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Abstract

Narrowing is a computation implemented by some declarative programming languages. Research
in the last decade has produced significant results on the theory and foundation of narrowing, but
little is published on the use of narrowing in programming. This paper introduces narrowing from
a programmer viewpoint; shows, by means of examples, when, why and how to use narrowing
in a program; and discusses the impact of narrowing on software development activities such as
design and maintenance. The examples are coded in the programming language Curry, which
provides narrowing as a first class feature.
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1. Introduction

Narrowing is a programming feature found in some modern high-level declarative lan-
guages such as Curry (Hanus et al., 1995; Hanus , ed.) and T OY (Caballero and Sánchez,
2007; López-Fraguas and Sánchez-Hernández, 1999). These languages are often referred
to as functional logic because they include both functions, as in the functional languages
Haskell (Peyton Jones and Hughes, 1999) and ML (Milner et al., 1997), and logic vari-
ables, as in the logic language Prolog (ISO, 1995). Narrowing is the glue that allows the
seamless integration of these features in a single computation paradigm by enabling the
functional-like evaluation of expressions containing uninstantiated logic variables.

There exist also functional logic programming languages, such as Life (Aı̈t-Kaci, 1990)
and Escher (Lloyd, 1999), that do not provide narrowing, but use residuation for the same
purpose. Narrowing and residuation are not in conflict and an elegant model (Hanus,
1997) let them coexist. A survey of functional logic languages, which includes a discussion
on both narrowing and residuation, is in (Hanus, 1994), see (Hanus, 2007) for a more
recent version.

Narrowing is more than a programming language feature. Originally introduced for
theorem proving (Fay, 1979; Hullot, 1980) narrowing is nowadays applied in a variety of
other areas, e.g., both partial evaluation (Albert et al., 2002; Alpuente et al., 1996, 1998,
2005b) and testing of programs (Christiansen and Fischer, 2008; Fischer and Kuchen,
2007, 2008), type-level inference (Sheard, 2007) and verification of cryptographic proto-
cols (Meseguer and Thati, 2007).

The investigation of narrowing for programming goes back to (Dershowitz and Plaisted,
1988; Reddy, 1985). To our knowledge, (Reddy, 1985) is the first paper that identifies
the potential of narrowing as a feature for programming. Early programming languages
that offered narrowing to the programmer include K-Leaf (Giovannetti et al., 1991) and
Babel (Moreno-Navarro and Rodŕıguez-Artalejo, 1992). Since then, significant theoret-
ical results have been discovered. Nowadays, essential properties of narrowing such as
soundness and completeness are known for several practical classes of programs, see (An-
toy, 2005) for a survey, and optimal evaluation strategies have been discovered for some
of these classes (Antoy, 1997; Antoy et al., 2000; Echahed and Janodet, 1997). Various
active research efforts aim at efficient implementations (Antoy and Hanus, 2000; Antoy
et al., 2001; Lux, 1999; Tolmach et al., 2004). The Curry homepage (Hanus , ed.) links
all the current implementations of narrowing-based modern functional logic languages.
For logic computations, the efficiency of narrowing is competitive with that of resolution
(Robinson, 1965). For functional computations, there exist narrowing interpreters with
a “pay-per-view” policy (Antoy et al., 2001)—if narrowing is not executed, i.e., the com-
putation is functional, the efficiency of the narrowing interpreter is comparable to that
of a functional interpreter. Despite these theoretical and practical successes, the poten-
tial of narrowing for programming remains underutilized and possibly poorly understood
except for the specialist. One reason of this state of affairs is that narrowing is still a
relatively young event in the programming languages landscape. Most publications on
narrowing have emphasized its theory and foundations, while the discussion on its use in
programming has lagged behind. This paper aims to correct this unbalance.

Narrowing is a computation best known for solving sets of equations possibly involving
user-defined abstract data types. This remarkable property is used to great advantage for
a variety of purposes as mentioned earlier. However, this property can also be inappropri-
ately used, although this is not an intrinsic flaw of narrowing. For example, an essential
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step to decrypt an encrypted message is finding two prime factors of a large integer. This
problem can be expressed by a small set of simple equations which in principle could be
solved by narrowing. It would be foolish, though, to expect that narrowing is a viable
approach to break a cipher. A while loop that looks for the prime factors of a number by
trial and error would be more efficient—and equally useless for a good cipher. Dismissing
narrowing as a programming language feature because it fails in situations of this kind
is analogous to dismissing the while statement of imperative programming languages
because it equally fails in the same situations and/or may lead to non-termination.

This paper presents narrowing from the programmer viewpoint. The presentation fo-
cuses on the use of narrowing. The emphasis is not on semantics or theoretical aspects,
which abound in the literature, but on explaining narrowing to the non-specialist, pre-
senting situations in which the use of narrowing is appropriate, and highlighting the
advantages of its use. The methodology is inspired by Wirth (1971) in that “the creative
activity of programming—to be distinguished from coding—is usually taught by exam-
ples serving to exhibit certain techniques.” Section 2 informally presents narrowing and
summarizes the key results that ensure its most important properties. Section 3 outlines
the programming language used for the examples and explains how narrowing is sup-
ported by the language and interacts with other programming features. Section 4 shows
through examples the use of narrowing in programs. First we explain motivations and
design, then we present executable code and finally we discuss differences with respect
to alternative designs that do not use narrowing. Section 5 highlights some character-
istics of a problem that suggest that using narrowing in the problem’s solution may be
convenient for the programmer. Section 6 offers the conclusion. An appendix gives a for-
mal definition of narrowing and discusses some related notions such as correctness and
strategies.

2. Narrowing

This section introduces narrowing from a programming viewpoint. The discussion is
informal and often relies on intuition. A formal definition of narrowing and other related
concepts introduced here is presented in the Appendix. We hope that the conceptual
simplicity of the examples and the elegance and economy of their code will motivate the
reader to undertake the effort required to digest the formal definition. We believe that
a formal definition of narrowing is useful, but not essential for many programmers. By
analogy, knowledge of axiomatic or denotational semantics would be useful, but generally
not required, to programmers in an imperative language.

Rewriting is a special case of narrowing and, therefore, it is a good starting point
for introducing the concept. Rewriting (Baader and Nipkow, 1998; Bezem et al., 2003;
Dershowitz and Jouannaud, 1990; Echahed and Janodet, 1997; Klop, 1992; Plump, 1999;
Sleep et al., 1993) is a computation defined by rules that describe how to transform
expressions, also called terms or term graphs in this context. Without much stretching,
the table for multiplying single-digit integers, which children learn in second grade, is a
familiar example of rewriting. For example, 2× 2 rewrites to 4. Obviously, the meaning
drives the rules for rewriting, but the rules themselves are just syntax. They would
stand without meaning, too. Rewriting is a viable tool for both describing and executing
computations in both practical and theoretical situations, e.g., from chemical reactions
to games to group theory.
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The “things” being rewritten are expressions such as 2 × 2 of the previous example.
The infix operators found in expressions have an explicit or implied precedence and asso-
ciativity which generally will be left to the intuition. Expressions are rewritten according
to rewrite rules. A rewrite rule is therefore a pair of expressions denoted with an arrow
in between, e.g.:

2× 2 → 4 (1)

The multiplication table that children learn in elementary school consists of about 100
rules of this kind. A set of rewrite rules is a rewrite system.

For situations in which there exists an infinite number of expressions to rewrite, the
rules contain variables. Variables must be distinguished from other symbols. Since the
attention is on variables, we follow the syntax of the Prolog programming language (ISO,
1995). Identifiers that denote variables begin with an upper case letter. An alternative
would be to explicitly state which identifiers denote variables, but the Prolog convention
is more readable. Variables that occur only once in a rule are simply place-holders and
do not need a name. They are called anonymous and are identified by an underscore.
This too is only a convention intended to improve readability. Semantically, a variable
stands for any expression, or any expression of the appropriate type, if one considers
well-typed expressions only. For example, the following rewrite system defines common
computations on stacks:

top(push(E,−)) → E

pop(push(−, S)) → S
(2)

To show a practical rewrite with the above system, a notation for an empty stack, say
empty, is needed, too. To rewrite an expression t, one has to match t with the left-hand
side l of a rule. Matching is the process of finding what each variable in l stands for
to make l equal to t. The value of a set of variables is called a substitution. For exam-
ple, top(push(1, pop(push(2, empty)))) matches the left-hand side of the first rule, i.e.,
top(push(E,−)). The substitution is 1 for E and pop(push(2, empty)) for the anonymous
variable. Thus,

top(push(1, pop(push(2, empty)))) → 1 (3)

The result of this rewrite step, 1, is obtained by applying the matching substitution to
the right-hand side of the rule, in this case E. Obviously, an infinite number of stacks
match the rule’s left-hand side and, hence, are rewritten by this rule. Alternatively:

top(push(1, pop(push(2, empty)))) → top(push(1, empty)) → 1 (4)

Although this rewrite sequence is longer than (3), the extra step does not affect the
final result. This independence of the order of evaluation does not hold for every rewrite
system.

The symbols pop, top, push and empty are not all alike. The symbols push and empty
construct stack instances. They are called (data) constructors and do not prompt any
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rewrite. They are like the numbers 2 and 4 in the initial example. In contrast, pop and top
operate on stack instances. They are called defined operations because they are defined by
rules, namely (2). They are like the multiplication symbol in the initial example. A rule
defining an operation shows how to rewrite an expression where the operation is applied
to arguments made up of constructors and variables only, as in (1) and (2). This property
is referred to as the constructor discipline (O’Donnell, 1977, 1985). Rewrite systems with
this discipline model computations in a natural way. Expressions containing constructors
only abstract data and evaluate to themselves. In other words they are literal values.
Expressions containing operations abstract computations that are executed by rewriting.

Narrowing comes into play when an expression to evaluate contains variables. A typical
reason for computing with variables is lack of knowledge. If some value of an expression is
not known, a variable takes its place. Thus, F ×2 is a product where only the right factor
is known and push(1, S) is a stack where only the top element is known. Variables in rules
differ from variables in expressions. As we said earlier, a variable in a rule stands for any
value, whereas a variable in an expression to evaluate stands for some value. Often the
value of the variable must become known to evaluate the expression in which the variable
appears. Thus, the next issue to explore is how to rewrite, or evaluate, expressions that
might contain variables. This is narrowing.

If an expression t contains variables, narrowing first guesses some substitution for some
variables, then replaces these variables with their guessed values in the context of t, and
finally rewrites the instantiation of t as usual. The instantiation by narrowing is pretty
much uninformed, but utilitarian in the sense that only instantiations that promote
rewrites are made. An instantiation of an expression t is found by unifying t with the
left-hand side l of a rule. The unification is the process of finding what each variable in
t and l stands for to make the two expressions equal. Loosely speaking, the expression
matches the left-hand side and the left-hand side matches the expression simultaneously.
If it is possible to unify t and l, any substitution unifying them is called a unifier. Thus,
narrowing and rewriting behave identically on expressions containing no variable.

For example, consider again the rewrite system defining the rules for multiplying two
single-digit integers. The expression F × 2 could be narrowed by instantiating, e.g., F
to 2 and rewriting 2 × 2 to 4. Any other digit would be an equally viable guess for F .
However, 25 is not an acceptable guess because we assume only rules for multiplying
digits; there is no rule in the system saying how to rewrite 25 × 2. Narrowing is a goal
oriented activity similar to programming. Narrowing F ×2 in isolation makes little sense
except, perhaps, to generate a trivial example. During the execution of a meaningful
program, an expression such as F × 2 would be narrowed in some meaningful context for
some meaningful purpose. This is the subject of Section 4.

A rewrite system specifies what are the steps, but not when and where to perform
them. The latter is the task of a strategy. A strategy determines which subexpression, if
any, of an expression should be evaluated and which variables, if any, of this subexpres-
sion should be instantiated. Strategies are highly technical and somewhat complicated.
Thus, a good language should shield the programmer from certain details of a strategy.
For example, Curry, which we will use for the code examples, stipulates that its imple-
mentations should provide all the values, in some arbitrary order, of an expression. This
property is called completeness. Some implementations of Curry, e.g., (Antoy et al., 2005;
Brassel and Huch, 2007) are complete, whereas others, e.g., (Hanus , et al.; Lux, 1999),
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for the sake of efficiency, provide only an approximation of the completeness. The com-
pleteness of an implementation effectively relieves the programmer from many concerns
about the strategy. The mode in which all the values of an expression are presented to
the user is implementation dependent. In typical interpreters, after a value is printed,
the user is given the option to print another value or to end the computation.

The narrowing space of an expression t is the set of all the expressions obtained in
zero or more narrowing steps from t. This space obviously depends on the strategy. For
narrowing there exist viable strategies for various classes of rewrite systems well-suited
for programming (Antoy, 2005). Loosely speaking, these strategies perform the minimum
amount of work necessary to solve a problem, e.g., (Antoy, 1997; Antoy et al., 2000),
i.e., they waste neither rewrites nor instantiations for successful (terminating in a value)
computations. Unfortunately, it may be impossible to predict whether a computation will
be successful, but this is a problem of computing, not a specific problem of narrowing.
For many problems, a programmer should have some understanding of the narrowing
space and in particular, of the order in which its elements are produced, e.g., depth-first
or breadth-first, to predict the behavior of a program execution.

The extent to which narrowing is capable of computing is better described in terms
of equations, which are a special case of expressions. As usual, an equation is a pair
t = u where t and u are expressions as well. The problem with an equation is to find
instantiations for the variables occurring in t and/or u such that the instantiated sides
of the equation have the same value. This is called solving the equation. In systems
with the constructor discipline, an equation is considered solved only when its sides
are rewritten to the same datum, i.e., an expression made up of constructors only. For
example, F × 2 = 4 is solved if and only if F is instantiated to 2 and the left side is
rewritten to 4. On the same account, pop(empty) = S has no solutions. Obviously, if S
is instantiated to pop(empty) the sides of the equation are equal, but they cannot be
rewritten to a datum, since the expression pop(empty) is not a stack. This is analogous
to the fact that the equation 1/0 = N has no solutions because the expression 1/0 is not
a number. This notion of equality is called strict .2

Within the boundaries of the previous paragraph, narrowing offers a sound and com-
plete procedure to solve equations. These equations can involve user-defined abstract
data types such as the stack of a previous example. Soundness means that any instanti-
ation of the variables of an equation computed while narrowing the sides of the equation
to a same datum is a solution of the equation. Completeness means that if an equation
has a solution, narrowing will find that solution, or a more general one, while narrowing
the sides of the equation to a same datum.

An equation may have no solution or several solutions. If an equation has no solution,
narrowing may be able to determine this fact or may run forever in a futile attempt to find
a solution. Again, this is not a specific problem of narrowing, since both the existence of
a solution of an equation and the termination of a computation are unsolvable problems.
If an equation has several solutions, these solutions are found in some arbitrary order. Of
course, only a complete strategy guarantees to produce all the solutions. Since narrowing

2 Unfortunately, the word “strict” has also a another meaning in programming languages. A procedure

is strict if, operationally, it evaluates all its arguments whether or not the values of these arguments are
necessary for the execution of the procedure. In our context, operations, including the equality, are not
strict in this sense.
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guesses instantiations of variables, some guesses are likely to be wrong. The following
example shows that this is not a significant problem.

The symbols nil and cons are the traditional constructors of the type list. Lists are
equal to stacks as data structures. As types, they differ in the set of operations that
manipulate the underlying structures. E.g., a very common operation on lists, absent for
stacks, is append. The operation append, which concatenates two lists, is defined by the
rules:

append(nil, Z) → Z

append(cons(X,Y ), Z) → cons(X, append(Y,Z))
(5)

Let l be a list. Suppose that l is not nil and the problem is to compute the last element
of l. Instead of defining a new operation for this computation, we solve, by narrowing,
the following equation:

append(X, cons(E, nil)) ≈ l (6)

and the instantiation of E gives us the desired value.
The symbol “≈”, called equality, is defined by ordinary rewrite rules, which enable

us to perform the entire computation within the realm of narrowing. Since the equality
is defined for a variety of types, i.e., the symbol “≈” is overloaded, it is convenient to
present its definition using meta-rules. In (7) below, the meta-symbol c is a constructor
of arity 0 in the first rule and arity n > 0 in the second rule, “&” is a right-associative
infix symbol.

c ≈ c → true

c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → (X1 ≈ Y1) & · · · & (Xn ≈ Yn)

true & true → true

(7)

Implementations typically provide the equality as a primitive or builtin function because
it operates on primitive or builtin types. E.g., it would be impossible to explicitly define
the first rule above for each integer. Furthermore, implementations typically optimize
this rule by unifying the two sides when one is a variable and the other is a value. This
ad hoc behavior is observable only when both sides are variables and produces more
compact solutions in this case. The examples discussed in this paper are unaffected by
this behavior.

The equality defined in (7), called constrained equality, is a restricted case of the more
general equality, called Boolean equality, that compares two expressions and returns either
true or false. Evaluating an equation to false does not solve it. Hence the constrained
equality returns true if and only if the equation has a solution, and it fails (no value is
returned) otherwise. With the equality rules of (7), a solution of an equation is simply
obtained by evaluating the equation, i.e., by narrowing it to true. The evaluation by
narrowing of (6) instantiates X to some uninteresting value and E to the last element of
the list which is exactly what we want.
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Suppose, e.g., that in (6) l is cons(1,cons(2,nil)). We show the evaluation of ap-
pend(X,cons(E,nil)) ≈ l. From the rules of append, the only guesses for X are nil and
cons(X1,X2), where X1 and X2 are new variables. The first guess leads to the equa-
tion cons(E,nil) ≈ cons(1,cons(2,nil)). Using the equality rules this reduces to E ≈ 1
& nil ≈ cons(2,nil). Further applications of the equality rules instantiate E to 1 and
reduce the whole expression to nil ≈ cons(2,nil). No equality rule is applicable to this
equation. The equation cannot be narrowed to true and consequently solved. Thus, the
first guess for X is wrong. The second guess leads to cons(X1,append(X2,cons(E,nil)))
≈ cons(1,cons(2,nil)). Using the equality rules, X1 is instantiated to 1 and the equation
reduces to append(X2,cons(E,nil)) ≈ cons(2,nil). As before, the only guesses for X2 are
nil and cons(X3,X4). The first guess leads to cons(E,nil) ≈ cons(2,nil). Using the equal-
ity rules this reduces to E ≈ 2 & nil ≈ nil. Further applications of the equality rules
instantiate E to 2 and reduce the whole expression to true. This solves the equation.
The second guess for X2 leads to an equation that cannot be narrowed to true, i.e., has
no solutions.3

Instead of solving an equation, one could define a specific (recursive) operation for
computing the last element of a list. However, the above computation can be executed
rather efficiently despite some (expected) wrong guesses. The next section presents a
programming language in which the code of a viable operation for computing the last
element of a list is based on equation (6).

3. Curry

The programming language used for the examples is Curry (Hanus , ed.). For the most
part, a Curry program can be seen as a rewrite system with the constructor discipline.
Programs are well typed, which means that operations are applied to meaningful values,
e.g., the usual addition is not performed on stacks or, vice versa, pop is not applied to a
number. A type and its constructors are introduced by a data declaration. For example,
the type stack discussed in the previous section is defined by:

data Stack e = Empty | Push e (Stack e) (8)

The identifier e is a type variable, i.e., it stands for any type. In Curry, constructors start
with an upper case letter and variables are in lower case. This convention is opposite to
that made in the previous section. The reason is that here the attention is on data
constructors because of the role they play in pattern-matching, thus we follow the syntax
of Haskell (Peyton Jones and Hughes, 1999). We hope that following well-established,
time-proved conventions is preferable, even if it may appear inconsistent at a first glance.

The operations pop and top are defined as in (2), but in many declarative languages,
including Curry, the application of symbols is typically curried, i.e., denoted by juxta-
position. Currying supports partial application, i.e., a symbol of arity n is applied to m
arguments with m < n. Partial application is necessary for higher-order functions, i.e.,
functions that take other functions as arguments. One of our examples (44) relies on this
feature.

3 All the solutions of this equation are finitely determined, but in general it is undecidable whether an
equation has a solution whether or not the computation is by narrowing.
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top (Push e -) = e

pop (Push - s) = s
(9)

The computation of top (Push 1 (pop (Push 2 Empty))) is performed as in (3) rather
than in (4) because Curry’s evaluation strategy is lazy. Roughly speaking, an expression
is evaluated only if the expression’s value is needed to obtains the final result and (4)
evaluates pop (Push 2 Empty) which is not needed in this sense. By contrast, an eager
strategy would evaluate all the arguments of a function application before applying the
function itself. The evaluation strategy is a design decision of the language. Narrowing
is defined independently of the evaluation strategy. The strategy only determines where
and when to apply a step.

Curry is a functional logic language. Similar to a modern functional language, it de-
clares algebraic types by means of data declarations as in (8), and it defines operations
on these types by means of defining rules as in (9). However, functional expressions
may contain uninstantiated logic variables—examples will be proposed soon—and here
is where narrowing comes into play.

If an expression cannot be evaluated (rewritten) because it contains an uninstantiated
variable, the variable may be instantiated to enable a rewrite step. For example, the
evaluation of (top x), where x is an uninstantiated variable, instantiates x to (Push e

s), where e and s are new, fresh variables. Operations that are authorized to narrow their
arguments, such as top, are called flexible. In some cases, some expressions should not
be narrowed. Operations that are not authorized to narrow their arguments are called
rigid. In Curry, whether or not to narrow an expression f(t1, . . . , tn) is a compile-time
decision that depends only on f . By default, operations are flexible with a few exceptions.
Some I/O actions are rigid because, e.g., it would make no sense to guess the value of
an uninstantiated variable for printing. Arithmetic operations on numbers are rigid as
well in most implementations because of the very large number of potential guesses,
though the Kics implementation (Brassel and Huch, 2007) of Curry provides a different
approach (Braßel et al., 2008).

Basic types, including integral and floating point numbers, Booleans, characters, and
tuples are built-in. Ubiquitous types are represented in familiar notations, e.g., "Hello
world" is a string and [], [0,1,2,3] and (x:y) are lists, the latter with head x and tail
y. Rewrite rules in Curry may be overlapping, conditional, and contain extra variables.
They need not be left-linear. Finally, an operation may have an optional default rule.

Below, we explain these terms.
Left-linear means that each variable in the left-hand side of a rule occurs only once. By

contrast to other languages in which functions are defined by rules, Curry allows multiple
occurrences of the same variable in the left side of a rule. For example, the following rule
is acceptable:

member x (x:-) = True (10)

Informally, the meaning of the above rule is the combination of the following rule:

member x (y:-) = True (11)

with the constrain that x = y. How to encode this constrain is shown in (14) below. In
programs with the constructor discipline and strict equality, the semantics of non-left-
linear rules is reduced to that of other left-linear rules (Antoy, 2001).
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Overlapping means that more than one rule may rewrite the same expression. This is
useful to code non-determinism in programs. For example, the following rules define the
insertion of an element into a list at an unspecified position:

insert x y = x:y

insert x (y:ys) = y:insert x ys
(12)

Let exp be insert 0 [1,2]. The evaluation of exp non-deterministically yields any of three
results: [0,1,2], [1,0,2] or [1,2,0]. The programmer cannot control which result is
produced. A non-deterministic operation is generally used in either of two ways. (a) A
value produced by a non-deterministic operation is constrained for some specific purpose
and the non-determinism may eventually disappear. Many of our examples follow this
use. (b) All the values produced by a non-deterministic operation are lazily computed and
processed together. This is accomplished with set functions (Antoy and Hanus, 2009).
Any operation f implicitly defines an operation, denoted by fS , called set function of
f that for any argument value(s) computes a set whose members are all and only the
values computed by f on the same argument value(s). For example, insertS 0 [1,2]

produces {[0,1,2],[1,0,2],[1,2,0]}. Set functions are automatically generated by a
compiler or interpreter rather than being coded by a programmer. Obviously, the set
function of an operation f is interesting only when f is non-deterministic.

Non-determinism and non-right-linear rewrite rules, such as the rule of double defined
below (González Moreno et al., 1999), have a non-obvious interaction. For example,
consider:

coin = 0

coin = 1

double x = x + x

(13)

The two occurrences of variable x in the right-hand side of the rule of double stand
for the same expression. This convention is referred to as the call-time choice semantics
(Hussmann, 1992) or, more simply, as sharing. Sharing implies that the right and left
operands of “+” in any expression produced by an application of the rule of double are
one and the same. Therefore, double coin has the values, 0 and 2, originating from
the two values, 0 and 1 respectively, of coin. Sharing is nicely captured by considering
expressions as graphs (Echahed, 2008; Echahed and Janodet, 1997; Plump, 1999; Sleep
et al., 1993), in particular see (Echahed and Janodet, 1997, Def. 2, cond. 5), or by
specialized narrowing calculi (González Moreno et al., 1999). Sharing the variables of
non-right-linear rules is a necessary condition to ensure that the result of a computation
does not depend on the order of evaluation, see (Antoy and Hanus, 2009) for details.

Conditional means that a rule has a conditional part in addition to the left and right
sides. The conditional part is a constrain, e.g., an equation. A conditional rule is applied
to an expression if and only if, the expression unifies with the rule left-hand side and
the instantiated expression satisfies the condition. For example, the following operation
captures what may have been the intent of the programmer of (10):

member x (y:ys) | x==y = True

| otherwise = member x ys
(14)

where otherwise is a reserved word denoting the value True. For programs following the
constructor discipline, conditional rules can be transformed into ordinary rules without
changing the meaning of a program (Antoy, 2001).
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Extra variables are variables that occur in the right side and/or the condition of a rule,

but not in the left side. For example, the following operation computes the last element

of a list, as described in the previous section:

last l | p++[e]=:=l = e where p,e free (15)

The extra variables, declared by a free clause in a where block, are p and e. The

declaration, required by the syntax of Curry, is provided only for checkable redundancy,

similar to the type declaration of an operation. These variables are not bound when an

expression is matched to the rule’s left side. The operation “++” denotes the concatenation

of lists. The condition of operation last is evaluated by narrowing. The variables p and

e are instantiated, if possible, to satisfy the condition.

The definition of last in (15) can be simplified using a functional pattern as follows:

last (− ++ [e]) = e (16)

The latter is simpler, lazier and more efficient. A functional pattern extends ordinary

patterns by allowing occurrences of defined operations such as “++” in this example.

Interestingly for our discussion, the semantics of functional patterns (Antoy and Hanus,

2005) is based on narrowing, but the use of narrowing for this purpose goes beyond the

scope of this paper.

Default rule: The textual order of the rules defining a function is irrelevant. This

is sensible for a declarative semantics of the conjunction of overlapping rules and non-

determinism. Curry allows for each function f an optional rule, called the default rule of

f (Antoy and Hanus, 2017), that is applied to an expression e only if no other rule of f

can be applied to e. A rule cannot be applied if either the rule’s left-hand side does not

unify with e or if, after unification, the condition of the rule is not satisfied. For a simple

example without conditions, consider the definition of the familiar operation zip:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip’default = []
(17)

Thus, the default rule of zip is applied when an argument is an empty list.

To complete this terse explanation, the constrained conjunction “&” evaluates its ar-

guments concurrently in accordance with (7). This concurrent evaluation supports resid-

uation. If during a computation, one operand of & residuates on a variable X, the compu-

tation continues with the evaluation of the other operand in hope that it will instantiate

X so that the evaluation of the residuating operand could resume.

Curry has a variety of other syntactic and semantics features that make it a powerful

general-purpose programming language. For a complete description see (Hanus , ed.).

Below we mention only a few additional features that may help understanding the ex-

amples. Curry allows the compile-time definition of infix binary operators, such as “++”

in (15), with user-defined precedence and associativity. Curry supports list comprehen-

sions. Curry allows higher-order functions, but without higher-order narrowing.4 Curry

implements input/output declaratively using the monadic style.

4 Higher-order narrowing refers to computations in which a narrowing step narrows a variable whose
type is a function.
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4. Programming

This section focuses on the use of narrowing in programs. We present five problems.
A problem consists of abstractions represented by numbers, character strings, lists, etc.,
that we call elements of the problem. To solve a problem, we need to compute the values
of these elements. To compute these values, we capture some relationships between the
elements into sets of equations. Narrowing computes these values by solving the equa-
tions. For the programmer, this will turn out to be simpler than designing an algorithm
to compute the same values.

In discussing the specification of a problem we present an equation as a pair of ex-
pressions with the usual symbol “=” (math font) between them. When an equation is
translated into Curry, the symbol “=” of an equation is translated into the equality
symbol “==” defined in the previous section. We recall that in Curry, the symbol “=”
(teletype font) is a syntactic separator that occurs in data declarations and rewrite rules.

The first two problems solve equations involving linear data structures. The first
problem is very simple and makes a good introduction. The third and fourth prob-
lems present examples where narrowing solves equations involving symbolic arithmetic
expressions represented by tree-like data structures. All the above problems have, in
general, non-deterministic solutions. The fifth problem has a deterministic solution, yet
narrowing contributes to a conceptually simple and elegant design. The code of all the
examples has been compiled and executed using Pakcs (Hanus , et al.), a mainstream
compiler/interpreter of Curry. Some consequences of using narrowing in the design and
code of a program will be discussed later.

4.1. A Simple Example

The following problem (Problem E) is from the 2000 ACM Pacific NW Region
Programming Contest (ACM, 2000). An age-old encryption technique “hides” a mes-
sage m into a string of text t by embedding one character of m every n characters of t.
For example, the message “Hello World” is hidden in “aHaealalaoa aWaoaralad” with
embedding 2. The problem is to find n given m and t.5

To code this problem into a program that uses narrowing, it is convenient to capture
the relation between the elements of the problem, i.e., m, t, and n, as a system of
equations. The condition that m and t are given and n is unknown is largely irrelevant.
For the beginner, it might be easier to imagine that all the elements of the problem are
alike and that the equations only “state” the relation between these elements.

Suppose that m is not empty and that c denotes the first character of m. The immedi-
ate condition between c and t is that c should be the n-th character of t. This condition
leads to the following system of equations, where append and cons were defined in (5)
and length computes the length of its argument:







t = append(x, cons(c, ts))

length(x) + 1 = n
(18)

5 The solution is non-deterministic. For example, “xy” is hidden in “xyxzzy” with embeddings 1 and
3. The formulation of the problem, which we borrowed from an ACM Contest, seems to ignore this
possibility, though.
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In these equations, x represents the first n− 1 characters of t and ts the characters of t
past the first n.

Lists and other “linear” data types have an intuitive graphical or diagrammatic rep-
resentation. This representation might help formulating the relation between the various
elements of a problem. For the problem under discussion, a diagram equivalent to (18) is
shown below. Often, it is easier to sketch the diagram before formulating the equations.

.

.

m c cs

t x c ts
︸ ︷︷ ︸

n

(19)

Equations (18) consider the first character of m only. Thus, in a program, it is natural to
give a name to these equations and invoke them recursively for each following character
of the message. This is shown in the first rule of (20). The only remaining concern to
obtain a program is to terminate the recursion. If m is an empty string, then it is hidden
in every t and it does not define n. This is shown in the second rule of (20). The following
program fragment implements the problem:

hide (c:cs) (x++c:ts) n | length x+1 == n = hide cs ts n

hide [] - - = True
(20)

There are a couple of further remarks on the translation of (18) into (20). Operation hide

should be initially invoked with the first argument different from empty. If the message
is initially empty, it does not constrain the embedding. The program correctly reflects
this condition. If n is an uninstantiated variable, it correctly remains uninstantiated. If
the message is not empty and the embedding n is an uninstantiated variable—as per the
problem’s original formulation—then n is instantiated by the first invocation of hide.
After that, n remains constant through the recursive invocations.

The integer addition operation, “+”, is rigid in Curry, though some implementations
(Brassel and Huch, 2007) make it flexible. Ideally, all the operations invoked for the
satisfaction of a constraint should be flexible to ensure the completeness of the execution.
In this case, the execution of (20) is complete because the first equation instantiates x
to a list, thus length x+1 is an integer and if n is free, it is instantiated to this integer.

We discuss narrowing-free solutions of all the problems presented in this paper. A
“narrowing-free solution” is a program, coded in the same language and for solving the
same problem, which computes the result without executing narrowing steps.

How can we code this problem without narrowing? We implement the same overall
algorithm: check whether the first character of the message is the n-th character of the
text and recur. The new version of hide, which we denote with hide’, has the same
arguments and return type. Without narrowing, there are no uninstantiated variables
in the program and no functional patterns. In particular, hide’ is repeatedly called for
every potential embedding n. The returned value reports whether, for a specific n, the
message is indeed embedded in the text. The program uses the list index operation “!!”
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to extract the n-th character of the text and the drop operation to compute the suffix of
the text passed to the recursive call.

-- invoke hide’ m t x

-- for x in [0 .. length t ‘div‘ length m]

hide’ (c:cs) t n = if t !! (n-1) == c

then hide’ cs (drop n t) n

else False

hide’ [] = True

(21)

The narrowing-free version of the program is not much different from the narrowing-based
version, but the operation hide’ contains more details than a direct implementation of
(19). In fact, our first attempt was incorrect because we had forgotten the detail that
the n-th element of a list has index n− 1 rather than n. A more important difference is
that the narrowing-free version requires additional code to iterate calls to hide’ for all
the potential embeddings and to test the returned values. A more general and pervasive
difference is discussed next.

In this problem, the operation hide was proposed to compute the embedding of a
message in a text. The embedding is computed when the third argument of an invocation
hide m t n is a free unbound variable. If the message m is embedded in the text t, this
invocation binds n to the embedding. However, this operation is much more versatile.
For example, it can extract the message, if only the text and the embedding are given
and the message is a free variable. Or it can generate the text, if only the message and
the embedding are given. In the first case, i.e., to extract the message, the problem

t m n meaning

bound yes yes no find encoding

bound yes no yes extract message

bound no yes yes generate text

Fig. 1. Intended meaning of an invocation hide t m n for various combination of bound and
unbound (free) arguments.

statement does not define the length of the message. One could refine the problem with
either an additional parameter defining the length of the message or the assumption
that the message has maximum length. The latter can be accomplished by replacing
the second argument of the second rule of hide with the empty list. In the second
case, i.e., to generate the text, the characters of the text that do not originate from
the message would remain uninstantiated variables. A simple additional equation could
instantiate these variables to characters of some alphabet or, vice versa, verify that they
are characters of the alphabet when hide is executed for a purpose different from the
generation of the text.

Finally, the above computations address the case in which two of the three elements of
the problem are known because these computations have an intuitive practical meaning.
However, computations in which two of the three elements are unknown do not require
additional code either. For example, one can execute hide to extract the messages for
all possible embeddings.
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This versatility of narrowing is sometimes referred to as “running functions backward”
since the arguments of an operation application can be computed from its returned value.
A concrete use of this feature will be presented shortly.

4.2. Narrowing Lists

The n-queens problem is a popular puzzle. Simply stated, it requires to place n queens
on an n×n chess board so that the queens cannot capture each other. A typical implemen-
tation of this problem represents a placement of queens on the board as a permutation
of 1, 2, . . . , n, where the i-th element of the permutation is the row of the queen placed
in column i. With a generate-and-test architecture, the program enumerates the permu-
tations of 1, 2, . . . , n and tests whether each permutation represents a safe placement of
the queens.

The following diagram shows how to compute a permutation of a list. Informally, first
one permutes the tail of the input list, then non-deterministically splits the result into a
prefix and a suffix, and finally inserts the head of the input list between them.

.

.

x xs

permute

u v

split

u x v

i
n
s
e
r
t

(22)

Narrowing easily splits a list p into two sublists u and v by solving the following equation:

p = append(u, v) (23)

If n is the length of p, equation (23) has n + 1 solutions for u and v. The following
operation, permute, codes the algorithm sketched by (22) to compute permutations. As
expected, the fact that equation (23) may have several solutions makes program (24)
non-deterministic, i.e., permute returns any of the permutations of its argument:

permute [] = []

permute (x:xs) | permute xs == u ++ v

= u ++ x:v

where u,v free

(24)

Narrowing slightly simplifies coding this problem into a program. Without narrowing we
would have to define and invoke an operation for splitting a list into two sublists. This
is an example of running a function backward mentioned earlier. The arguments, u and
v, of a concatenation are determined from the result. There exist also a formulation of
permute that does not split a list explicitly, but uses the non-deterministic insertion of
an element in a list shown in (12).
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permute [] = []

permute (x:xs) = insert x (permute xs)

where insert x y = x:y

insert x (y:ys) = y : insert x ys

(25)

The representation of a placement as a permutation of the rows of the board ensures that

no two queens can be in the same row or the same column. Thus, two queens capture each

other only if they are on a diagonal. Being on a diagonal translates into the condition

that the distance between two queens’ rows is the same as the distance between the

queens’ columns. The diagram expressing this condition is shown below, where the list

p represents a placement as a permutation of 1, 2, . . . , n, the operation abs denotes the

absolute value function and the variables i and j are the rows of two queens capturing

each other:

.

.

abs(i − j)
︷ ︸︸ ︷

p x i y j z
(26)

This diagram is formalized by the following system of equations, where p is a placement

of the queens on the board and x, y and z are sublists of p.







p = append(x, cons(i, append(y, cons(j, z))))

abs(i− j) = length(y) + 1
(27)

The operation unsafe defined below names the above system of equations. A functional

pattern “extracts” the components of the argument, defined in the first equation of (27),

that are used in the second equation of (27).

unsafe (− ++ i:y ++ j:−) = abs (i-j) == length y + 1 (28)

For some permutation p, if the system of equations represented by unsafe p has a

solution, p is not a solution of the puzzle. Narrowing finds a solution of (28) if a solution

exists. Hence, we use unsafe as a guard to exclude any permutation that is not a solution

of the puzzle.

queens p | unsafe p = failed

queens’default p = p
(29)

Narrowing conceptually simplifies coding this problem into a program. A narrowing-free

Curry program that implements the same algorithm as (28) must execute nested itera-

tions over the columns of the board, which are represented by indexes of a permutation.

For any two columns, the corresponding rows are computed with the index operation.

The simplest code we could think of for this computation is a list comprehension.

unsafe’ p = or [ abs (p!!i-p!!j) == j-i

| i<-[0..n-2], j<-[i+1..n-1] ]

where n = length p

(30)
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The narrowing-free program contains more details, e.g., the bounds of the iterations over
the indexes of a permutation, than the narrowing-based program. It less directly imple-
ments (26) and it has a somewhat more imperative flavor. There exist other algorithms
for the n-queens that could be coded in, or adapted to, Curry, e.g., (Bird and Wadler,
1988, pages 161–165). The amount of detail in the corresponding programs is very similar
to (30).

4.3. Narrowing Trees

The examples discussed in the previous sections show the applicability of narrowing
to problems involving lists. A list is a simple structure for representing a collection of
elements and a collection of elements is at the core of many problems. To solve these prob-
lems, often the programmer formalizes relationships between the values of some elements
and/or their positions in the collection. Diagram (26) is typical in that it formalizes and
relates both these aspects. For example, Problem D of (ACM, 2000) requires swapping
two cards of a deck. The diagram depicting the relation between the elements of this
problem is very similar to (26), except for a different condition on the positions of some
elements in the list.

In this section, we show that the applicability of narrowing is not limited to lists;
narrowing can solve systems of equations involving any algebraically defined data type.
These equations, as for lists, formalize relationships between components and/or their
positions in composite structures. The problem is to simplify a symbolic arithmetic ex-
pression, such as 1∗ (x+0), implemented by a tree-like structure. In our implementation,
a symbolic expression is a value of the following type.

data Exp = Lit Int

| Var [Char]

| Add Exp Exp

| Mul Exp Exp

(31)

The non-deterministic operation reduce defines a handful of elementary reduction pairs.
Obviously, many more are possible, but the following ones suffice to make our point. A
pair of expressions (r, s) is an elementary reduction pair if and only if there is a reduction
of r into s.

reduce (Add (Lit 0) x) = x

reduce (Add x (Lit 0)) = x

reduce (Mul (Lit 1) x) = x

reduce (Mul x (Lit 1)) = x

reduce (Mul x (Lit 0)) = Lit 0

reduce (Mul (Lit 0) x) = Lit 0

reduce (Add (Lit n) (Lit m)) = Lit (n+m)

reduce (Mul (Lit n) (Lit m)) = Lit (n*m)

reduce (Add x y) | x == y = Mul (Lit 2) x

(32)

At the core of our design is an operation, called replace, similar to the concatenation
of lists, but operating on symbolic expressions. The concatenation operation makes a
list out of two lists. The replace operation makes an expression out of two expressions
referred to as context and replacement. It also takes an additional argument referred to
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as the position. The position is a possibly empty sequence of positive integers identifying
the replacement in the context.

replace - [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)

replace (Mul l r) (1:p) x = Mul (replace l p x) r

replace (Mul l r) (2:p) x = Mul l (replace r p x)

(33)

The operation “++” defined earlier is similar to replace in the following sense. Its first
argument is the context and its second argument is the replacement. It does not take the
position argument because the position of the replacement is always that of nil in the
context. It is easy to define a replace-like function for any tree-like type.

To simplify an expression t, we locate in t at some position p some subexpression x
such that, for some y, (x, y) is an elementary reduction pair. Then, the result of the
simplification of t will be equal to t except for y in the place of x. The following diagram
depicts the situation we are presenting.

.

.
bc

bc

bc

bc

t

c

p

x

bc

bc

bc

bc

c

p

y

simplify
(34)

The context c does not play any significant role except abstracting all the expressions
that differ from each other only at the position p. Diagram (34) is formalized by the
following system of equations:



















t = replace(c, p, x)

reduce(x) = y

simplify(t) = replace(c, p, y)

(35)

Finally, the simplification operation, simplify, is a straightforward implementation of
(34) and (35) defined using a functional pattern.

simplify (replace c p x) = replace c p (reduce x) (36)

The application of simplify to Mul (Lit 1) (Add (Var "x") (Lit 0)) yields either
Add (Var "x") (Lit 0) or Mul (Lit 1) (Var "x"), non-deterministically. A further appli-
cation of simplify to either of these expressions yields Var "x". Many distinct simplifi-
cation steps may be applicable to an expression. To avoid a combinatorial explosion in
the order in which simplification steps are applied, operation simplify can be declared
deterministic Hanus (ed.).

If an expression t cannot be simplified, simplify t simply fails; otherwise, it non-
deterministically executes a single reduction step. The application of repeated reduction
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steps to an expression until no more reduction steps are available can be controlled using
a default rule.

normalize e | simplify e == d = normalize d where d free

normalize’default e = e
(37)

As we mentioned earlier, when computations are executed by narrowing, operations be-
come more versatile. This fact can be verified by the intended use of each of the two
occurrences of replace in simplify. In the functional pattern, replace is invoked to
find in the argument of simplify a subexpression that can be simplified, whereas in the
body, replace is invoked to indeed replace that subexpression with its simplification.

How can we code this problem without narrowing? It would seem reasonable to use
pattern matching to determine whether an expression is the first component of an ele-
mentary reduction pair. Other alternatives are considerably more complicated. The use
of pattern matching leads to an operation, which we denote with simplify’, that tra-
verses an expression to simplify it. The argument of simplify’ is matched against the
first component of a pair, whereas the corresponding second component makes up the
right-hand side. E.g.,

simplify’ (Add x (Lit 0)) = x

... -- other Add-rooted patterns

simplify’ (Add x y) = Add (simplify’ x)

(simplify’ y)

...

(38)

Merging the simplification rules with the traversal of an expression is not an appealing
design because it leads to more complicated and less modular code. Another complication
is to detect when an expression cannot be further simplified. The operation simplify
fails, but the same technique does not seem applicable for controlling simplify’ and
additional machinery becomes necessary.

There exist techniques to alleviate some of these difficulties, but they require somewhat
“compiling” the elementary simplification pairs into the program.

4.4. Non equational narrowing

The examples discussed in the previous sections show the applicability of narrowing to
solve equations. We recall that an equation is a Boolean expression whose leading symbol
is the equality operator “==”. It is possible to narrow an expression of any user-defined
type whose leading symbol is any user-defined operation.

The problem of this section, which relies on definitions of the previous section, is
to find a common subexpression in an expression. The solution is straightforward: x is
a common subexpression of t if it occurs at two distinct positions p and q of t. The
relationship between p and q can be strengthened. Since the problem calls for common
subexpressions of an expression, it must be that the position of one subexpression is to
the left of the position of the other subexpression. We denote the relationship “is to the
left of” among positions with “≺”. Without loss of generality we assume that p is to the
left of q. A set of conditions defining the solution follows.



















t = replace(c, p, x)

t = replace(c, q, x)

p ≺ q

(39)
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We remark that the third condition, which is essential to specify the problem that we

are discussing, is not an equation. We need to conjoin the conditions of (39). Hence, the

return type of the comparison of p and q is Boolean. A Curry infix operation, denoted

by “<:” which implements “≺”, is defined below. This operation is the lexicographic

ordering on positions.

(p:ps) <: (q:qs) = p < q || p == q && ps <: qs (40)

The problem is implemented by the operation commonSubexp which directly encodes (39)

in Curry. No simplification rules are used for this problem and no actual replacement of

expressions takes place.

commonSubexp t | replace c p x == t &&

replace c q x == t &&

p <: q

= x

where c,p,q,x free

(41)

Coding a simple narrowing-free version of commonSubexp does not appear a simple task.

One option would be to code nested traversals of the input expression in order to compare

subexpressions pairwise. This problem is similar to that posed by unsafe in a previous

section, but in this case there is no “expression comprehension” notation to ease the

task. Another option would be to collect, e.g., in a list, all the subexpressions of the

input expression and look for a repeated subexpression. Both options are not as close

to the specification as the narrowing-based program. They are less straightforward and

elegant, require more code and contain substantially more details.

4.5. Deterministic Computations

The problems discussed in the previous sections have, at least in principle, non-

deterministic results. Narrowing seems a natural choice to solve problems of this kind

since narrowing computations are non-deterministic as well. In this section, we show that

narrowing can be conveniently applied also to problems with a deterministic result.

The problem proposed in this section is to determine whether a poker hand features a

four-of-a-kind. Several other game combinations, such as two-of-a-kind, three-of-a-kind,

full-house, etc. would be similarly processed. A card is represented by its suite and rank.

The operation rank returns the rank of a card.

data Suit = Clubs | Spades | ...

data Rank = Ace | King | ...

data Card = Card Rank Suit

rank (Card r -) = r

(42)

A set of cards is represented by a list. Thus, a poker hand is a list of five cards. The

narrowing-based algorithm discards one non-deterministically chosen card from the hand

and it checks whether the ranks of the four remaining cards are the same. The diagram
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of this algorithm is:

.

.

x y z

discard
element

x z

r r r r

compare
ranks

(43)

The Curry code is a straightforward implementation of the diagram. The operation four

takes a hand and it returns whether the hand features a four-of-a-kind. Variations that
return the rank, r, and/or the fifth card, y, and/or the four cards, x++z, witnessing the
four-of-a-kind score are immediate.

four (x++[y]++z)

= map rank (x++z) == [r,r,r,r]

where r free

(44)

Several narrowing-free algorithms come to mind to solve the same problem.

Sort and test. Sort the hand according to rank and test whether the first or last four
cards have the same rank. The double test is necessary because the rank of the
four-of-a-kind may either precede or follow the rank of the “fifth” card, i.e., the
card that does not contribute to the four-of-a-kind. This algorithm can be adapted
to other game combinations, but it is not as convenient for some combinations, e.g.,
two-of-a-kind.

Rank counters. For each rank, count how many cards of the hand have that rank, then
test whether one counter is four. This algorithm is not as terse as the others, but
it generalizes easily to other game combinations. It has the drawback that the fifth
card of the hand is not immediately accessible. Further code is needed to determine
it.

Decision tree. Pick a card of the hand and compare the rank of some cards of the
hand with the rank of the picked card and make suitable decisions. This algorithm
is likely to be efficient, but possibly more tedious and error-prone to code, and it
cannot be parameterized for other game combinations.

There is also a narrowing-free algorithm inspired by the narrowing-based algorithm. This
algorithm iterates over the cards of a hand. At each iteration, the algorithm removes one
card from the hand and it checks whether the remaining cards all have the same rank.
This algorithm requires the programmer to code some operations that are not invoked
in the narrowing-based algorithm and are not likely to be found in a library, e.g., an
operation that removes the n-th element of a list, and an operation that checks whether
all the elements of a list are equal. Further code is necessary to control the iteration
over the elements of a hand and to “glue” together the above functions. Finally, if an
application calls for some additional information beside a boolean outcome, e.g., the rank
of the four-of-a-kind, additional code would be needed.
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5. Highlights of When, Why and How to Narrow

In this section, we highlight some general situations in which the programmer should

consider employing narrowing to solve a problem. We have seen that the problems dis-

cussed in the examples have both narrowing-based and narrowing-free implementations.

Thus, when to use narrowing is largely a matter of preference and convenience. Many

narrowing-based implementations were conceptually simpler and textually shorter than

their narrowing-free counterparts. Below we abstract some conditions that are likely to

provide these benefits and thus suggest to look for narrowing-based solutions.

Frequently, programmers are given a specification rather than an algorithm and are

called to design and code programs satisfying the specification rather than implement-

ing an algorithm. The specification establishes relationships between the elements of a

problem—sometimes without specifying how some elements are identified or should be

computed. All the programs proposed in the previous section witness to some degree this

practice. E.g., the specification of the problem of Sect. 4.4 is: x is a common subexpres-

sion of t if and only if x occurs at two positions p and q of t such that p is to the left

of q. Neither the common subexpression nor its positions are precisely identified in the

specification. Likewise, the specification of the problem of Sect. 4.5, which was left to

the intuition, is: a poker hand features a four-of-a-kind if and only if there exists a rank

r such that four cards of the hand have rank r. In this case, too, neither the rank nor

the four cards are precisely identified in the specification. All the other problems of the

previous section exhibit similar characteristics.

Our examples show that sometimes the specification of a problem is a relation among

elements of the problem in which some of these elements may be existentially quantified.

Furthermore, some of these elements must be identified, and their values computed, to

solve the problem. We have seen in Section 2 that narrowing evaluates expressions con-

taining uninstantiated variables that stand for unknown values. Consequently narrowing

allows us to treat certain specifications as executable programs. This is the reason why

for certain problems narrowing is a very convenient programming feature.

The final aspect of this section is a discussion of how narrowing can be employed to

“execute” a specification. Specifications come in various degrees of formality. E.g., “x

is a common subexpression of t if and only if x occurs at two positions p and q of t

such that p is to the left of q” is clear and precise, but it does not formally define the

meaning of key concepts such as “occur” or “to the left of”. To employ narrowing, the

programmer must define and code types and operations to formalize the elements that

play a role in the specification. E.g., “position” was declared as a sequence of positive

integers, “occur” was abstracted and generalized by the operation replace and “to the

left of” was defined by the operation “<:”.

To solve a programming problem, the programmer must encode in the implementa-

tion language certain elements of the problem’s specification. This encoding seems an

unavoidable effort whether or not a program makes use of narrowing. Rather, we argue

that in narrowing-based programs this effort is likely to be smaller than in narrowing-

free programs because narrowing both computes with incomplete information and runs

functions backward.
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6. Conclusion

Rewriting is a model of computation. It consists of rewrite rules that may be used

to describe problems in mathematics, engineering, and everyday events. The application

of these rules is seen as a computation or deduction. Narrowing generalizes rewriting by

applying these rules when some information about a problem is unknown.

Narrowing supports programming at a very high level of abstraction. Programmers

sometimes sketch diagrams to express the relationships between the elements of a prob-

lem. Then, they translate these diagrams into programs. Narrowing makes this translation

largely superfluous because it has the potential to “execute” the diagrams or their corre-

sponding specifications. This approach to programming becomes particularly convenient

when some elements of a specification are not precisely identified or explicitly given a

value.

The solutions of the problems of Section 4 show that code employing narrowing is

generally more declarative, conceptually simpler and textually shorter than equivalent

code that does not employ narrowing. The code is more declarative because its structure is

a direct encoding of relations, often equations, that specify a problem or program. Fewer

symbols (operations and/or variables) need to be coded or invoked because solving a

relation or an equation for different variables is equivalent to execute different operations

which, in other programming styles or paradigms, must be independently coded. With

narrowing there are fewer dependencies to understand in a program because both there

are fewer symbols in the program and the dependencies between these symbols are more

explicit.

To the extent shown in Section 4, designing, coding, testing and documenting software

are faster because both less code is produced and the code is more declarative. A software

artifact that employs narrowing can be developed more quickly and at a lower cost

because it is simpler, shorter and it has a faster life cycle. For the same reasons, it is less

likely to contain undetected errors and it is easier to maintain.

Note

The Portable Document Format version of this paper, available from the author home-

page at http://www.cs.pdx.edu/~antoy/homepage/publications.html contains ac-

tive links to the code of the programs referenced in the text:

e.curry Problem E of the 2000 ACM Pacific NW Region Pro-
gramming Contest, Sec. 4.1

queens.curry Solve the n-queens puzzle, Sec. 4.2

simplify.curry Simplify symbolic or arithmetic expressions, Sec. 4.3

common.curry Find common subexpressions of an expression, Sec. 4.4

poker.curry Find if a poker hand scores a four-of-a-kind, Sec. 4.5
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A. Appendix

Various approaches have been proposed to model the functional logic computations
discussed in this paper. Prominent among them are: (1) a rewriting logic (González
Moreno et al., 1999) that addresses subtle aspects of equality and sharing, (2) oper-
ational semantics (Alpuente et al., 2005a; Tolmach et al., 2004) based on heaps and
stores specifically developed for the interaction of non-determinism and sharing, and (3)
term (Baader and Nipkow, 1998; Bezem et al., 2003; Dershowitz and Jouannaud, 1990)
and graph (Echahed, 2008; Echahed and Janodet, 1997; Plump, 1999; Sleep et al., 1993)
rewriting. Rewriting is the framework for the definition of narrowing and it has been par-
ticularly fruitful for the development of both evaluation strategies (Antoy, 2005; Antoy
et al., 2000; Echahed, 2008; Echahed and Janodet, 1997) and program transformations
(Antoy, 2001; Antoy and Hanus, 2005, 2006) that support efficient implementations.

This appendix reviews key concepts of rewriting, presents a formal definition of nar-
rowing, and sketches an efficient evaluation strategy for narrowing computations. Source
Curry programs allow a rich set of syntactic and semantic features, e.g., conditional rules,
partial application and functional patterns, that are not found in the rewrite systems that
we present below. The class of systems that we define plays the role of an easy-to-execute
core language to which source programs are mapped via semantic-preserving transfor-
mations. This class is well-suited for reasoning about computations, e.g., for addressing
properties such as soundness, completeness and optimality of narrowing strategies, and
for implementing functional logic languages.

A.1. Definition of Narrowing

A signature Σ is a non-empty, finite set S of symbols together with an arity function
a : S → N that for each s in S defines the number of arguments that s expects. Let
X be a countably infinite set of variables. A term is a tree (or graph) whose nodes
are labeled by symbols and/or variables. Graphs model better than trees the condition
that a variable is a singleton element in an expression, and consequently can have at
most one instantiation, but the treatment of graphs is more complicated. Trees serve the
same purpose with some conventions or conditions, such as the call-time choice semantics
(Hussmann, 1992), which are not as elegant, but keep the presentation simpler. Therefore,
we define terms as trees.

The set T (Σ,X ) of terms over Σ∪X is inductively defined as follows: x is a term for
every x ∈ X , and if f ∈ Σ, a(f) = n, and t1, . . . tn are terms, then f(t1, . . . tn) is a term.
Ill-typed terms can be banned using a many-sorted signature, but the much simpler arity
function suffices for defining both narrowing and strategies.

An occurrence or position is a sequence of positive integers identifying a subterm in a
term. For every term t, the empty sequence identifies t itself. For every term of the form
f(t1, . . . , tn), the sequence i · p, where i is a positive integer not greater than n and p is a
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position, identifies the subterm of ti at p. The subterm of t at p is denoted by t|p and the
result of replacing t|p with s in t is denoted by t[s]p. A term t is linear iff any variable
occurs in t at most once.

The set of symbols of a signature Σ is partitioned into two disjoint sets: C, whose
elements are called constructors, and D, whose elements are called operations. The terms
in T (C,X ) are called constructor terms. A term t = f(t1, . . . tn), with n > 0, is called a
pattern iff t is linear, f ∈ D and t1, . . . tn are constructor terms. A rewrite system R is
a set of rewrite rules, pairs of terms written l → r, where l is a pattern. There are also
rewrite systems whose rules left-hand sides are not patterns, but they are not interesting
for our discussion.

A substitution σ is a mapping X → T (Σ,X ) such that {x ∈ X | σ(x) 6= x},
the domain of σ, is finite. Substitutions are extended to terms by σ(f(t1, . . . , tn)) =
f(σ(t1), . . . , σ(tn)), for every term f(t1, . . . , tn). A term u is an instance of a term t iff
there is a substitution σ with u = σ(t). In this case, we write t 6 u. A term u is a variant
of a term t iff t 6 u and u 6 t. A variant of a rule R is fresh iff every variable in R does
not occur in any term to which R is applied. A substitution σ is a unifier of terms t and
u iff σ(t) = σ(u).

A narrowing step of a term t according to a rewrite system R is a triple 〈l → r, p, σ〉
such that l → r is a fresh variant of a rule of R, p is a position of t such that t|p is
not a variable, and σ is a unifier of t|p and l. A term t narrows to a term u with step
〈l → r, p, σ〉 iff u = σ(t[r]p).

A.2. Overview of the Strategy

A narrowing computation is the repeated transformation by narrowing steps of a term
until no further step is applicable. The computation of a term t is successful iff it produces
a term u in T (C,X ), i.e., u is a constructor term, which is called a value of t. In general,
many steps are applicable to a term t. In particular, according to our definition, there
could be an infinite number of unifiers. Executing all these steps to ensure that all the
values of t are obtained could be unfeasible or computationally prohibitive. A narrowing
strategy is the policy or algorithm that selects which steps to execute in t. A “good”
strategy should produce the steps that ensure that all the values of t are computed and
it should do so without producing steps that do not contribute to the computation of
any value.

Good strategies are known for classes of rewrite systems that impose some conditions
on their rewrite rules (Antoy, 2005). These conditions are imposed only on the core lan-
guage into which source programs are transformed for execution and hence are not a
significant problem for a programming language. The inductively sequential rewrite sys-
tems (Antoy, 1992) with extra variables are an adequate class for the core language (Antoy
and Hanus, 2006). In the inductively sequential systems, the rules defining every opera-
tion are organized in a hierarchical structure called a definitional tree (Antoy, 1992). A
formal presentation of definitional trees goes beyond the scope of this paper. Rather, we
sketch on an example the idea behind this concept and how this concept is applied to
determine the steps of a term.

Not every operation has a definitional tree. However, every rewrite system as defined
earlier can be transformed into a semantically-equivalent rewrite system in which every
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operation has a definitional tree (Antoy, 2001). For example, the operation, defined be-
low, that merges two lists has a definitional tree. The right-hand sides of the rules are
irrelevant, thus we omit some details.

merge [] y = y

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys) = if x<=y then ...

(A.1)

Operation merge makes an initial distinction on its first argument. The cases on this
argument are empty list and non-empty list. In the non-empty list case, operation merge

makes a subsequent distinction on its second argument. The cases on this argument
are again empty list and non-empty list. A definitional tree of the operation merge

encodes these distinctions, the order in which they are made, and the cases that they
consider. Thus, e.g., the evaluation of t = merge(merge(t1,t2),t3) by a strategy that
uses definitional trees will start with the evaluation of merge(t1,t2). If it is the empty
list, t will be reduced to t3 according to the first rewrite rule. If it is a non-empty list, and
only in this case, t3 will be evaluated to determine whether it is an empty or non-empty
list and consequently the second or third rule should be applied.

Evaluations guided by definitional trees resemble evaluations guided by case expres-
sions found in some modern functional languages (Peyton Jones and Hughes, 1999), but
there are significant differences. Case expressions are coded by the programmer, whereas
definitional trees are inferred, by a simple algorithm (Antoy, 2005; Barry, 1996) from
the rewrite rules of an operation. Evaluations via definitional trees impose neither a
top-to-bottom precedence among the rewrite rules nor a left-to-right precedence among
the arguments. Definitional trees allow both the evaluation of terms with unbound vari-
ables, which supports narrowing and, with some variation or extension, the definition of
operations with overlapping rules, which supports non-determinism (Antoy, 2005).
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