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Abstract. The implementation of functional logic languages by means of graph7

rewriting requires a special handling of collapsing rules. Recent advances about8

the notion of a needed step in some constructor systems offer a new approach9

to this problem. We present two results: a transformation of a certain class of10

constructor-based rewrite systems that eliminates collapsing rules, and a rewrite-11

like relation that takes advantage of the absence of collapsing rules. We formally12

state and prove the correctness of these results. When used together, these results13

simplify without any loss of efficiency an implementation of graph rewriting and14

consequently of functional logic computations.15

1 Introduction16

Functional logic programming [6, 18, 19] integrates the best features of the functional17

and the logic paradigms. For instance, demand-driven evaluation, higher-order func-18

tions, and polymorphic typing from functional programming are combined with logic19

variables, constraint solving, and non-deterministic search from logic programming.20

Narrowing makes this combination seamless and enables encoding problems into pro-21

grams in a style elegant, understandable, and easier to reason about [5].22

Graph rewriting [9, 25, 27] is an approach to the implementation of functional and23

functional logic computations. The objects of a computation are term graphs, also re-24

ferred to as expressions, i.e., singly rooted, acyclic graphs. For any graph t, N(t) is the25

set of nodes of t. A graph’s node q has two attributes: a label, L(q), and a sequence26

of successors, S(q). The label and the successors abstract respectively a symbol of the27

signature of a rewrite system and the arguments to which the symbol’s occurrence is28

applied in an expression. An implementation represents a node as a dynamic linked29

data structure holding a label and a sequence of pointers to other nodes. For technical30

convenience, graphs that differ only for a renaming of nodes are considered equal [15,31

25].32

A graph rewriting system, or program, is a set of rules, where a rule is a graph with33

two roots abstracting the left- and right-hand sides of the rule, respectively. Rules are left34

linear [12, Def. 1.4.1], i.e., the left-hand side is a tree. A consequence is that a variable35

occurs at most once in a left-hand side. A step of a computation of a host graph consists36

of three phases: (1) matching a rule left-hand side to a subgraph called the redex, (2)37

constructing the corresponding right-hand side called the redex’s contractum, and (3)38



replacing the redex with its contractum. The signature from which the labels of the39

nodes are drawn is partitioned into constructors and operations. The left-hand side of a40

rule is a pattern, i.e., a graph rooted (by a node labeled) by an operation and every other41

node is labeled by either a variable or a constructor. A constructor form, or value, is a42

graph whose nodes are all labeled by constructors. A head constructor form is a graph43

rooted by a constructor.44

Finding redexes in a graph according to some program is typically an expensive45

activity. However, this is not our case. For the inductively sequential graph rewriting46

systems (recalled below), a sound, complete and optimal strategy that finds redexes47

very efficiently is presented in [14, 15]. We consider a slightly more general class [3],48

that allows a well-behaved form of overlapping. The exact same strategy is applicable to49

our graphs with the only difference that some redexes have more than one contractum.50

In this case, in the spirit of functional logic programming, the contractum is chosen51

non-deterministically.52

For example, the following rules, in Curry’s syntax, define the function that com-53

putes the length of a list, where “[ ]” represents the empty list and (x : xs) the list with54

head x and tail xs:55

length [] = 0

length (x:xs) = 1 + length xs
(1)56

A finite list is denoted [x1, . . . xn], where xi, for any appropriate i, is an element of

length ·

: · ·

3 : · ·

4 [ ]

+ · ·

1 length ·

Fig. 1: Graph representation of the expression length [3, 4] (left) and its contractum 1 +

length [4] (right). An outer box represents a node. Inside an outer box/node there is the

label and a possibly null sequence of boxes representing references to the successors.

57

the list. The expression t = length [3, 4], which is a redex, is pictorially represented58

in Fig. 1. Conceptually, a rewrite step of t first constructs the contractum of t, u =59

1 + length [4], which is also shown in Fig. 1, and then redirects to u any reference to t60

(none occurs in the figure) because “t has become u.” The redirection portion of a step61

[17] is a focus of our work.62

Executing steps as described above would be naive and impractical. In fact, t can be63

a subexpression of a larger expression, called the context of t. The context of t may con-64

tain several references to t, i.e., the root of t is a successor of some nodes of its context.65

All these references should be tracked down and changed. This activity is potentially66
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very expensive since a step is no longer a local operation, rather the entire context of t67

must be traversed. Our work deals with this specific aspect.68

In this section, we recalled only the key concepts of graph rewriting needed to un-69

derstand the problem and present our solution. Some familiarity with this framework is70

desirable. In Sect. 2 we recall two popular implementation techniques for graph rewrit-71

ing. Since finding redexes in a host graph is easy and efficient in our framework, we72

focus only on the low-level details of nodes and pointers manipulation. In Sect. 3 we73

define the class of programs that we consider and recall recent results about properties74

of needed redexes in the class. These results are at the core of our technique. In Sect. 475

we define a program transformation that simplifies some aspects of executing those pro-76

grams by graph rewriting. We state and prove our first correctness claim. In Sect. 5 we77

define a relation on graphs, called ripping, that produces results similar to rewriting,78

but is simpler to implement and more efficient to execute. We state and prove our sec-79

ond correctness claim. In Sect. 6 we statically quantify some effects of our technique80

on the performance of computations. In Sect. 8 we discuss related work and offer our81

conclusion.82

2 Implementation Techniques83

For the sake of efficiency, implementations of graph rewriting are usually “in-place.”84

This means that in a step when the redex is replaced by its contractum, the context85

of the redex is re-used as the context of the contractum. This in-place rewriting still86

requires redirecting the pointers of the context pointing to the root of the redex. To87

avoid the cost of this operation, as discussed in the previous section, implementations88

of graph rewriting adopt special techniques.89

The first technique is based on indirection pointers [23, Sec. 8.1]. Every node of90

an expression has an indirection pointer and is accessed only through this indirection91

pointer. The replacement of a redex t with its contractum u only needs redirecting to92

u the indirection pointer of t. Any reference within the context of t to the indirection93

pointer of t is unaffected. A step is a local operation using this technique, i.e., it does94

not require traversing the context of t. However, extra memory is allocated for every95

node of an expression and extra machine cycles are spent for every access to a node.96

The second technique is based on destructive updates. In a step, the label and se-97

quence of successors in the root of the redex are overwritten by the corresponding items98

that would be in the root of the contractum. We call such a step a rip step (re-labeling99

in place) and the technique, which we formalize in Sect. 5, ripping.100

Ripping has several advantages over using indirection pointers—and one drawback.101

Among the advantages, references to the root of the redex do not need to be redirected102

to the root of the contractum; no indirection node is used; no node is allocated for the103

root of the contractum; and the root of the redex is reused rather than garbage collected.104

The drawback is that ripping may produce unintended results when a collapsing rule is105

applied. A collapsing rule is a rule whose right-hand side is a variable, which is called106

the collapsing variable. We show the problem on an example. Consider the following107

expression:108

t = (id x, id x) where x = 0 ? 1 (2)109
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where id is the identity function:110

id x = x (3)111

and “?” denotes the choice operation defined by the rules:112

x ? y = x

x ? y = y
(4)113

Contrary to popular functional programming languages, there is no textual order among114

the rules. Thus, the expression t ? u, for any subexpressions t and u, non-determinis-115

tically rewrites to t or to u.116

The meaning of the where clause in (2) is to introduce potentially shared nodes,117

where “shared” means having multiple predecessors. In the example, x is indeed shared.118

(,) · ·

id · id ·

? · ·

0 1

(,) · ·

? · · id ·

? · ·

0 1

Fig. 2: The expression on the left-hand side has two values, (0, 0) and (1, 1). The ex-

pression on the right-hand side has 4 values, all possible pairs of zeros and ones.

119

The graph on the left-hand side of Fig. 2 pictorially shows t defined in program120

(2). This graph has two values, (0, 0) and (1, 1), resulting from each alternative of the121

choice. The graph on the right-hand side is obtained by a rip step of the redex in the122

first component of the pair. This graph has four values, all the pairs of zeros and ones.123

Two of these values, (0, 1) and (1, 0), are not intended. In a functional, hence determin-124

istic setting, a graph has at most one value, thus, unintended values are not produced.125

However, the problem of duplicating portions of a computation still occurs and affects126

the efficiency of a computation rather than its input/output relation.127

The problem we just showed is corrected by using a forward node. A forward node128

is a low-level device similar to an indirection pointer, but it is created only by steps129

applying collapsing rules, as opposed to systematically for every node, and explicitly to130

avoid the duplication of subexpressions. A program that manipulates graphs, e.g., for131

printing or evaluating them, must be aware of the possibility of encountering forward132

nodes and must be able to deal with them. During a computation, there is the danger133

of creating chains of forward nodes and the opportunity of compacting these chains to134

avoid the possibility of traversing them over and over.135

In this paper, we propose a variation of the second technique, discussed in the pre-136

vious page, based on destructive updates. Our variation does not require forward nodes.137

In short, we replace the collapsing rules of a program with non-collapsing rules in a way138
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that does not change the “interesting” computations of the program. The motivation of139

our work is an implementation with destructive updates. Thus, we also formalize this140

implementation and discuss its correctness.141

3 Detour on Need142

Our overall approach to deal with collapsing rules is not to have any in a program. For143

example, consider the usual operation that concatenates two lists:144

append [] ys = ys

append (x:xs) ys = x : append xs ys
(5)145

The first rule is collapsing and ys is its collapsing variable. We recall that a shallow146

constructor expression is an expression of the form c(x1, . . . cn), where c is a constructor147

symbol of arity n and xi is a fresh variable for every appropriate i. If we instantiate the148

collapsing variable with every shallow constructor expression of the variable’s type, we149

obtain:150

append [] [] = []

append [] (x:xs) = (x:xs)

append (x:xs) ys = x : append xs ys

(6)151

where there are no collapsing rules. Programs (5) and (6) are similar. Given two lists, t1152

and t2, if the expression append t1 t2 has a value according to (5), then it has the same153

value according to (6) and vice versa.154

However, if append t1 t2 has no value according to (5) there is a difference. Consider155

the following non-terminating nullary operation:156

loop = loop (7)157

The expression append [] loop is a redex according to (5), but it is not and it will158

never become a redex according to (6). In this section, we show that this difference is159

irrelevant for the execution of a program.160

Our programs are modeled by a class of rewrite systems called overlapping induc-161

tively sequential [3]. Inductive sequentiality means that operations are defined by cases162

resembling those of a proof by structural induction. The rules of each operation can be163

organized in a hierarchical structure, called a definitional tree [2], that guides the evalu-164

ation strategy. Overlapping, in conjunction with the inductive sequentiality, means that165

if a redex is reduced by distinct rules, these rules have the same left-hand side. The epit-166

ome of an overlapping inductively sequential function is the choice operation defined167

in (4).168

Every reducible expression t in the overlapping inductively sequential systems has169

a redex which is reduced by every computation of t to a value, a result that extends to a170

non-orthogonal class of systems the seminal result of [21]. A strategy that reduces only171

these redexes is optimal modulo non-deterministic choices [3].172

A novel notion of need, more appropriate for constructor-based systems, was re-173

cently proposed in [7]. This notion depends only on the rules’ left-hand side in a way174

that makes it applicable to the class of the overlapping inductively sequential systems175

that we just described.176
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Definition 1. [7] Let t and u be operation-rooted expressions with u subexpression of177

t, we say that u is needed for t iff in any derivation of t to a head constructor form, u is178

derived to a head constructor form.179

Observe that u needs neither be a redex nor be a proper subexpression. In fact, u may180

be irreducible and t is a needed subexpression of itself. We abuse the word “needed”181

because our notion generalizes the definition of needed redex [21] as follows. The con-182

trapositive formulation is Def. 1 more expressively captures this concept of need: t183

cannot be derived to a head constructor form, unless u is derived to a head constructor184

form.185

The following statement establishes the connection between the classic formulation186

of need [21] and our formulation.187

Lemma 1. [7] Let R be an overlapping inductively sequential system. If u is both a188

needed (in the sense of [21]) subexpression of t and a redex, then u is a needed (in189

the sense of our Def. 1) redex of t, i.e., it is reduced to a head constructor form in any190

derivation of t to a head constructor form.191

From now on, “need” and “needed” will refer to the concept defined in Def. 1. The192

following immediate consequence of the above lemma is at the core of our technique.193

Corollary 1. Let R be an overlapping inductively sequential system. If t is a redex194

according to R needed for some context C[], u is the contractum of t, and u is (still)195

operation-rooted, then u is needed for C[] as well.196

This result justifies our claim that programs (5) and (6) are equivalent in practice. Let197

t = append [] u be a needed expression, where u is an operation-rooted subexpression.198

Program (6) attempts to evaluate u for matching a rule of append to t. Program (5) does199

not. However, since t is a needed redex, u is its contractum, and u is operation-rooted,200

by Cor. 1, u is needed as well. Thus, program (5) will eventually attempt to evaluate201

u to a head constructor form as program (6). In other words, u is equally needed and202

evaluated by both programs.203

4 Transformation204

We define below a transformation that takes a rewrite system possibly containing col-205

lapsing rules and produces an equivalent rewrite system without collapsing rules. The206

precise meaning of the equivalence of input and output systems of the transformation is207

formalized by Th. 1.208

Definition 2. Let R be a constructor-based rewrite system. The collapse-free variant of209

R, denoted Ru, is defined as follows: for each rule R of R, if R is not collapsing, then210

R is in Ru. Otherwise, for every constructor symbol c of the signature of R, Rc is in Ru,211

where Rc is the instance of R obtained by instantiating the collapsing variable of R to a212

shallow constructor expression rooted by c. No other rule is in Ru.213
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Of course, in a typed system only well-typed instantiations of the collapsing variable214

are considered. For example, program (6) is the collapse-free variant of program (5).215

Collapsing rules in which the collapsing variable is polymorphic give raise to a216

potentially large number of instantiations. In modern computers with gigabytes of core217

memory, the amount of memory for holding these instantiations should hardly be a218

problem. A rule in these instantiations is selected according to the root symbol of the219

rule left-hand side argument. This is an efficient operation executed in constant time,220

i.e., independently of the number of rules. A technique in which the instantiations of221

collapsing rules are not explicitly generated in the executable code, is discussed later.222

Observe that for any program R, R and its collapse-free variant Ru have the same223

signature. A sound, complete, and optimal strategy exists [3] for overlapping induc-224

tively sequential term rewriting systems. The same strategy is applicable to overlapping225

inductively sequential graph rewriting systems. Eventually, we would like to replace a226

program with its collapse-free variant. Thus, we are pleased to discover that the same227

strategy exists for the replacement program.228

Lemma 2. Let R be an overlapping inductively sequential system. Then, the collapse-229

free variant of R, Ru, is an overlapping inductively sequential system.230

Proof. We prove that every operation of Ru has a definitional tree, hence Ru is induc-231

tively sequential. The signatures of R and Ru are the same. If f is an operation of Ru,232

then it is an operation of R. Since R is inductively sequential, f has a definitional tree,233

say T . If f has a collapsing rule l → r, there is a leaf node L of T whose pattern π is234

equal to l modulo a renaming of nodes and variables. Let x be the collapsing variable235

of l→ r. We replace this leaf node of T with a branch node B that has the same pattern236

π, and x as the inductive variables. The children of B are leaves whose rules are all237

and only the rules of f instantiating l → r in Tu according to Def. 2. Hence f has a238

definitional tree in Ru. ⊓⊔239

The following result precisely states the equivalence between a program R and its240

collapse-free variant Ru. The values of an expression e in Ru are all and only the values241

of e in R.242

Theorem 1. Let R be an overlapping inductively sequential system and Ru its collapse-243

free variant. For all expressions t and s over the signature of R (and Ru), with s head244

constructor form, t
∗
→ s in R iff t

∗
→ s in Ru.245

Proof. The “if” direction is immediate. If t → t′ in Ru, then t → t′ in R, since every rule246

of Ru is an instance of a rule of R. Hence, any computation in Ru is also a computation247

in R. The “only if” direction is proved by strong induction on the number of collapsing248

rules applied in A = t
∗
→ s in R. The base case is immediate, since every non-collapsing249

rule of R, by construction, is a rule of Ru. For the induction case, consider the first250

step of A, say a, that applies a collapsing rule. We consider whether the match of the251

collapsing variable in step a is a head constructor form. Case true: the computation in252

Ru can make the same step and the claim holds by the induction hypothesis. Case false:253

let w be the match. Corollary 1 proves that w is needed, hence A must derive it to a head254

constructor form w′. We can re-arrange the steps of A [3, Lemma 20] (as in the Parallel255
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Moves Lemma) so that the derivation of w into w′ occurs before step a of A. By the256

induction hypothesis, w → w′ in Ru. After re-arranging the steps of A, the residual of257

step a satisfies case true, and the claim holds. ⊓⊔258

The previous result easily extends from head constructor forms to constructor forms.259

Corollary 2. LetR be an overlapping inductively sequential system andRu its collapse-260

free variant. For all expressions t and s over the signature of R (and Ru), with s con-261

structor form, t
∗
→ s in R iff t

∗
→ s in Ru.262

Proof. By induction on the length of a derivation using Theorem 1. ⊓⊔263

Curry is a candidate for the application of our results, but some programs that could264

benefit from our technique cannot be entirely or directly modeled by rewrite systems265

because of the presence of built-in types. Program (2) makes this point. The collapse-266

free variant of (2) should contain an instance of the rule of id for every integer.267

A solution to this problem is to avoid the explicit instantiation of collapsing rules,268

and instead to compile them slightly differently from non-collapsing rules. When a col-269

lapsing rule R is going to be applied to a redex, the match of the collapsing variable is270

checked. If the match, say t, is rooted by a constructor c, the application proceeds as if271

R were instantiated by mapping the collapsing variable to a shallow constructor expres-272

sion rooted by c. Otherwise, t is evaluated in an attempt to obtain a head constructor273

form t′. If t′ is obtained, the rule application proceeds again as described above. Oth-274

erwise, it must be that either the evaluation of t does not terminate or terminates in an275

operation-rooted expression. The latter is a failure of the entire computation, since t is276

needed. The same outcome, whether non-termination or failure, would be obtained by277

any implementation, since t must be evaluated to a head constructor form.278

Evaluating an expression to obtain a head constructor form is an activity provided279

by many implementations. Hence, a major task for the adoption of our technique is280

already available in these implementations. For example, the Pakcs implementation [20]281

of Curry, which maps Curry source code to Prolog source code, defines a predicate,282

hnf, exactly for this task. The same is true for the Basic Scheme [8], which defines an283

abstract function, H, for this task and implements it in OCaml.284

Some compilers of Curry, e.g. Pakcs [20], use a similar approach to encode poly-285

morphic functions, such as Boolean and constrained equalities. These functions are286

applicable to instances of every algebraically defined and built-in typed. They could be287

defined by one rule for every constructor or value. Instead, the availability of a test for288

head constructor form and a procedure that evaluates an expression to head constructor289

form avoid the proliferation of rules.290

5 Ripping291

The proof of correctness of the previous section to some extent completes our work.292

Given a program R possibly containing collapsing rules, we transform it into a program293

Ru without collapsing rules. This allows us to compile Ru according to any desired294

scheme without concerns for collapsing rules. We are guaranteed that the values com-295

puted by Ru are all and only those computed by R and that they are obtainable with the296
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same strategy and in the same number of steps. Furthermore, the proof of Theorem 1297

implicitly shows that a computation to constructor form has the same length in the two298

systems.299

Of course, there is the expectation that the scheme adopted to compile Ru is correct.300

The motivation of our work is to compile Ru for ripping. We are not aware of any proof301

of its correctness and, indeed, we have not even found a statement of it. In this section302

we address this issue.303

We recall that given two graphs t and s, a (graph) homomorphism [15, 26] of t into304

s is a mapping σ : N(t) → N(s) that preserves roots and for nodes not labeled by a305

variable, labels and successors, i.e.,306

1. σ(Root(t)) = Root(s)307

2. L(σ(q)) = L(q), for every node q ∈ N(t) with L(q) ∈ Σ;308

3. S(σ(q))i = σ(S(q)i), for every node q ∈ N(t) and appropriate index i.309

Let t be a graph, l → r a rewrite rule, q a node of t and σ : l → t|q a homomorphism,310

i.e., q is the root of a redex of t. We call ripping, denoted “�” the binary relation on311

graphs defined as follows: Let p be the root of σ(r). t′ = t + σ(r) except at node q for312

which, in t′, L(q) = L(p) and S(q) = S(p). In other words, the label and successors of313

q, in t′, are replaced by those of p. This update makes the need of pointer redirection,314

which occurs during the replacement phase of a rewrite step, unnecessary.315

Ripping produces results different from rewriting. Consider again program (2). Dur-316

ing the evaluation of t, the rule of id is applied to the first component of the pair. Since317

the rule is collapsing, the argument is evaluated to a head constructor form. The result318

is non-deterministic, thus let us suppose that 0 is produced (if 1 were produced, the rea-319

soning would be identical). The entire expression at this point is pictorially represented320

in the left-hand side of Fig. 3.

(,) · ·

id · id ·

0

(,) · ·

0 id ·

0

(,) · ·

id ·

0

321

Fig. 3: The second graph is obtained from the first graph with a rip step, the technique

formalized in this paper. The third graph is obtained from the first graph with a rewrite

step.

The second graph of Fig. 3 shows the result of a rip step where the redex is the first322

component of the pair. The result is a graph with two nodes labeled by zero. We remark323

that no new node is created by this step, rather the root of the redex has been re-labeled324
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with the label of the root of the contractum. The third graph is obtained by applying325

the same rewrite step to the first graph. We introduce the following concept to precisely326

characterize the significant differences between these graphs.327

Definition 3. Given two graphs t and s, t is an adequate representation of s iff there328

exists a homomorphism σ of t into s such that, for all distinct nodes p and q of t, if329

σ(p) = σ(q), then the label of p (and hence of q) is a constructor symbol. We call such330

homomorphism an adequate homomorphism.331

For example, the second graph of Fig. 3 is an adequate representation of the third graph.332

t

��

� t′

��

s → s′

Fig. 4

Observe that the match of the left-hand side of a rule to a redex is an333

adequate homomorphism since rules are left linear and that the composition334

of adequate homomorphisms is an adequate homomorphism. The diagram335

in Fig. 4 pictorially represents Lemma 3, where the vertical arrows stand336

for adequate homomorphisms.337

Lemma 3. Let R be an overlapping inductively sequential system and Ru its collapse-338

free variant. Let t and s be graphs over the signature of R with t an adequate represen-339

tation of s. Then, t � t′ in Ru (a rip step) for some t′ iff s → s′ in Ru (a rewrite step)340

for some s′, where t′ is an adequate representation of s′.341

Proof. Preliminarily, observe that the set of nodes of t labeled by an operation is in a342

bijection with the set of nodes of s labeled by an operation. Furthermore, if a graph g343

is an adequate representation of a graph h, and l is the left-hand side of a rewrite rule,344

then l matches g iff l matches h. Thus, for every step of t there is corresponding step of345

s, with the same rule, and vice versa.346

Assuming we apply the same rule at corresponding nodes of t and s, we construc-347

tively prove the existence of an adequate homomorphism of t′ into s′. Let’s partition348

the nodes of t′ into 3 classes: (1) the root of the redex, (2) the remaining nodes of t′ that349

are also in t, and (3) the nodes created by the step, which originate from the nodes of350

the rule’s right-hand side which are not labeled by a variable. A node in class (2) is also351

in t, thus it is mapped to make the diagram of Fig. 4 commutative. A node in class (3)352

is also in s, thus it is mapped to make the diagram of Fig. 4 commutative. The node,353

say q, in class (1) is mapped from a node in t, that is mapped to the root of the redex354

in s. Let p the root of the contractum of this redex. Thus, map q to p. This define a355

homomorphism which is adequate. ⊓⊔356

The following result shows that ripping and rewriting compute the same values of an357

expression modulo an adequate representation.358

Theorem 2. Let R be an overlapping inductively sequential system and Ru its collapse-359

free variant. Let t and s be graphs over the signature of R with s a constructor form. If360

s is a value of t by rewriting in Ru, then there exists an s′ that is a value of t by ripping361

in Ru and s′ is an adequate representation of s. If s′ is a value of t by ripping in Ru,362

then there exists an s that is a value of t by rewriting t in Ru and s′ is an adequate363

representation of s.364

Proof. By induction on the length of a derivation. ⊓⊔365
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The combination of Th. 1 and Th. 2 shows that the evaluation of an expression by graph366

rewriting can also be obtained by ripping, in-place rewriting with re-labeling, which367

appears simpler and more efficient than other alternatives. This technique is simpler368

and faster when the rule being applied is not a collapsing rule. Our work shows that this369

is possible for every system in the class that we consider.370

A computation in Ru executed by rewriting has a corresponding computation exe-371

cuted by ripping. We regard these two computation as the same. For every step of one372

computation, there is a step of the other computation that applies the same rule at a node373

that we regard as the same because in the hosting graphs there is a bijection between374

the nodes labeled by operations. The results of the two computations, that have nodes375

labeled by constructors only, may not be isomorphic graphs. However, they are equal376

both when printed as (tree) terms, because they are bisimilar [11], and when printed in377

fully collapsed form1 [10, 26], because one is an adequate representation of the other.378

6 Performance379

The major contribution of our work is not a speedup of computations or a reduction of380

both static and dynamic memory consumption, though they all do occur in some degree,381

but a simplification of the compiler architecture—forward nodes, and the machinery to382

handle them, can be entirely eliminated at nearly no cost.383

: · ·

1

• : · ·

2

[ ]

Fig. 4: The evaluation of append [1] [2] produces a list containing a forward node rep-

resented by the large black dot in the above diagram.

We begin our performance analysis with an example. Consider a program that con-384

catenates some lists and computes the length of the result. For concreteness, we choose385

very simple lists, i.e., the program computes length(append [1] [2]). The rules of length386

and append were given in (1) and (5) respectively. The value of append [1] [2], say387

L, computed without the use of our technique is shown in Fig. 4. The large black dot388

represents the forward node created when the first rule of (5) is applied. The same value389

computed with our technique, is equal to L except that the forward node is absent. List L390

may never be entirely present in memory because operation length consumes portions391

of L as soon as operation append constructs portions of L due to the lazy evaluation392

strategy, but the order of evaluation does not affect our reasoning.393

The execution time of each program is too short to be reliably measured with or-394

dinary tools. As far as memory consumption is concerned, our technique saves the al-395

location and the traversal of the forward node. There is a similar program that instead396

1 The word “collapse” is overloaded in graph parlance. In this context, its refers to a relation on

graphs defined in the cited reference.
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of constructing a list of two elements separated by a single forward node it constructs397

a similar list with an arbitrarily long chain of forward nodes. Computing the length of398

this list takes an arbitrarily long time. More relevant is that the implementation of length399

must be prepared to encounter forward nodes. Hence, extra instructions are executed to400

check for their presence. When a forward node is encountered, extra instructions are ex-401

ecuted to reach the node that the forward node points to. Thus, the object code of length402

is longer, is more complicated, takes longer to execute, and allocates extra dynamic403

memory.404

Quantifying the practical effects of these differences is impractical. The average405

speed up of our technique and the savings in memory consumption depend on the pro-406

grams used for a benchmark. And of course, programs with long chains of forward node407

are less frequent. A static analysis provides more precise information that, however, is408

more difficult to relate to execution times or memory consumption.409

1. Without our technique, every time a collapsing rule is applied, a forward node is410

allocated and initialized. By contrast, our technique executes the same step with411

an instantiated rule. Therefore, the node corresponding to the collapsing variable is412

pattern matched and the content of the root of the redex is re-assigned.413

2. Without our technique, every time a node is pattern matched, a test must be per-414

formed to check whether the node is a forward node. In the affirmative case, the415

node pointed to by the forward node must be fetched and pattern matched again.416

The fetched node could be a forward node again. By contrast, our technique avoids417

the test, and never has to fetch a second node.418

7 Narrowing419

Functional logic programs compute with unknown information which is abstracted by420

logic (also called free) unbound variables. A free variable is bound during a computation421

if and when without the binding the computation could not continue. The combination422

of binding some variables and making a rewrite step is called narrowing. Narrowing423

supports a simple and elegant programming style [5] unique to the functional logic424

paradigm.425

For a contrived example, consider again the rule of (5) and the expression t =426

append v [], where v is an unbound free variable. No rule can be applied to t. To427

compute the value of t, v is bound to either [] or (x : xs), non-deterministically, where x428

and xs are fresh unbound free variables. For example, if v is bound to [], the value of t429

is []. By contrast, consider the expression s = append [] v, where v is again an unbound430

free variable. In this case, s is rewritten to v, where v is unaffected by the step. Variable431

v might be bound later depending on the context in which it occurs.432

During the execution of a program, we store the bindings of free variables in an array433

called the bind-table. A variable is internally represented as an index in the bind-table434

array. The k-th entry in the array, holds the binding, if any, of the variable represented435

by k. A conventional value marks unbound variables. Any node standing for a variable436

is labeled by the same distinguished symbol, which we denote “free”. In addition, in a437

node standing for a variable v, we store the index of v in the bind-table.438
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Regarding the integration of free variables with our technique, the only relevant439

question is what happens when, during the application of a collapsing rule, the collaps-440

ing variable is bound to a free variable. The answers is that we simply treat the free441

variable as if it were a head constructor form. I.e., the step replaces the content of the442

root of the redex with the content of the root of the replacement, in this case the node443

representing the free variable.444

Graph rewriting stipulates that, for each variable v, in any expression there is at445

most one node labeled by v [15, 25]. Our approach violates this stipulation, but only in446

appearance. The index k of a node with label free is immutable. The binding, if any, in-447

dexed by k is in the bind-table. Thus, there is invariably one and only one binding of any448

variable regardless of the number of nodes standing for that variable. The claims leading449

to the correctness of our technique, Th. 2, carry over to narrowing with no significant450

changes. We only need a minimal extension to the notion of adequate representation.451

Referring to the notation of Def. 3, if σ(p) = σ(q), then the label of p (and hence of q)452

is either a constructor symbol or free, and when the label is free, the indexes in p and q453

are the same.454

8 Discussion and Related Work455

Graph rewriting is a viable mean for the implementation of functional and functional456

logic languages that has lead to the discovery and development of optimal strategies [4].457

Transformations of rewrite systems for compilation purposes are described in [16, 22].458

The specialization of rules through the instantiations of collapsing variables is typical459

of partial evaluation [1]. Our goal differs from those of the above techniques. Our460

transformation is specialized in that its only purpose is to eliminate collapsing rules.461

Its merit is in the property that, for the class of systems that we consider, which is462

perfectly suited for functional logic programming, every computation to a value in a463

system with collapsing rules can be executed, with the same effort, in a system without464

collapsing rules. An implementation of rewriting without collapsing rules is easier to465

code and faster to execute. We have not found any work close enough to ours for a466

direct comparison.467

Literature on the implementation of graph rewriting abounds. With respect to our468

work, papers fall into either of two groups, graph reduction machines [13, 24], or some469

specialized aspects of rewriting [23]. Our implementation of ripping as rewriting is470

theoretical in that we do not address data structures, register allocation, bit use for tags,471

and similar. Its merit is to make the pointer redirection phase of a rewrite step effortless472

in a concrete implementation. We have not found any description of this technique or473

claim of its correctness.474

To our knowledge, this is the first paper addressing collapsing rules in conjunction475

with narrowing.476
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