is not mandatory.
However, when they are provided, they are used as followsdarntransformed module:

— If there is a specificatiorf*P¢¢, then a corresponding postcondition is generated
according to Definitiom}4 (if an observation operation is paivided by the pro-
grammer, the identity functiond is used forg). If there is also a user-defined
postcondition, it is combined with the generated postdaoalby conjunction.

— If there is only a specificatiofi*?¢¢ but no implementaticﬂwof operationf is pro-
vided, then an implementation fgris generated by the rulg = fsrec,

— If there is neither a specification nor an implementationgpbstconditionf?ost
for some operatiorf, the postcondition is used as a (weak) specificatiorf fae.,
an initial implementation is generated ffiby the following definition:

fx| frt xy=ywherey free
— If there is a contracy? ¢/ fP°t for some operatiorf, the implementation of is
replaced by
f x| checkPre " f" (fP"¢ x) & checkPost " f" (fP°5t x y)
=y
wherey = f X
o
where “f’ ...” contains the original definition of with every occurrence of re-
placed byf’. Thus, the original interface of any function is preserve®SDCurry.
The auxiliary operationsheckPr e andcheckPost produce an error message if
their second argument evaluatesto se. For instancegheckPr e is defined b
checkPre fnane checkresult =
i f checkresult then success el se
error ("Precondition of operation’"++ nane++"’ violated ")

% The tool together with more examples is available at:
http://www.informatik.uni-kiel.de/~pakcs/dsdcurry/.

7 An operation defined by the rulg“ = unknown” is considered as undefined. Such a vacuous
definition might be necessary jfis referenced in the definition of other operationsgin

8 The actual implementation provides more information, e.g., about therete arguments of
the pre- and postcondition.
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The postcondition checkarheckPost , is similarly defined. Note that the pre- and
postcondition checkers are constraints rather than Boaparations. This is use-
ful for lazy assertion checkin@ [16] since constraints cardncurrently evaluated.

We demonstrate the development of a simple program using@®. Consider the
specificationsor t ' spec and the contractort’ pre/sort’ post for sorting a list as
shown in Sectiofl3. According to Definitieh 4, the specificatand postcondition are
combined into a new postcondition of the form
sort’post x y =sort’post’org Xy &y ==y & Yy € sort’specs x
where sort’ post’org xs ys = length xs ==length ys
wheresort’ post’ or g is the original, user-supplied postcondition. If we do nai-p
vide any implementation of the operatienr t , an implementation is generated from
its specification where contract checking is added:
sort x | checkPre "sort" (sort’pre Xx)
& checkPost "sort" (sort’post X y)
=y
where y = sort’ spec X
In principle, postcondition checking should be superflumuspecifications since any
user-defined postcondition should be a logical consequefitbe specification. Never-
theless, itis included since this entailment is not checkembmpile time by our tool.
This prototypical implementation is not efficient becausddes not exploit any
knowledge about sorting algorithms developed over decaflessearch in computer
science. We improve the efficiency of this implementationablppting one of these
algorithms known astraight selection sortinformally, a list is sorted by selecting its
smallest element, sorting the remaining elements, andnglahe smallest element in
front of the sorted remaining elements. If we know how to aellee smallest element
of a list, the implementation of this sort method is straiigiward by a case distinction
on the form of the input list:
sort [] =1]
sort (X:xs) =mn: sort rest vwhere (mnrest) = mnRest (X:Xxs)
Here, we assume that the essential operation of selectingrtallest element is en-
coded by the operationi nRest that, for a non-empty input list, returns both the
smallest element and the remaining elements. Since fintimgmallest element is a
non-trivial task, we define a contract fer nRest :
mnRest’pre = not . null
m nRest’ post xs (mnrest) = (nmnrest) € perny xs & all (>=nin) xs
The precondition requires that nRest is only applied to non-empty lists. Since there
might be different methods to select a minimal element ahdmehe remaining ones,
we do not put any requirements on the order of the remainegehts in the postcon-
dition, hencg mi n: rest) is some permutation of the input list. This is also the reason
why it would be too restrictive to provide a specificatiombhRest . However, we can
use the postcondition as an initial implementao‘Fhis implementation ofri nRest
has the undesirable consequence of producing many valaeghe minimal element

% In this case, we slightly change the postcondition and replace the Boolegatiop “<” by a
constraint since the equality test implicitly performed lgy suspends on free variablés [17].
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together with all permutations of the remaining elements.cah either restrict this im-
plementation to return only one value and ignore the otfersl{is reason, DSDCurry
has an option to enforce this behavior), or provide a momiméd implementation of
the operatiomri nRest as follows.

A direct implementation ofri nRest could be obtained via two auxiliary opera-
tions, nmi n anddel , that return the minimal element of a list and delete an getue
of an element in a list, respectively:

mnRest (x:xs) =let m=mn x xs
in(m del m(x:xs))
where min x [] =X
mn x (y:ys)
del x (y:ys) =if x==y thenys elsey : del x ys
If we transform this augmented program with DSDCurry, it kgas intended without
any contract violation. We observe that our implementatibni nRest , in the worst
case, performs two traversals of the input list, whereas fidssible to compute the
minimal element and the remaining elements with a singheetsal. To improve the
performance, we re-code nRest as
mnRest (x:xs) =nm X [] xs
where mr mr [] =(mr)
m mr (y:ys) =if m&=y thenmt m(y:r) yselsem y (mr) ys
This implementation is more efficient, but also more congtéd and its correctness is
not as apparent as before. Thus, we apply again our tranafimmtool to integrate the
contract into this implementation and execute the prog@indrease our confidence
in its correctness. Now that we are satisfied with the implaatéon, we could attempt
a formal correctness proof of this implementation. Howgtres is outside the scope of
this paper.

As a further example, consider a program to compute the fefiist, f i bs, of all
the Fibonacci numbers. The specification maps the operdtidn to compute the:-
th Fibonacci number defined by the immediate recursive digfinionto the list of all
naturals:

fibs spec = map fib [0..]
where fibn| n==0 0
| n== 1
| otherwise =fib (n1) +fib (n2)
The application of DSDCurry immediately gives us a correoplementation of
fibs from this specification, e.g., the expressionake 10 fibs” reduces to
[0,1,1,2,3,5,8, 13, 21, 34] . Since each number in the list is computed by applying
operatiorf i b, the implementation is quite inefficient due to the exporaobmplexity
of fi b. Hence, we improve the implementation and construct théridinear time) by
creating the next element by adding the two previous ones:
fibs =fiblist 01 wherefiblist xy =x: fiblist (xty) y
When we executet‘ake 10 fi bs” again after transforming our program with DSD-
Curry, aviolation is reported for the third elementpf the result list. We made a typical
error in iterative definitions by swapping some argumeffitsel correct the program to
fibs =fiblist 01 wherefiblist xy =x: fiblist y (x+y)

if x<sythenmnx ys elsennyys
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and transform and run it again, no more violations are regort

Contract checking in the presence of infinite structuresiireq the lazy evalua-
tion of assertions. Thus, our simple implementation whbesdontract is completely
checked in the condition of an operation would lead to an itefitoop in the trans-
formedfi bs operation. In general, the eager or strict checking of isgsr might
influence the execution behavior of a program. To avoid thiblem, Chitil et al.[[7]

proposedazy assertionsLazy assertions do not evaluate their arguments, but check

them when they become evaluated by the application progféums, as long as ev-
ery assertion is satisfied, program executions with or withazy assertion checking
deliver the same results.

On the other hand, lazy assertion checking might not detauiract violations if
the assertion arguments are not sufficiently evaluated dyrhin program. Thus, it is
debatable whether full assertion checking should be adoiderder to preserve the
behavior of programs [9,16]. Lazy assertions do not modify lhehavior, but a lazily
computed result cannot be trusted as long as some asseasamhbeen checked. As
a compromise between these conflicting goaidprceable assertiorare proposed in
[16]. These assertions behave like lazy assertions, bytdhie also be checked upon
an explicit request of the programmer, e.g., at the end obgram execution or at key
intermediate execution points.

Making the appropriate choice might be dependent on thecgtion or require
some sophisticated program analysis. Therefore, DSDCunpports strict, lazy, and
enforceable assertions by transformation options so thedn be easily adapted to
future insights.

5 Conclusions and Related Work

We have discussed some notions that are essential for a dodblyy intended to de-
velop reliable declarative programs. Specifications aez@abable so that they can be
used as initial prototypes as well as contracts for impldat@ns that might later be
developed. We have shown some relationships between tbdeasithat are the basis
of a transformation tool to support this development. Ouat, tDSDCurry, transforms a
specification into an initial implementation, if an implenmation is not provided, other-
wise it transforms the specification into a contract thatkbldhe results computed by
the implementation. Furthermore, our tool supports varfoums of contract checking,
such as eager, lazy, or enforceable assertions.

In principle, our method and tool support can be seen as apabpo use Curry as
a wide-spectrum language. In contrast to a wide-spectragukage like CIP-L[[5] that
supports the development of correct programs by applying@asse transformation
process to specifications, our approach is more flexibleodschot guarantee correct
implementations, but it allows very efficient implemertat. The correctness is only
checked at each concrete program execution w.r.t. somevaitie® operation.

The use of contracts or assertions to obtain more relialdgrams has been pro-
posed for many programming languages and paradigms. Crfoepssertions in strict
languages, like imperative, logic, or strict functionahd@ages, are easier to handle
than in non-strict languages. For instante| [24] proposessaertion language for (con-
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straint) logic programming that is combined|in[20] with atit verification framework.
[10] considered a strict language with side effects andgsed the evaluation of asser-
tions in parallel to the application program to exploit tlesver of multi-core computers.
In non-strict languages, one has the option between lazartasss [7], which do not
change the meaning of a program (apart from reporting \edlassertions) but might
not report some violations, and strict assertions whichccimfluence the evaluation or-
der. Degen et all [9] discussed the different approaches@me to the conclusion that
there seems to be no way to satisfy both objectives, meamnésgpration and violation
reporting, in a non-strict language.

ESC/Haskell[25] is an approach to add pre- and postcomdito Haskell programs
which are checked at compile time by sophisticated progransformations. Similarly
to our approach, pre- and postconditions are arbitrary &obperations implemented
in the source language. These conditions are considereblased if the evaluation
of an operation might fail due to incompletely defined operat (e.g., applying the
operationhead to the empty list). Such an interpretation of pre- and pauddmns is
too restrictive for functional logic languages where feglsiare used as a programming
technique. Moreover, we distinguish between precise patiobns and (weak) post-
conditions. For instance, [25] considers a sorting alparigs verified if the output is
a sorted list. We consider such a property as a weak postemmavhereas a precise
specification should additionally require that the outmuaipermutation of the input
listin order to exclude non-intended implementations.

An obvious challenge for future work is to provide proof saggfor contracts and
specifications. If it can be shown at compile time that a @uttis always satisfied by
the corresponding implementation, its run-time checkiagloe omitted. This improves
the efficiency of reliable software and reduces the needstahe developed software
with large sets of test datal[8/13]. Furthermore, a statiofguarantees the correctness
of the implementation for all inputs rather than for partéziexecutions.
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