
A New Functional-Logic Compiler for Curry: Sprite ⋆

Sergio Antoy and Andy Jost

Computer Science Dept., Portland State University, Oregon, U.S.A.

antoy@cs.pdx.edu

ajost@pdx.edu

Abstract. We introduce a new native code compiler for Curry codenamed

Sprite. Sprite is based on the Fair Scheme, a compilation strategy that provides

instructions for transforming declarative, non-deterministic programs of a certain

class into imperative, deterministic code. We outline salient features of Sprite,

discuss its implementation of Curry programs, and present benchmarking re-

sults. Sprite is the first-to-date operationally complete implementation of Curry.

Preliminary results show that ensuring this property does not incur a significant

penalty.

Keywords: Functional logic programming, Compiler implementation, Operational com-

pleteness

1 Introduction

The functional-logic language Curry [16, 18] is a syntactically small extension of the

popular functional language Haskell. Its seamless combination of functional and logic

programming concepts gives rise to hybrid features that encourage expressive, abstract,

and declarative programs [5, 18].

One example of such a feature is a functional pattern [3], in which functions are

invoked in the left-hand sides of rules. This is an intuitive way to construct patterns

with syntactically-sugared high-level features that puts patterns on a more even footing

with expressions. In Curry, patterns can be composed and refactored like other code,

and encapsulation can be used to hide details. We illustrate this with function get,

defined below, which finds the values associated with a key in a list of key-value pairs.

with x = _ ++ [x] ++ _

get key (with (key, value)) = value
(1)

Operation with generates all lists containing x. The anonymous variables, indicated

by “_”, are place holders for expressions that are not used. Function “++” is the list-

appending operator. When used in a left-hand side, as in the rule for get, operation

with produces a pattern that matches any list containing x. Thus, the second argument

to get is a list — any list — containing the pair (key, value). The repeated variable,

⋆ This material is based upon work partially supported by the National Science Foundation under

Grant No. CCF-1317249.

key, implies a constraint that, in this case, ensures that only values associated with the

given key are selected.

By similar means, we may identify keys:

key_of (with (key, _)) = key (2)

This non-deterministically returns a key of the given list; for example:

> key_of [(’a’,0), (’b’,1), (’c’,2)]

’a’

’b’

’c’

(3)

This is just one of many features [5, 18] that make Curry an appealing choice, particu-

larly when the desired properties of a program result are easy to describe, but a set of

step-by-step instructions to obtain the result is more difficult to come by.

This paper describes work towards a new Curry compiler we call Sprite. Sprite

aims to be the first operationally complete Curry compiler, meaning it should produce

all values of a source program (within time and space constraints). Our compiler is

based on a compilation strategy named the Fair Scheme [7] that sets out rules for com-

piling a functional-logic program (in the form of a graph rewriting system) into abstract

deterministic procedures that easily map to the instructions of a low-level programming

language. Section 2 introduces Sprite at a high level, and describes the transformations

it performs. Section 3 describes the implementation of Curry programs as imperative

code. Section 4 contains benchmark results. Section 5 describes other Curry compilers.

Section 6 addresses future work, and Section 7 contains our concluding remarks.

2 The Sprite Curry Compiler

Sprite is a native code compiler for Curry. Like all compilers, Sprite subjects source

programs to a series of transformations. To begin, an external program is used to con-

vert Curry source code into a desugared representation called FlatCurry [17], which

Sprite further transforms into a custom intermediate representation we call ICurry.

Then, following the steps laid out in the Fair Scheme, Sprite converts ICurry into a

graph rewriting system that implements the program. This system is realized in a low-

level, machine-independent language provided by the open-source compiler infrastruc-

ture library LLVM [22]. That code is then optimized and lowered to native assembly,

ultimately producing an executable program. Sprite provides a convenience program,

scc, to coordinate the whole procedure.

2.1 ICurry

ICurry, where the “I” stands for “imperative,” is a form of Curry programs suitable

for translation into imperative code. ICurry is inspired by FlatCurry [17], a popular

representation of Curry programs that has been very successful for a variety of tasks in-

cluding implementations in Prolog [19]. FlatCurry provides expressions that resemble

those of a functional program — e.g., they may include local declarations in the form of

let blocks and conditionals in the form of case constructs, all possibly nested. Although

the pattern-matching strategy is made explicit through case expressions, FlatCurry is

declarative. ICurry’s purpose is to represent the program in a more convenient impera-

tive form — more convenient since Sprite will ultimately implement it in an imperative

language. In imperative languages, local declarations and conditionals take the form

of statements while expressions are limited to constants and/or calls to subroutines,

possibly nested. ICurry provides statements for local declarations and conditionals. It

provides expressions that avoid constructs that cannot be directly translated into the

expressions of an imperative language.

In ICurry all non-determinism — including the implicit non-determinism in high-

level features, such as functional patterns — is expressed through choices. A choice is

the archetypal non-deterministic function, indicated by the symbol “?” and defined by

the following rules:

x ? _ = x

_ ? y = y
(4)

The use of only choices is made possible, in part, by a duality between choices and free

variables [4, 23]: any language feature expressed with choices can be implemented with

free variables and vice versa. Algorithms exists to convert one to the other, meaning we

are free to choose the most convenient representation in Sprite.

Finally, as in FlatCurry, the pattern-matching strategy in ICurry is made explicit and

guided by a definitional tree [1], a structure made up of stepwise case distinctions that

combines all rules of a function. We illustrate this for the zip function, defined as:

zip [] _ = []

zip (_:_) [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

(5)

The corresponding definitional tree is shown below as it might appear in ICurry.

zip = \a b -> case a of

[] -> []

(x:xs) -> case b of

[] -> []

(y:ys) -> (x,y) : zip xs ys

(6)

2.2 Evaluating ICurry

It is understood how to evaluate the right-hand side of (6) efficiently; the Spineless

Tagless G-machine (STG) [28], for instance, is up to the task. But the non-deterministic

properties of functional-logic programs complicate matters. To evaluate zip, its first

argument must be reduced to head-normal form. In a purely functional language, the

root node of a head-normal form is always a data constructor symbol (assuming partial

application is implemented by a data-like object), or else the computation fails. But for

functional-logic programs, two additional possibilities must be considered, leading to

an extended case distinction:

zip = \a b -> case a of

x ? y -> (pull-tab) - - implied

⊥ -> ⊥ - - implied

[] -> []

(x:xs) -> case b of ...

(7)

The infrastructure for executing this kind of pattern matching very efficiently by means

of dispatch tables will be described shortly, but for now we note two things. First, there

is no need for ICurry to spell out these extra cases, as they can be generated by the

compiler. Second, their presence calls for an expanded notion of the computation that

allows for additional node states. Because of this, Sprite hosts computations in a graph

whose nodes are taken from four classes: constructors, functions, choices, and failures.

Constructors and functions are provided by the source program; choices are built-in;

and failures, denoted “⊥”, arise from incompletely defined operations such as head,

the function that returns the head of a list. For example, head [] rewrites to “⊥”. A

simple replacement therefore propagates failure from needed arguments to roots.

Choices execute a special step called a pull-tab [2, 9]. Pull-tab steps lift non-det-

erminism out of needed positions, where they prevent completion of pattern matches.

The result is a choice between two more-definite expressions. A pull-tab step is shown

below:

zip (a ? b) c → zip a x ? zip b x where x = c (8)

A pattern match cannot proceed while (a ? b) is the first argument to zip because

there is no matching rule in the function definition (one cannot exist because the choice

symbol is disallowed on left-hand sides). We do not want to choose between a and b

because such a choice would have to be reconsidered to avoid losing potential results.

The pull-tab transformation “pulls” the choice to an outermore position, producing two

new subexpressions, zip a c and zip b c, that can be evaluated further. The fact

that c is shared in the result illustrates a desirable property: that node duplication is

minimal and localized. Pull-tabbing involves some technicalities that we address later.

The complete details are in [2].

Due to the extra cases, additional node types, and, especially, the unusual mechan-

ics of pull-tabbing steps, we chose to develop in Sprite a new evaluation machine from

scratch rather than augment an existing one such as STG. The property of pull-tabbing

that it “breaks-out” of recursively-descending evaluation into nested expressions funda-

mentally changes the computation so that existing functional strategies are difficult to

apply. In Sprite, we have implemented de novo an evaluation mechanism and runtime

system based on the Fair Scheme. These are the topic of the next section.

3 Implementation

In this section, we describe the implementation of Curry programs in imperative code.

Sprite generates LLVM code, but we assume most readers are not familiar with that.

So, rather than presenting the generated code, we describe the implemented programs

in terms of familiar concepts that appear directly in LLVM. In this way, the reader

can think in terms of an unspecified target language — one similar to assembly —

that implements those concepts. To facilitate the following description, we indicate in

parentheses where a similar feature exists in the C programming language.

In the target language, values are strongly typed, and the types include integers,

pointers, arrays, structures and functions. Programs are arranged into compilation units

called modules that contain symbols. Symbols are visible to other modules, and to con-

trol access to them each one is marked internal (static) or external (extern). Control

flow within functions is carried out by branch instructions. These include unconditional

branches (goto), conditional branches (if, for, while) and indirect branches (goto*).

The target of every branch instruction is a function-local address (label). A call stack is

provided, and it is manipulated by call and return instructions that enter and exit func-

tions, respectively. Calls are normally executed in a fresh stack frame, but the target

language also supports explicit tail recursion, and Sprite puts it to good use.

3.1 Expression Representation

The expressions evaluated by a program are graphs consisting of labeled nodes having

zero or more successors. Each node belongs to one of four classes, as discussed in the

previous section. For constructors and functions, node labels are equivalent to symbols

defined in the source program. Failures and choices are labeled with reserved symbols.

Successors are references to other nodes. The number of successors, which equals the

arity of the corresponding symbol, is fixed at compile time. Partial applications are

written in eval/apply form [26].

Sprite implements graph nodes as heap objects. The layout of a heap object is

shown in Fig. 1. The label is implemented as a pointer to a static info table that will be

described later. Sprite emits exactly one table for each symbol in the Curry program.

Successors are implemented as pointers to other heap objects.

3.2 Evaluation

Evaluation in Sprite is the repeated execution of rewriting and pull-tabbing steps. Both

are implemented by two interleaved activities: replacement and pattern-matching. A

replacement produces a new graph from a previous one by replacing a subexpression

matching the left-hand side of a rule with the corresponding right-hand side. For in-

stance, 1 + 1 might be replaced with 2. A replacement is implemented by overwriting

the heap object at the root of the subexpression being replaced. The key advantage of

this destructive update is that no pointer redirection [12, Def. 8][15] is required during a

rewrite step. Reusing a heap object also has the advantage of saving one memory alloca-

tion and deallocation per replacement, but requires that every heap object be capable of

storing any node, whatever its arity. Spritemeets this requirement by providing in heap

Info Pointer Payload

Info Table

Step Function

.

.

.

Heap Object

Fig. 1: The heap object layout.

objects a fixed amount of space capable of holding a small number of successors. For

nodes with more successors than would fit in this space, the payload instead contains

a pointer to a larger array. This approach simplifies memory management for heap ob-

jects: since they are all the same size, a single memory pool suffices. Because arities are

known at compile time, no runtime checks are needed to determine whether successor

pointers reside in the heap object.

Pattern-matching consists of cascading case distinctions over the root symbol of the

expression being matched that culminate either in a replacement or in the patter match

of a subexpression. The Fair Scheme implements this according to a strategy guided by

the definitional trees encoded in ICurry. Case distinction as exemplified in (7) assumes

that an expression being matched is not rooted by a function symbol. Thus, when a node

needed to complete a match is labeled by a function symbol, the expression rooted by

that node is evaluated until it is labeled by a non-function symbol. A function-labeled

node, n, is evaluated by a target function called the step function that performs a pattern

match and replacement at n. Each Curry function gives rise to one target function, a

pointer to which is stored in the associated info table (see Fig. 1).

Operationally, pattern-matching amounts to evaluating nested case expressions sim-

ilar to the one shown in (7). Sprite implements this through a mechanism we call tagged

dispatch. With this approach, the compiler assigns each symbol a tag at compile time.

Tags are sequential integers indicating which of the four classes discussed earlier the

node belongs to. The three lowest tags are reserved for functions, choices, and fail-

ures (all functions have the same tag). For constructors, the tag additionally indicates

which constructor of its type the symbol represents. To see how this works, consider the

following type definition:

data ABC = A | B | C (9)

ABC comprises three constructors in a well-defined order (any fixed order would do).

To distinguish between them, Sprite tags these with sequential numbers starting at the

integer that follows the reserved tags. So, the tag of A is one less than the tag of B,

which is one less than the tag of C. These values are unique within the type, but not

throughout the program: the first constructor of each type, for instance, always has the

same tag. Following these rules, it is easy to see that every case discriminator is a node

tagged with one of 3+N consecutive integers, where N is the number of constructors in

its type. To compile a case expression, Sprite emits a jump table that transfers control

to a code block appropriate for handling the discriminator tag. For example, the block

that handles failure rewrites to failure, and the block that handles choices executes a

pull-tab. This is shown schematically in Fig. 2. It is in general impossible to know at

compile time which constructors may be encountered when the program runs, so the

jump table must be complete. If a functional logic program does not define a branch

for some constructor — i.e., a function is not completely defined — the branch for that

constructor is a rewrite to failure.

To implement tagged dispatch, Sprite creates function-local code blocks as labels,

constructs a static jump table containing their addresses, and executes indirect branch

instructions — based on the discriminator tag — through the table. Figure 3 shows

a fragment of C code that approximates this. Case distinction occurs over a variable

of List type with two constructors, nil and cons. Five labeled code blocks handle

the five tags that may appear at the case discriminator. A static array of label address

implements the jump table. This example assumes the function, choice, failure, nil, and

cons tags take the values zero through four, respectively. The jump table contains one

extra case not depicted in (7). When the discriminator is a function, the step function of

the discriminator root label is applied as many times as necessary until the discriminator

class is no longer function.

discriminator range 0 .. 4

0 function

1 choice

2 failure

3 nil

4 cons

Fig. 2: Schematic representation of the Sprite tagged dispatching mechanism for a dis-

tinction of a List type.

3.3 Completeness and Consistency

Sprite aims to be the first complete Curry compiler. Informally, complete means the

program produces all the intended results of the source program. More precisely, and

especially for infinite computations, an arbitrary value will eventually be produced,

given enough resources. This is a difficult problem because a non-terminating compu-

tation for obtaining one result could block progress of some other computation that

would obtain another result. For example, the following program has a result, 1, that

can be obtained in only a couple of steps, but existing Curry compilers fail to produce

it:

loop = loop

main = loop ? (1 ? loop)
(10)

The Fair Scheme defines a complete evaluation strategy. It creates a work queue con-

taining all of the expressions that might produce a result. At all times, the expression at

the head of the queue is active, meaning it is being evaluated. Initially, the work queue

contains only the goal expression. Whenever pull-tabbing places a choice at the root

of an expression, that expression forks. It is removed from the queue, and its two al-

ternatives are added. Whenever an expression produces a value, it is removed from the

queue. To avoid endlessly working on an infinite computation, the program rotates the

active computation to the end of the work queue every so often. In so doing, Sprite

guarantees that no expression is ignored forever, hence no potential result is lost.

A proof of correctness of compiled programs is provided in [7] for the abstract for-

mulation of the compiler, the Fair Scheme. In this domain, correctness is the property

that an executable program produces all and only the values intended by the correspond-

ing source program. A delicate point is raised by pull-tabbing. A pull-tab step may du-

plicate or clone a choice, as the following example shows. Cloned choices should be

static void* jump_table[5] = {

&function_tag, &choice_tag, &failure_tag, &nil_tag, &cons_tag

};

entry: goto* jump_table[discriminator.tag];

function_tag: call_step_function(discriminator);

goto* jump_table[discriminator.tag];

choice_tag: /*execute a pull tab*/

failure_tag: /*rewrite to failure*/

nil_tag: /*rewrite to []*/

cons_tag: /*process the nested case expression*/

Fig. 3: An illustrative implementation in C of the case expression shown in (7).

This code fragment would appear in the body of the step function for zip. Variable

discriminator refers to the case discriminator. Label entry indicates the entry point

into this case expression.

seen as a single choice. Thus when a computation reduces a choice to its right alterna-

tive, it should also reduce any other clone of the same choice to the right alternative,

and likewise for the left alternative. Computations obeying this condition are called

consistent.

xor x x where x = T ? F

→pull−tab (xor T x) ? (xor F x) where x = T ? F (11)

In the example above, a pull-tab step applied to the choice in x leads to its duplication.

Now, when evaluating either alternative of the topmost choice, a consistent strategy

must recognize that the remaining choice (in x) is already made. For instance, when

evaluating xor T x, the value of x can only be T, the left alternative, because the left

alternative of x has already been selected to obtain xor T x. To keep track of clones,

the Fair Scheme annotates choices with identifiers. Two choice nodes with identical

identifiers represent the same choice. Fresh identifiers are assigned when new choices

arise from a replacement; pull-tab steps copy existing identifiers. Every expression in

the work queue owns a fingerprint, which is a mapping from choice identifiers to values

in the set {left,right,either}. The fingerprint is used to detect and remove inconsistent

computations from the work queue.

It is possible to syntactically pre-compute pull-tab steps: that is, a case statement

such as the one in (7) could implement pull-tabbing by defining an appropriate right-

hand side rule for the choice branch. In fact, a major competing implementation of

Curry does exactly that [8]. A disadvantage of that approach is that choice identifers

must appear as first-class citizens of the program and be propagated through pull-tab

steps using additional rules not encoded in the source program. We believe it is more ef-

ficient to embed choice identifiers in choice nodes as an implementation detail and pro-

cess pull-tab steps dynamically. Section 4.2 compares these two approaches in greater

detail.

4 Performance

In this section we present a set of benchmark results. These programs were previous

used to compare three implementations of Curry [8]: Mcc, Pakcs, and KiCS2. We shall

use KiCS2 to perform direct comparisons with Sprite1, since it compares favorably to

the others, and mention the relative performance of the others. KiCS2 compiles Curry

to Haskell and then uses the Glasgow Haskell Compiler (GHC) [13] to produce exe-

cutables. GHC has been shown to produce very efficient code [21, 20, 27]. Like Sprite,

KiCS2 uses a pull-tabbing evaluation strategy, but unlike Sprite, it does not form a work

queue; hence, is incomplete when faced with programs such as (10). Instead, it builds

a tree containing all values of the program and executes (lazily and with interleaved

steps) a user-selected search algorithm.

A major highlight of KiCS2 is that purely functional programs compile to “straight”

Haskell, thus incurring no overhead due to the presence of unused logic capabilities.

1 Available at https://github.com/andyjost/Sprite-3

Program Type KiCS2 Sprite ∆

PaliFunPats FL 0.64 0.09 -7.1

LastFunPats FL 1.85 0.30 -6.2

Last FL 1.90 0.31 -6.1

PermSortPeano FL 44.04 8.14 -5.4

PermSort FL 42.72 8.15 -5.3

ExpVarFunPats FL 5.92 1.29 -4.6

Half FL 42.31 9.55 -4.4

Reverse F 0.36 0.21 -1.7

ReverseUser F 0.34 0.21 -1.6

ReverseBuiltin F 0.40 0.39 -1.0

ReverseHO F 0.36 0.39 1.1

Primes F 0.29 0.32 1.1

ShareNonDet FL 0.28 0.33 1.2

PrimesBuiltin F 0.73 1.10 1.5

PrimesPeano F 0.41 0.66 1.6

QueensUser F 0.87 1.83 2.1

Queens F 0.80 1.81 2.3

TakPeano F 0.84 2.08 2.5

Tak F 0.32 0.92 2.9

Fig. 4: Execution times for a set of functional (F) and functional-logic (FL) programs

taken from the KiCS2 benchmark suite. Times are in seconds. The final column (∆) re-

ports the speed-up (negative) or slow-down (positive) factor of Sprite relative to KiCS2.

System configuration: Intel i5-3470 CPU at 3.20GHz, Ubuntu Linux 14.04.

Sprite, too, enjoys this zero-overhead property, but there is little room to improve upon

GHC for functional programs, as it is the beneficiary of exponentially more effort. Our

goal for functional programs, therefore, is simply to measure and minimize the penalty

of running Sprite. For programs that utilize logic features KiCS2 emits Haskell code

that simulates non-determinism. In these cases, there is more room for improvement

since, for example, Sprite can avoid simulation overhead by more directly implement-

ing logic features.

4.1 Functional Programs

The execution times for a set of programs taken from the KiCS2 benchmark suite2 are

shown in Fig. 4. The results are arranged in order from greatest improvement to greatest

degradation in execution time. The most striking feature is the clear division between

the functional (deterministic) and functional-logic (non-deterministic) subsets, which is

consistent with our above-stated expectations. On average, Sprite produces relatively

slower code for functional programs and relatively faster code for functional-logic ones.

We calculate averages as the geometric mean, since that method is not strongly influ-

enced by extreme results in either direction. The functional subset runs, on average,

1.4x slower in Sprite as compared to KiCS2. Figures published by Braßel et al. [8,

2 Downloaded from https://www-ps.informatik.uni-kiel.de/kics2/benchmarks.

Fig.2, Fig.3] indicate that Pakcs and Mcc run 148x and 9x slower than KiCS2, respec-

tively, for these programs. We take these results as an indication that the functional parts

of Sprite— i.e., those parts responsible for pattern-matching, rewriting, memory man-

agement, and optimization — although not as finely-tuned as their GHC counterparts,

still compare favorably to most mainstream Curry compilers.

We note that Sprite currently does not perform optimizations such as deforestation

[14] or unboxing [21]. These, and other optimizations of ICurry, e.g., [6], could po-

tentially impact the benchmark results. Inspecting the output of GHC reveals that the

tak program (incidentally, the worse-case for Sprite) is optimized by GHC to a fully-

unboxed computation. To see how LLVM stacks up, we rewrote the program in C and

converted it to LLVM using Clang [11], a C language front-end for LLVM. When we

compiled this to native code and measured the execution time, we found that it was

identical3 to the KiCS2 (and GHC) time. We therefore see no fundamental barrier to re-

ducing the Sprite “penalty” to zero for this program, and perhaps others, too. We have

reason to be optimistic that implementing more optimizations at the source and ICurry

levels, without fundamentally changing the core of Sprite, will yield substantive im-

provements to Sprite.

4.2 Functional-Logic Programs

For the functional-logic subset, Fig. 4 shows that Sprite produces relatively faster code:

4.4x faster, on average. Published comparisons [8, Fig.4] indicate that, compared to

KiCS2, Pakcs is 5.5x slower and Mcc is 3.5x faster for these programs. Our first thought

after seeing this result was that Sprite might enjoy a better algorithmic complexity. We

had just completed work to reduce Sprite’s complexity when processing choices, so

perhaps, we thought, in doing that work we had surpassed KiCS2. We set out to test

this by selecting a program dominated by choice generation and running it for differ-

ent input sizes, with and without the recent modifications to Sprite. The results are

shown in Fig. 5. Contrary to our expectation, Sprite and KiCS2 exhibit strikingly simi-

lar complexity: both fit an exponential curve with r2 in excess of 0.999, and their slope

coefficients differ by less than 2%. A better explanation, then, for the difference is that

some constant factor c exists, such that choice-involved steps in Sprite are c-times faster

than in KiCS2. What could account for this factor? We believe the best explanation is

the overhead of simulating non-determinism in Haskell, which we alluded to at the end

of Sect. 3.3. To see why, we need to look at KiCS2 in more detail.

KiCS2 uses a few helper functions [8, Sect. 3.1] to generate choice identifiers:

thisID :: IDSupply -> ID

leftSupply :: IDSupply -> IDSupply

rightSupply :: IDSupply -> IDSupply

(12)

The purpose of these functions is to ensure that choice identifiers are never reused.

Here, ID is the type of a choice identifier and IDSupply is opaque (for our purposes).

Any function that might produce a choice is implicitly extended by KiCS2 to accept a

supply function. As an example, this program

3 Using the Linux time command, whose resolution is 0.01 seconds.

����� �����	

� ��� ���

 ��� ��

�
��� ����

� ��
 ����

��� ����

� ���� ��
�

�

�
�

���

��

�

��

���������	��
�����

����� �����	

�
��
�
�
�
�
�
��
�

�

Fig. 5: Complexity analysis of PermSort. Execution times are shown for a range of

problem sizes. The horizontal axis indicates the number of integers to sort by the

permute-and-test method.

f :: Bool

main = xor f (False ? True)
(13)

is compiled to

main s = let s1 = leftSupply s

s2 = rightSupply s

s3 = leftSupply s2

s4 = rightSupply s2

in xor (f s3) (Choice (thisID s4) False True) s1

(14)

Clearly, the conversion to Haskell introduces overhead. The point here is simply to see

that the compiled code involves five calls (to helper functions) that were not present in

the source program. These reflect the cost of simulating non-determinism in a purely-

functional language.

In Sprite, fresh choice identifiers are created by reading and incrementing a static

integer. Compared to the above approach, fewer parameters are passed and fewer func-

tions are called. A similar approach could be used in a Haskell implementation of Curry,

but it would rely on impure features, adding another layer of complexity and perhaps

interfering with optimizations. By contrast, the Sprite approach is extreme in its sim-

plicity, as it executes only a few machine instructions. There is a remote possibility that

a computation could exhaust the supply of identifiers since the type integer is finite.

KiCS2 uses a list structure for choice identifiers and so does not suffer from this poten-

tial shortcoming. Certainly, the choice identifiers could be made arbitrarily large, but

doing so increases memory usage and overhead. A better approach, we believe, would

be to compact the set of identifiers during garbage collection. The idea is that whenever

a full collection occurs, Spritewould renumber the n choice identifiers in service at that

time so that they fall into the contiguous range 0, . . . , n − 1. This potential optimization

illustrates the benefits of having total control over the implementation, since in this case

it makes modifying the garbage collector a viable option.

5 Related Work

Several Curry compilers are easily accessible, most notably Pakcs [19], KiCS2 [8] and

Mcc [25]. All these compilers implement a lazy evaluation strategy, based on defini-

tional trees, that executes only needed steps, but differ in the control strategy that selects

the order in which the alternatives of a choice are executed.

Both Pakcs and Mcc use backtracking. They attempt to evaluate all the values of the

left alternative of a choice before turning to the right alternative. Backtracking is simple

and relatively efficient, but incomplete. Hence, a benchmark against these compilers

may be interesting to understand the differences between backtracking and pull-tabbing,

but not to assess the efficiency of Sprite.

By contrast, KiCS2’s control strategy uses pull-tabbing, hence the computations ex-

ecuted by KiCS2 are much closer to those of Sprite. KiCS2’s compiler translates Curry

source code into Haskell source code which is then processed by GHC [13], a main-

stream Haskell compiler. The compiled code benefits from a variety of optimizations

available in GHC. Section 4 contains a more detailed comparison between Sprite and

KiCS2.

There exist other functional logic languages, e.g., TOY [10, 24], whose operational

semantics can be abstracted by needed narrowing steps of a constructor-based graph

rewriting system. Some of our ideas could be applied with almost no changes to the

implementation of these languages.

A comparison with graph machines for functional languages is problematic at best.

Despite the remarkable syntactic similarities, Curry’s syntax extends Haskell’s with

a single construct, a free variable declaration, the semantic differences are profound.

There are purely functional programs whose execution produces a result as Curry, but

does not terminate as Haskell [5, Sect. 3]. Furthermore, functional logic computations

must be prepared to encounter non-determinism and free variables. Hence, situations

and goals significantly differ.

6 Future Work

Compilers are among the most complex software artifacts. They are often bundled with

extensions and additions such as optimizers, profilers, tracers, debuggers, external li-

braries for application domains such as databases or graphical user interfaces. Given

this reality, there are countless opportunities for future work. We have no plans at this

time to choose any one of the extensions and additions listed above before any other.

Some optimizations mentioned earlier, e.g., unboxing integers, are appealing only be-

cause they would improve some benchmark, and thus the overall perceived performance

of the compiler, but they may contribute very marginally to the efficiency of more real-

istic programs. Usability-related extensions and additions, such as aids for tracing and

debugging an execution, and external libraries may better contribute to the acceptance

of our work.

7 Conclusion

We have presented Sprite, a new native code compiler for Curry. Sprite combines the

best features of existing Curry compilers. Similar to KiCS2, Sprite’s strategy is based

on pull-tabbing, hence there is no an inherent loss of completeness of compilers based

on backtracking such as Pakcs and Mcc. Similar to Mcc, Sprite compiles to an impera-

tive target language, hence is amenable to low-level machine optimization. Differently

from all existing compilers, Sprite is designed to ensure operational completeness—

all the values of an expression are eventually produced given enough computational

resources.

Sprite’s main intermediate language, ICurry, represents programs as graph rewrit-

ing systems. We described the implementation of Curry programs in imperative code

using concepts of a low-level target language. Graph nodes are represented in memory

as heap objects, and an efficient mechanism called tagged dispatch is used to perform

pattern matches. Finally, we discussed the mechanisms used by Sprite to ensure com-

pleteness and consistency, and presented empirical data for a set of benchmarking pro-

grams. The benchmarks reveal that Sprite is competitive with a leading implementation

of Curry.

References

1. S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors, Proceedings of the Third

International Conference on Algebraic and Logic Programming, pages 143–157, Volterra,

Italy, September 1992. Springer LNCS 632.

2. S. Antoy. On the correctness of pull-tabbing. TPLP, 11(4-5):713–730, 2011.

3. S. Antoy and M. Hanus. Declarative programming with function patterns. In 15th Int’nl

Symp. on Logic-based Program Synthesis and Transformation (LOPSTR 2005), pages 6–22,

London, UK, September 2005. Springer LNCS 3901.

4. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.

In Twenty Second International Conference on Logic Programming, pages 87–101, Seattle,

WA, August 2006. Springer LNCS 4079.

5. S. Antoy and M. Hanus. Functional logic programming. Comm. of the ACM, 53(4):74–85,

April 2010.

6. S. Antoy, J. Johannsen, and S. Libby. Needed computations shortcutting needed steps. In

A. Middeldorp and F. van Raamsdonk, editors, Proceedings 8th International Workshop on

Computing with Terms and Graphs, Vienna, Austria, July 13, 2014, volume 183 of Electronic

Proceedings in Theoretical Computer Science, pages 18–32. Open Publishing Association,

2015.

7. S. Antoy and A. Jost. Compiling a functional logic language: The fair scheme. In 23rd Int’nl

Symp. on Logic-based Program Synthesis and Transformation (LOPSTR 2013), pages 129–

143, Madrid, Spain, Sept. 2013. Dpto. de Systems Informaticos y Computation, Universidad

Complutense de Madrid, TR-11-13.

8. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to

Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic

Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.
9. B. Brassel and F. Huch. On a tighter integration of functional and logic programming. In

APLAS’07: Proceedings of the 5th Asian conference on Programming languages and sys-

tems, pages 122–138, Berlin, Heidelberg, 2007. Springer-Verlag.
10. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language (version

2.3.1), 2007. Available at http://toy.sourceforge.net.
11. clang: a C language family frontend for LLVM, 2016. Available at

http://www.clang.llvm.org/.
12. R. Echahed and J. C. Janodet. On constructor-based graph rewriting systems. Tech-

nical Report 985-I, IMAG, 1997. Available at ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-

archives/PMP/c-graph-rewriting.ps.gz.
13. The Glasgow Haskell Compiler, 2013. Available at http://www.haskell.org/ghc/.
14. A. Gill, J. Launchbury, and S. L Peyton Jones. A short cut to deforestation. In Proceedings

of the conference on Functional programming languages and computer architecture, pages

223–232. ACM, 1993.
15. J. R. W. Glauert, R. Kennaway, G. A. Papadopoulos, and M. R. Sleep. Dactl: an experimental

graph rewriting language. J. Prog. Lang., 5(1):85–108, 1997.
16. M. Hanus, editor. Curry: An Integrated Functional Logic Language (Vers. 0.8.2), 2006.

Available at http://www-ps.informatik.uni-kiel.de/currywiki/.
17. M. Hanus. Flatcurry: An intermediate representation for Curry programs, 2008. Available

at http://www.informatik.uni-kiel.de/ curry/flat/.
18. M. Hanus. Functional logic programming: From theory to Curry. In Programming Logics -

Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS 7797, 2013.
19. M. Hanus, editor. PAKCS 1.11.4: The Portland Aachen Kiel Curry System, 2014. Available

at http://www.informatik.uni-kiel.de/ pakcs.
20. S. L. Peyton Jones. Compiling haskell by program transformation: A report from the

trenches. In Programming Languages and SystemsâĂŤESOP’96, pages 18–44. Springer,

1996.
21. S. Peyton Jones and A. Santos. Compilation by transformation in the glasgow haskell com-

piler. In Functional Programming, Glasgow 1994, pages 184–204. Springer, 1995.
22. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis

and transformation. In Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization (CGO 04), pages 75–88, San Jose,

CA, USA, Mar 2004.
23. F. J. López-Fraguas and J. de Dios-Castro. Extra variables can be eliminated from functional

logic programs. Electron. Notes Theor. Comput. Sci., 188:3–19, 2007.
24. F. J. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative system.

In Proceedings of the Tenth International Conference on Rewriting Techniques and Applica-

tions (RTA’99), pages 244–247. Springer LNCS 1631, 1999.
25. W. Lux, editor. The Muenster Curry Compiler, 2012. Available at http://danae.uni-

muenster.de/ lux/curry/.
26. S. Marlow and S. Peyton Jones. Making a fast curry: Push/enter vs. eval/apply for higher-

order languages. In Proceedings of the Ninth ACM SIGPLAN International Conference on

Functional Programming, ICFP ’04, pages 4–15, New York, NY, USA, 2004. ACM.
27. W. Partain. The nofib benchmark suite of haskell programs. In Functional Programming,

Glasgow 1992, pages 195–202. Springer, 1993.
28. S. L Peyton Jones and J. Salkild. The spineless tagless g-machine. In Proceedings of the

fourth international conference on Functional programming languages and computer archi-

tecture, pages 184–201. ACM, 1989.

