
Compiling a Functional Logic Language:
The Fair Scheme?

Sergio Antoy and Andy Jost

Computer Science Dept., Portland State University, Oregon, U.S.A.

antoy@cs.pdx.edu
andrew.jost@synopsys.com

Abstract. We present a compilation scheme for a functional logic programming
language. The input program to our compiler is a constructor-based graph rewrit-
ing system in a non-confluent, but well-behaved class. This input is an interme-
diate representation of a functional logic program in a language such as Curry or
T OY . The output program from our compiler consists of three procedures that
make recursive calls and execute both rewrite and pull-tab steps. This output is an
intermediate representation that is easy to encode in any number of programming
languages. Our design evolves the Basic Scheme of Antoy and Peters by removing
the “left bias” that prevents obtaining results of some computations—a behavior
related to the order of evaluation, which is counter to declarative programming.
The benefits of this evolution are not only the strong completeness of computa-
tions, but also the provability of non-trivial properties of these computations. We
rigorously describe the compiler design and prove some of its properties. To state
and prove these properties, we introduce novel definitions of “need” and “fail-
ure.” For non-confluent constructor-based rewriting systems these concepts are
more appropriate than the classic definition of need of Huet and Levy.

Wed Jan 22 14:42:42 PST 2014

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Con-
structs and Features — Control structures; D.3.4 [Programming Languages]: Proces-
sors — Compilers; F.4.2 [Mathematical Logic and Formal Languages]: Grammars
and Other Rewriting Systems — ; G.2.2 [Discrete Mathematics]: Graph Theory —
Graph algorithms; F.1.2 [Computation by Abstract Devices]: Modes of Computation
— Alternation and nondeterminism;

General Terms Languages, Non-Determinism, Graph, Rewriting, Compilation.

Keywords Functional Logic Programming Languages, Non-Determinism, Graph
Rewriting Systems, Compiler Construction.

1 Introduction

Recent years have seen a renewed interest in the implementation of functional logic
languages [16, 19, 24]. The causes of this trend, we conjecture, include the maturity of
the paradigm [1, 5, 26], its growing acceptance from the programming languages com-
munity [6, 13, 29], and the discovery of and experimentation with new techniques [7, 9,
20] for handling the most appealing and most problematic feature of this paradigm—
non-determinism.
? This material is based in part upon work supported by the National Science Foundation under

Grant No. 1317249.

Non-determinism can simplify encoding difficult problems into programs [6, 10],
but it comes at a price. The compiler is potentially more complicated and the execution
is potentially less efficient than in deterministic languages and programs. The first issue
is the focus of our work, whereas the second one is addressed indirectly. In particular,
we present an easy to implement, deterministic strategy for non-deterministic compu-
tations. Our strategy is the only one to date in this class with a proof of its correctness
and optimality.

Section 2 defines the source programs taken by our compiler as a certain class of
non-confluent constructor-based graph rewriting systems. It also introduces a novel con-
cept of “need” appropriate for these programs. Section 3 formally defines and infor-
mally describes the design of our compiler by means of three abstract target procedures
that can be easily implemented in any number of programming languages. Section 4
relates to each other source and target computations and states some properties of this
relation. In particular, it proves that every step executed by the target program on an ex-
pression is needed to compute a value of that expression in the source program. Section
5 formalizes and informally proves the strong completeness of our scheme: any value of
an expression computed by the source program is computed by target program as well.
Section 6 briefly outlines an on-going implementation in C++ of our scheme. Sections
7 and 8 summarize related work and offer our conclusion.

2 Background

We assume familiarity with constructor-based, many-sorted graph rewriting systems
[23, 47]. It would be impossible to adequately summarize this notion within the bound-
aries of this paper, thus we only highlight some key points relevant to our discussion.
An expression is a finite, acyclic, single-root graph defined in the customary way [23,
Def. 2]. As usual, nodes are decorated by labels and successors. The signature contains
a distinguished symbol called choice, defined later. A node labeled by this symbol has
an additional decoration, a choice identifier [7, Def. 1]. Later, we will show how this
identifier, e.g., an arbitrary integer, tracks a choice in an expression being evaluated. A
graph homomorphism [23, Def. 10] is a mapping from nodes to nodes that preserves
sorts, roots and, except for nodes labeled by variables, labels and successors. A rewrite
rule is a pair of expressions in which the left-hand side is a pattern and every variable in
the right-hand side occurs in the left-hand side as well. Variables occur only in rewrite
rules. Therefore, we exclude narrowing computations from our discussion. We will re-
address this apparent limitation later. A rewriting computation (also called derivation)
is a finite or infinite sequence e0 → e1 → . . . in which ei → ei+1 is a rewrite step [23,
Def. 23]. Only rewrite steps are allowed in this definition. The target procedures out-
put by our compiler, described in Sect. 3, execute a second kind of step called pull-tab.
Later, we will relate to each other computations with and without steps of this sec-
ond kind. At times, we will consider the reflexive closure of the one-step relation and
will call “null” the step that does not perform any replacement. Every expression in a
computation of e is called a state of the computation of e.

The class of rewrite systems that we compile is crucial for the relative simplic-
ity, efficiency and provability of our design. Below we both describe and motivate this

2

class. Functional logic programming languages, such as Curry [28, 31] and T OY [22,
43], offer to a programmer a variety of high-level features including expressive con-
structs (e.g., list comprehension), checkable redundancy (e.g., declaration of types and
free variables), visibility policies (e.g., modules and nested functions), and syntactic
sugaring (e.g., infix operators, anonymous functions).

A compiler typically transforms a program with these high-level features into a
program that is semantically equivalent, i.e., it has the same I/O behavior, but is in a
form that is easier to compile and/or execute. This transformed program, which is the
input of our compilation scheme, is a graph rewriting system in a class that we call
LOIS (limited overlapping inductively sequential). The concept of definitional tree [2,
5], recalled below, characterizes this class.

A definitional tree is a hierarchical organization of the rewrite rules defining certain
operations of a program. We use standard notations, in particular, if t and u are expres-
sions and p is a node of t, then t|p is the subexpression of t rooted at p [23, Def. 5] and
t[p← u] is the replacement by u of the subexpression of t rooted by p [23, Def. 9].

Definition 1. T is a partial definitional tree, or pdt, if and only if one of the following
cases holds:

T = branch(π, o, T̄), where π is a pattern, o is a node, called inductive, labeled by
a variable of π, the sort of π|o has constructors c1, . . . , ck in some arbitrary, but
fixed, ordering, T̄ is a sequence T1, . . . , Tk of pdts such that for all i in 1, . . . , k
the pattern in the root of Ti is π[o← ci(x1, . . . , xn)], where n is the arity of ci and
x1, . . . , xn are fresh variables.

T = rule(π, l→ r), where π is a pattern and l → r is a rewrite rule such that l = π
modulo a renaming of variables and nodes.

T = exempt(π), where π is a pattern.

Definition 2. T is a definitional tree of an operation f if and only if T is a pdt with
f(x1, . . . , xn) as the pattern argument, where n is the arity of f and x1, . . . , xn are
fresh variables.

Definition 3. An operation f of a rewrite systemR is inductively sequential if and only
if there exists a definitional tree T of f such that the rules contained in T are all and
only the rules defining f inR.

Exempt nodes occur in trees of incompletely defined operations only. E.g., the defi-
nitional tree of the operation, head, that computes the first element of a list has an
exempt node with pattern head[]. Patterns do not need explicit representation in a
definitional tree, but often their presence simplifies the discussion.

Definitional trees characterize the programs accepted by our compiler—every op-
eration, except one, of these programs is inductively sequential. Inductive sequentiality
is a syntactic property of a rewrite system. A simple algorithm for constructing, when
it exists, a definitional tree from the rules defining an operation, and thus proving its
inductive sequentiality, is in [5]. A feature-rich functional logic program is eventually
stripped of its features and transformed into a graph rewriting system in the class de-
fined in Def. 4. The details of this transformation are quite complex and include lambda

3

lifting [37], elimination of partial applications and high-order function [48], elimination
of conditions [4], replacement of non-inductively sequential functions with inductively
sequential ones [4] and replacement of logic (free) variables with generator functions
[11, 40].

Definition 4 (LOIS). A LOIS system is a constructor-based graph rewriting system
R in which every operation of the signature of R either is the binary choice operation
denoted by the infix symbol “?” and defined by the rules:

x ? - = x

- ? y = y
(1)

or is inductively sequential. A LOIS system will also be called a source program.

All the non-determinism of a LOIS system is confined to the choice operation, which
is also the only non-inductively sequential operation. While its rules can be used in a
rewriting computation, the code generated by our compiler will not (explicitly) apply
these rules. The reason is that the application of a rule of (1) makes an irrevocable deci-
sion in a computation. In this event, the completeness of computations can be ensured
by techniques such as backtracking or copying which have undesirable aspects [7]. By
avoiding the application of the choice rules, pull-tabbing (also bubbling [8, 9]) makes
no irrevocable decisions.

LOIS systems have been widely investigated. Below we recall some key results that
justify and support our choice of LOIS systems as the source programs of our compiler.

1. Any LOIS system admits a complete, sound and optimal evaluation strategy [3].
2. Any constructor-based conditional rewrite system is semantically equivalent to a

LOIS system [4].
3. Any narrowing computation in a LOIS system is semantically equivalent to a rewrit-

ing computation in another similar LOIS system [11].
4. In a LOIS system, the order of execution of disjoint steps of an expression does not

affect the value(s) of the expression [3, 12].

LOIS systems are an ideal core language for functional logic programs because they are
general enough to perform any functional logic computation [4] and powerful enough
to compute by simple rewriting [11, 40], without wasting steps [3] and without concerns
about the order of evaluation [3, Lemma 20].

In particular, our decision of banning free (unbound) variables from our model is
justified by [11, 40]. We will discuss in Sect. 7 a crucial difference between the strategy
of [3] and the strategy implicitly defined by the target procedures.

The seminal concept of needed redex introduced in [34] for orthogonal term rewrit-
ing systems is inapplicable to and inappropriate for LOIS systems. LOIS systems are
not orthogonal because the rules of choice overlap—an essential condition to pro-
vide the expressive power sought in modern functional logic languages through non-
determinism. LOIS systems are constructor-based—reducing an expression to a normal
form (an expression that has no steps) is interesting only when this normal form is a
value (an expression in which every node of e is labeled by a constructor symbol). Val-
ues are normal forms, but there are normal forms that are not values, e.g., head[].

4

Such expressions are regarded as failing computations. A more general and precise def-
inition of this concept will be provided shortly.

Below, we propose a novel definition of need which is better suited for our class of
systems. This notion enables us to address the theoretical efficiency of a computation in
LOIS systems much in the same way as the classic notion does in orthogonal systems.

Definition 5 (Needed). Let S be a source program, e an expression of S whose root
node we denote by p, and n a node of e. Node n is needed for e, and similarly needed
for p, iff in any derivation of e to a constructor-rooted form the subexpression of e at n
is derived to a constructor-rooted form. A node n (and the redex rooted by n, if any) of
a state e of a computation in S is needed iff it is needed for some maximal operation-
rooted subexpression of e. A computation A : e0 → e1 → · · · of some expression e0 in
S is needed iff it reduces only needed redexes.

Our notion of need is a relation between two nodes (we also consider the subexpressions
rooted by these nodes since they are in a bijection with the nodes). Our relation is
interesting only when both nodes are labeled by operation symbols. If e is an expression
whose root node p is labeled by an operation symbol, then p is trivially needed for p.
This holds whether or not e is a redex and even when e is already a normal form, e.g.,
head[]. In particular, any expression that is not a value has pairs of nodes in the
needed relation. Finally, our definition is concerned with reaching a constructor-rooted
form, not a normal form. Situations where a node n, root of an irreducible expression, is
needed for an expression e enable aborting a possibly non-terminating computation of
e which cannot produce a value. The next definition formalizes this point. An example
will follow.

Definition 6 (Failure). Let S be a source program and e an operation-rooted expres-
sion of S. Expression e is a failure iff there exists no derivation of e to a constructor-
rooted form. When e is a failure, we may denote it with the symbol “⊥” instead of e if
the nodes, labels, and other components of e are of no interest.

In general, telling whether an expression e is a failure is undecidable, since it entails
knowing whether some computation of e terminates. However, detecting failures in
programming is common place. Indeed, in many programming languages a failure goes
by the name of exception, a name that also denotes the mechanism for recovering from
computations failing to produce a value. In functional logic programming, because of
non-determinism, there are useful programming techniques based on failing computa-
tions [10] and failures are simply and silently ignored. Our notion of need makes de-
tecting some failures easy, even in the presence of non-terminating computations. For
example, consider the expression e = loop+(1/0), where loop is defined below
and the other symbols have their usual meaning:

loop = loop (2)

It is immediate to see that the only redex of e is loop and consequently the computation
of e does not terminate. Relying on the intuitive meaning of the symbols, since we have
not defined them by rewrite rules, 1/0 is a failure and its root is needed for e. Hence,

5

e itself is a failure. Thus, the computation of e can be terminated (in a failure) even
though e is reducible and loop is a needed redex, in the classic sense [34], of e.

The definition of the compiler in Fig. 1 rewrites failures to the distinguished symbol
“⊥”. These rewrites are only a notational convenience to keep the presentation compact.
An implementation needs not rewrite failures to the “⊥” symbol. Instead, the internal
representation of a node may be tagged to say whether that node is the root of a failure.
We will show that a failure propagates from a node n to a node p, when n is needed for
p. Rewriting an expression e to ⊥ can be interpreted as recording (without performing
a step) that e cannot be derived to a value.

We now explore some properties of our newly introduced notion of “need”. An
interesting aspect is its transitivity, which will become useful to prove some facts about
computations.

Lemma 1 (Transitivity). Let S be a source program, e an expression of S, e1, e2 and
e3 subexpressions of e such that ni is the root of ei and the label of ni is an operation,
for i = 1, 2, 3. If n3 is needed for n2 and n2 is needed for n1, then n3 is needed for n1.

Proof. By hypothesis, if e3 is not derived to a constructor-rooted form, e2 cannot be
derived to a constructor-rooted form, and if e2 is not derived to a constructor-rooted
form, e1 cannot be derived to a constructor-rooted form. Thus, if e3 is not derived to a
constructor-rooted form, e1 cannot be derived to a constructor-rooted form. ut

Our notion of need generalizes the classic notion [34] with the difference that in or-
thogonal systems a redex has only one replacement, whereas in our programs a needed
node may or may not root a redex. When it roots a redex, it may have more than one
replacement and some replacement may or may not contribute to the computation of a
value.

Lemma 2 (Extension). Let S be a source program and e an expression of S derivable
to a value. Assume that the choice symbol occurs neither in e nor in the right-hand side
of any rule of S. If e′ is an outermost operation-rooted subexpression of e, and n is both
a node needed for e′ and the root of a redex r, then r is a needed redex of e in the sense
of [34].

Proof. First we show that it is meaningful to consider the classic notion of need in the
hypothesis of the claim. Since the choice symbol is banned from both the program and
the top-level expression, it can be eliminated from S without changing any computation
of e. S without “?” is inductively sequential and consequently orthogonal, actually
strongly sequential [32]. Since e′ is an outermost operation-rooted subexpression of
e, the path from the root of e to the root of e′ excluded consists of nodes labeled by
constructor symbols. Hence, e can be derived to a value only if e′ is derived to a value
and e′ can be derived to a value only if e′ is derived to a constructor rooted form.
By assumption, in any derivation of e′ to a constructor rooted form r is derived to a
constructor rooted form, hence it is reduced. Thus, r is a needed redex of e according
to [34]. ut

We close this section with some auxiliary results that shed some light on the use of
definitional trees and are instrumental in proofs of later claims.

6

Lemma 3 (Rule selection). Let S be a source program, e an expression of S rooted by
a node n labeled by some operation f and T a definitional tree of f . If T1 is a node of
T with pattern π, h(π) = e for some match h, and l → r is a rule that reduces a state
of a computation of e at n, then l → r is in a leaf of T1, including T1 itself if T1 is a
leaf.

Proof. Rule l→ r is in a leaf of T , since these are all and only the rules defining f . We
prove that if l→ r is not in a leaf of T1, then it cannot reduce e at n. Since n is the root
of e, there exists at most one reduction at n in any computation of e. As in any proof
comparing graphs, equality is intended modulo a renaming of nodes [23, Def. 15]. Let
T2 be a node of T disjoint from T1 and T0 the closest (deepest in T) common ancestor
of T1 and T2. Let o0 be the inductive node T0, and h(o) = p for some node p of e. By
Def. 1 T1 = T0[o0 ← c1(. . .)], where c1 is a constructor symbol labeling some node o1
and the arguments of c1 do not matter. Likewise, T2 = T0[o0 ← c2(. . .)], where c2 is a
constructor different from c1 labeling some node o2. Since π matches e, the label of p is
c1. In e, every node in a path from n (excluded) to p is labeled by a constructor. Hence,
the same nodes with the same labels persist in every state of the computation of e that
does not replace n. Let π′ be a pattern of a rule in a leaf of T2. Pattern π′ can never
match a state of the computation of e, say e′, in which n was not replaced because any
homomorphism of such a match would have to map o2, which is labeled by c2, to p,
which is labeled by c1, and by construction c1 6= c2. ut

Lemma 4 (Needed). Let S be a source program, e an expression of S rooted by a node
n labeled by some operation f and T a definitional tree of f . If T1 is a branch node of
T with pattern π and inductive node o, h(π) = e for some match h, and h(o) = p, for
some node p of e labeled by an operation symbol, then p is needed for n.

Proof. By Lemma 3 any rule reducing any state of a computation of e at the root is in
a leaf of T1. Let l → r be a rule in a leaf of T1. By Def. 1, l is an instance of π, i.e.,
l = σ(π), for some homomorphism σ. Since o is the inductive position of π in T1, every
child of T1 has a pattern of the form π[o ← c(x1, . . . , xn)], where c is a constructor.
Thus, in l, σ(o) is a node labeled by a constructor. Every node of e in a path from the
root n to p, end nodes excluded, is labeled by a constructor. This condition persists in
any state of a computation of e that does not reduce e at n. Unless e|p is reduced to a
constructor rooted expression, l cannot match any state of a computation of e and hence
e cannot be reduced at the root. Thus, by Def. 5, p is needed for n. ut

We present a small example to see the above results in action. Two functions play a
major role in the example: ++, a function that concatenates two lists, and take, a
function that takes a prefix of a given length of a list:

[] ++ ys = ys
(x:xs) ++ ys = x : (xs++ys)

take - [] = []
take n (x:xs) =

if n==0 then []
else x : take (n-1) xs

(3)

7

The definitional tree of take is shown below. To ease readability, we show only the
patterns of rule nodes, but not the rules themselves, and we box inductive variables:

take n u

���������

?????????

take n [] take n (x:xs)

The evaluation of e = take 2 ([1]++[2,3]) goes as follows. Expression e is
matched by the pattern in the root node of the definitional tree of take which is a
branch. The expression t = [1]++[2,3] is matched by variable u, which is induc-
tive. Hence, by Lemma 4, t is needed for e. The evaluation of t to a constructor rooted
expression produces 1:([]++[2,3]). The resulting state of the computation of e
is e′ = take 2 (1:([]++[2,3])). Expression e′ is matched the right leaf of the
definitional tree of take. Since this is a rule node, e′ is a redex. Lemma 3 confirms that
the second rule of take is the only one that can reduce e′. Finally, Lemma 2 confirms
that t is a needed redex in the classic sense.

3 Compilation

We describe the compilation of functional logic programs abstractly. The input of the
compilation is a LOIS system S called the source program. We construct the definitional
tree of every operation of S’s signature except the choice operation. We compile both
the signature of S and the set of definitional trees into three target procedures denoted
D (Dispatch), N (Normalize) and S (Step). These procedures both make recursive calls,
and execute rewrite [23, Def. 23] and pull-tab [7, Def. 2] steps. A concrete compiler
only has to represent graphs as objects of some language L and map the target proce-
dures into procedures (functions, methods, subroutines, etc.) of L that execute both the
recursive calls and the replacements originating from the steps.

This style of compilation for functional logic languages was pioneered in [16],
where also three procedures were defined for the same purpose. We will compare these
two approaches in Section 7, but in short, our strategy handles failures, avoids “don’t
know” non-determinism, and ensures the (strong) completeness of computations. None
of these properties holds for the scheme of [16].

A pull-tab step is a binary relation over the expressions of a source program similar
to a rewrite step—in a graph a (sub)graph is replaced. The difference with respect to a
rewrite step is that the replacement is not an instance of the right-hand side of a rewrite
rule, but is obtained according to the following definition. Very informally, if e is an
expression of the form s(. . . , x?y, . . .), where s is not the choice symbol, then a pull-
tab step of e produces s(. . . , x, . . .)? s(. . . , y, . . .). It seems very natural for pull-tab
steps, as well, to call the (sub)graph being replaced the redex.

Definition 7 (Pull-tab). Let e be an expression, n a node of e, referred to as the target,
not labeled by the choice symbol and s1 . . . sk the successors of n in e. Let i be an index
in {1, . . . k} such that si, referred to as the source, is labeled by the choice symbol and

8

D(g; Ḡ) =

case g of
when x? y: D(Ḡ;x; y); D.1
when ⊥: D(Ḡ); D.2
when g is a value: D(Ḡ); -- yield g D.3
default: N(g);
if vn(g) then D(Ḡ); else D(Ḡ; g); D.4

D(null) = null; -- program ends D.5

N(c(. . . ,⊥, . . .)) = null; {return true} N.1
N(c(. . . , p:?(-,-), . . .)) = PULL(p); {return false} N.2
N(c(x1, . . . , xk)) = N(x1); . . . ; N(xk);

{return vn(x1) ∨ . . . ∨ vn(xk)} N.3
N(n) = S(n); {return false} N.4

compile T
case T of
when rule(π, l→ r):
output S(l) = REWR(r); S.1

when exempt(π):
output S(π) = REWR(⊥); S.2

when branch(π, o, T̄):
∀T ′ ∈ T̄ compile T ′

output S(π[o← ⊥]) = REWR(⊥); S.3
output S(π[o← p:?(-,-)]) = PULL(p); S.4
output S(π) = S(π|o); S.5

S(c(. . .)) = null S.6

Fig. 1. Compilation of a source program with signature Σ into a target program consisting of
three procedures: D, N, and S. The rules of D and N depend only on Σ. The rules of S are ob-
tained from the definitional trees of the operations ofΣ with the help of the procedure compile.
The structure of the rules and the meaning of symbols and notation are presented in Def. 9. The
notation vn(x) stands for the value returned by N(x). The symbol c stands for a generic construc-
tor of the source program,⊥ is the fail symbol, and choice identifiers are used only within pull-tab
steps hence they are not shown. A symbol of arity k is always applied to k arguments. Line com-
ments, introduced by “--”, indicate when a value should be yielded, such as to the read-eval-print
loop of an interactive session, and where the computation end. The call to a target procedure with
some argument g consistently and systematically operates on the trace of g. Hence, tracing is not
explicitly denoted.

let t1 and t2 be the successors of si in e. Let ej , for j = 1, 2, be the graph whose root
is a fresh node nj with the same label as n and successors s1 . . . si−1tjsi+1 . . . sk. Let
e′ = e1 ? e2. The pull-tab of e with source si and target n is e[n ← e′] and we write
e Ξ e[n← e′].

A pull-tabbing computation of an expression e0, denoted e0 Ξ→ e1 Ξ→ . . . generalizes a
rewrite computation of e0 by allowing any combination of both rewrites and pull-tabs.

9

Without some caution, this computation is unsound with respect to rewriting. Unsound-
ness may occur when some choice has two predecessors. For example, consider [18]:

xor x x where x = False ? True (4)

A pictorial representation of this expression is in the left-hand side of Fig. 2. The choice
of this expression is pulled up along two paths creating two pairs of strands, one for each
path, which eventually must be pair-wise combined together. Some combinations will
contain mutually exclusive alternatives, i.e., subexpressions that cannot be obtained by
rewriting because they combine both the left and right alternatives of the same choice.
Fig. 2 presents an example of this situation.

xor

?

6666

����

False True

∗
Ξ→

?

ttttttt

t t t t
JJJJJJJ

JJJJ

?

���� 8888
8

8 ?

����
�

�
8888

xor xor

�����
QQQQQQQQQQ xor xor

False

FFFFFF
True

Fig. 2. Pictorial representation of two states of the computation of (4): the initial state to the
left, and the state after three pull-tab steps to the right. Every choice in every state has the same
identifier which is then omitted from the representation. The dashed paths are inconsistent, since
they combine the left and right alternatives of the same choice, and therefore should be discarded.

The soundness of pull-tabbing computations is preserved so long as the alternatives
of a choice are never combined in the same expression [7]. To this aim, a node n la-
beled by the choice symbol is decorated with a choice identifier [7, Def. 1], such as
an arbitrary, unique integer created when n is “placed in service” [7, Princ. 1]. When
a choice is pulled up, this identifier is preserved. Should a choice be reduced to either
of its alternatives, every other choice with the same identifier must be reduced to the
same alternative. A very similar idea in a rather different setting is proposed in [18,
20]. A rewriting computation that for any choice identifier i consistently takes either
the left or the right alternative of i is called a consistent computation. Furthermore, [7,
Th. 1] shows that consistent computations with pull-tab steps are correct (i.e., sound
and complete) with respect to rewriting computations.

The notion of trace [16], recalled below, allows us to keep track of a subgraph in
a graph after the graph undergoes a sequence of replacements. The definition is non-
trivial, but its application in an implementation is straightforward. We will discuss this
point after defining the target procedures.

Definition 8 (Trace). Let g0, g1, . . . be a sequence of expressions such that, for all
i > 0, gi is obtained from gi−1 by a replacement, i.e., there exist an expression ri−1
compatible [23, Def. 6] with gi−1 and a node pi−1 such that gi = gi−1[pi−1 ← ri−1].
A node m of gi is called a trace of a node n of gj , for j 6 i, according to the following
definition by induction on i > 0. Base case, i = 0:m is a trace of n iff n = m. Ind. case,
i > 0: by assumption gi = gi−1[pi−1 ← ri−1] and by the induction hypothesis it is

10

defined whether a node q of gi−1 is a trace of n. A node m of gi is a trace of a node n
of gj iff there exists a trace q of n in gi−1 such that m = q or m is the root of ri−1 and
q = pi−1.

Definition 9 (Target procedures). Each procedure of the target system takes a graph,
or sequence of graphs in the case of D, as argument. Each procedure is defined by cases
on its argument. Each case, called a rule, is selected by a liberal form of pattern match-
ing and is defined by a possibly empty sequence of semicolon-terminated actions, where
an action is either a recursive call to a target procedure, or a graph replacement [23,
Def. 9] resulting from either a rewrite [23, Def. 23] or a pull-tab step [7, Def. 2]. In ad-
dition, procedure N returns a Boolean shown between curly braces in the pseudo-code.
The rules are presented in Fig. 1. The rules have a priority as in common functional
languages. Rules with higher priority come first in textual order. The application of a
rule is allowed only if no rule of higher priority is applicable. Any reference to a node
in the actions of any rule is the trace [16] of the node being referenced, i.e., tracing is
consistently and systematically used by every rule without explicit notation. The nota-
tion null is a visible representation of an empty sequence of expressions, actions, steps,
etc. depending on the context. The notations REWR(p) and PULL(p) are a rewrite and
pull-tab steps, respectively, where p is the root of the replacement and the redex is the
root of the argument of the rule where the notations occur. Graphs are written in linear
notation [23, Def. 4], e.g., in p:e, p is the root node of the pattern expression e, with the
convention that nodes are explicitly written only when they need to be referenced.

The trace [16] of t captures the changes that t undergoes as it passes through target pro-
cedures. An implementation in which the expression being evaluated is a global, persis-
tent datum passed to the target procedures by reference provides very efficient tracing.
Considering traces is essential for the correctness of our approach. In fact, some node
in some graph may have two predecessors, hence the identity of this node must be pre-
served. For example, in rule N.3 of Fig. 1, the subgraphs x1 and x2 might be the same.
Using traces preserves the identity of this node throughout a computation. Not only
does this improve efficiency by avoiding repeated computations, it is essential to the
soundness of computations. If the same non-deterministic expression is re-evaluated to
a different value, the computation is unsound. Formalisms that might break this identity,
e.g., because they look at expressions as trees instead of graphs, must introduce some
device to preserve the identity. For example, CRWL [26] uses the call-time choice se-
mantics [35] or let-constructs [42].

The target procedures are defined using pattern matching to select which rule of a
procedure must be applied to the expression argument of the procedure. Since every
pattern of every rule is linear—i.e., every variable occurs at most once in a pattern—no
unification is necessary. A rule is selected by a simple chain of cases over the appro-
priate symbols of the argument. The notation Ḡ, used in the definition of the rules of
D in Fig. 1, stands for a sequence of zero or more objects. Whenever appropriate and
understandable from the context, a single object may stand for a sequence containing
only that object. Subsequences and/or individual objects in a sequence are separated by
a semicolon. The empty sequence is denoted by “null”. The target procedures execute
only two particular kinds of replacement. The graph where the replacement occurs is

11

always the procedure argument and this argument is always the redex. Hence, we use
the simpler notations introduced in Def. 9.

Procedure D manages a queue of expressions being evaluated. If the queue is not
empty, it examines the expression, e, at the front of the queue. Depending on the form of
e, emay be removed from queue or it may undergo some evaluation steps and be placed
back at the end of the queue. Initially, the queue contains only the top-level expression.
Pull-tabbing steps pull choices toward the root. If the front of the queue is a choice-
rooted expression e, e is removed from the queue and its two alternatives are placed at
the end of the queue (rule D.1). Their order does not matter because by Lemma 5 any
call to N terminates. Therefore, any expression in the queue is a subexpression of a state
of computation of the top-level expression. Since we use pull-tab steps, some of these
expressions could be inconsistent. Thus, we will refine this rule, after introducing the
notion of fingerprint, to discard inconsistent expressions. If the expression at the front
of the queue is a failure, it is removed from the queue (rule D.2). If the expression at the
front of the queue is a value, it is removed from the queue as well (rule D.3) after being
yielded to a consumer, such as the read-eval-print loop of an interpreter. Finally, if no
previous case applies, the expression e at the front of the queue is passed to procedure
N that executes some steps of e (we will show a finite number) and returns whether the
result should be either discarded or put back at the end of the queue (rule D.4). A result
is discarded when it cannot be derived to a value. If the argument of D is the empty
queue, the computation halts (rule D.5).

Procedure N either executes steps (of constructor-rooted expression), or invokes S.
These steps do not depend on any specific operation of the source program. Like the
other target procedures, the steps executed by N update the state of a computation. In
addition to the other target procedures, N also returns a Boolean value. This Boolean
value is true if and only if the expression argument of N cannot be derived to a value.
This situation occurs when the argument e of an invocation of N is constructor-rooted,
and an argument of the root is either a failure or (recursively) it cannot be reduced to
a value (rule N.1). An example will follow shortly. If an argument of the root of e is a
choice, then e undergoes a pull-tab step (rule N.2). The resulting reduct is a choice that
procedure D will split it into two expressions. If e is constructor-rooted, and neither of
the above conditions holds, then N is recursively invoked on each argument of the root
(rule N.3). Finally, if the argument e of an invocation of N is operation-rooted, then
procedure S is invoked on e (rule N.4) in hopes that e will be derived to a constructor-
rooted expression and eventually one of the previous cases will be executed.

The following example shows why target procedures N cannot rewrite constructor-
rooted expressions to ⊥. In the following code fragment, e is a constructor-rooted ex-
pression that cannot be derived to a value, hence a failing computation, but not a failure
in the sense of Def. 6. Let snd be the operation that returns the second component of a
pair and consider:

t = e ? snd e where e = (⊥,0) (5)

If e is rewritten to ⊥, for some orders of evaluation t has no values, since snd⊥ is a
failure. However, 0 is a value of t, since it is also a value of snd(⊥,0).

12

Procedure S executes a step of an operation rooted expression. Each operation f of
the source program contributes a handful of rules defining S. We call them Sf–rules.
The pattern (in the target program) of all these rules is rooted by f . Consequently, the
order in which the operations of the source program produce S-rules is irrelevant. How-
ever, the order among the Sf–rules is relevant. More specific rules are generated first
and, as stipulated earlier, prevent the application of less specific rules. Let T be a defini-
tional tree of f . At least one rule is generated for each node of T . Procedure compile,
which generates the Sf–rules, visits the nodes of T in post-order. If π is the pattern of
a node N of T , the patterns in the children of N are instances of π. Hence, rules with
more specific patterns textually occur before rules with less specific patterns. In the fol-
lowing account, let e be an f -rooted expression and the argument of an application of
an Sf -rule R and N the node of the definitional tree of f whose visit by compile
produced R. If N is a rule node, then e is a redex and consequently reduced (rule S.1).
If N is an exempt node, then e is a failure and it is reduced to ⊥ (rule S.2). If N is
a branch node, we have shown in Lemma 4 that unless p is reduced to a constructor-
rooted expression, e cannot be reduced to a constructor-rooted expression. Thus, if p is a
failure, e is a failure as well and consequently is reduced to⊥ (rule S.3). If p is a choice,
e undergoes a pull-tab step (rule S.4). Finally, if p is operation-rooted, p becomes the
argument of a recursive invocation of S (rule S.5). The last rule, labeled S.6, handles
situations in which S is applied to an expression which is already constructor-rooted.
This application occurs only to nodes that are reachable along multiple distinct paths,
and originates only from rule N.3.

4 Properties

To reason about computations in the target program, we introduce some new concepts.
A call tree is a possibly infinite, finitely branching tree in which a branch is a call to
a target procedure whereas a leaf is a step in the source program. This concept offers
a simple relation between computations in a source program and computations in the
corresponding target program. If e is an expression of the source program, a left-to-
right traversal of the call tree of D(e) visits the sequence of steps of a computation
of e in the source program. In this computation, we allow pull-tab steps in addition to
rewrite steps, but never apply a rule of choice.

Definition 10 (Call tree). Let S be a source program and T the target program ob-
tained from S according to the Fair Scheme. A call tree rooted by X , denoted ∆(X),
is inductively defined as follows: if X is a null action or a rewrite or pull-tab step, we
simply let ∆(X) = X . If X is a call to a target procedure of T executing a rule with
sequence of actions X1; . . . Xn, then ∆(X) is the tree rooted by X and whose chil-
dren are ∆(X1), . . . ∆(Xn). If e is an expression of S, then a left-to-right traversal of
rewrite and pull-tab steps of D(e) is called the simulated computation of e and denoted
ω(D(e)).

The word “simulation” has been used in transformations of rewrite systems for compi-
lation purposes [25, 38]. The name “simulated computation” stems from the property
that, under the assumption of Def. 10, ω(D(e)) is indeed a pull-tabbing computation

13

of e in the source program. This will be proved in Cor. 2. We start with some pre-
liminary results. Choice identifiers are ignored in the claims presented below. In other
words, we disregard the fact that pull-tabbing creates inconsistent expressions. Incon-
sistent expressions should not be passed as arguments to procedures S and N. We will
describe later how to ensure this condition, but for the time being we ignore whether an
expression is consistent. An example of call tree is presented below.

D(
xor x x
where x=F?T

)

�������

OOOOOOOOOOO

N(
xor x x
where x=F?T

) D(
xor u x ? xor v x
where x=u?v, u=F, v=T

)

S(
xor x x
where x=F?T

) D(. . .)

PULL(F?T)

Fig. 3. Topmost portion of the call tree of the expression defined in (4). The syntax of expressions
is Curry. The values False and True are abbreviated by F and T, respectively.

Theorem 1 (Optimality). Let S be a source program and S the step procedure of the
corresponding target program. If e is an operation-rooted expression of S, then:

1. S(e) executes a replacement at some node n of e,
2. node n is needed for e,
3. if the step at n is the reduction to ⊥, then e is a failure.

Proof. We first describe the structure of the computation of S(e). By the rules of S
in Fig. 1, in ∆(S(e)), S(e) has a single child that is either a step of S, when one of
rules S.1–S.4 is applied to e, or a recursive invocation S(e|o), for some node o of e
different from the root of e, when rule S.5 is applied to e. We will shortly prove that o
is labeled by an operation. Thus, ∆(S(e)) is finite because at every recursive invocation
its argument gets smaller and consists in a straight sequence of one or more invocations
to S terminated by a step. Each claim of the theorem is proved by structural induction
on∆(S(e)). The base case is when there are no recursive invocations to S, i.e., the child
of S(e) is a step of the source program. The inductive case is when there are recursive
invocations to S.

1. Node n is witnessed by the root of the redex of e replaced by the step in the single
leaf of ∆(S(e)).

14

2. If n is the root of e, the claim is trivial, since by assumption n is labeled by an
operation. Otherwise, the child of S(e) in ∆(S(e)) is S(e|o), where o is determined
as follows. Expression e is rooted by some operation f . Let T be the definitional
tree of f . There exists a branch, say T ′, of T with pattern π and inductive node o and
a match h such that h(π) = e. We show that this condition implies that e|o is rooted
by an operation symbol as well. By Definition 1, the root node of π|o is labeled by
a variable. For each constructor c of the sort of this variable, there is a child of T ′
whose pattern is π[o ← c(. . .)], where the arguments of c are fresh variables. If
the root node of e|o were labeled by a constructor, the pattern of some child of T ′
would match e, since the rules of Sf are generated by a post-order traversal of T ,
hence the patterns of the children of T ′ are tried before the pattern in T ′. Thus, e|o
is not rooted by a constructor symbol. By Lemma 4, node o is needed for e. By the
induction hypothesis, there exists some node n such that S(e|o) executes a step at n
and n is needed for e|o. By Lemma 1, the relation “needed for” is transitive. Thus,
node n is needed for e as well.

3. Suppose that S(e) results in the step e|n → ⊥. By the rules of S in Fig. 1, e|n is
rooted by some operation f and is matched by the pattern of some exempt node
of the definitional tree of f . By Lemma 3, there are no rules that can reduce any
state of a computation of e|n at the root. Since e|n is operation rooted, it cannot
be reduced to a constructor-rooted expression, hence it is a failure. By the previous
point of this theorem, node n is needed for e, hence e is a failure. ut

In passing, we observe that the acyclicity of expressions is instrumental to prove The-
orem 1. For any expression e, ∆(S(e)) is finite because if S(e) makes a recursive in-
vocation, the argument of this recursive invocation is a proper subexpression of e. If e
had cycles, then the argument of the recursive invocation could be e itself. However,
acyclicity is not necessary. In fact, [23, Def. 18] introduces the notion of admissibility.
A term graph e is admissible if no node of a cycle of e is labeled by an operation. Ad-
missibility is used to prove the confluence of a certain class of programs [23, Th. 1]. In
our context, confluence is neither required nor desired. However, admissibility, which is
weaker than acyclicity, is still sufficient to prove the termination of S and consequently
all the claims of Theorem 1.

Theorem 1 is significant. The execution of S(e), for any operation-rooted expres-
sion e, terminates with a step. If the step is a rewrite to ⊥, then e has no values. This
knowledge is important to avoid wasting unproductive computational resources on e.
If the step is a rewrite, then that rewrite is unavoidable. More precisely, if e has some
value (a fact that generally cannot be known before obtaining a value), then we have to
execute that rewrite to obtain a value of e. In this way, computational resources are con-
servatively used. If the step is a pull-tab, then reducing the choice source of the pull-tab
is needed to reduce the redex target of the pull-tab to a constructor-rooted expression.
Generally, we cannot know in advance which alternative of the choice might produce a
value, hence both alternatives must be tried. This is exactly what pull-tabbing provides
without committing to either alternative. In this case too, computational resources are
not wasted.

15

Below we state some properties of the computation space of the target program that
culminate in Corollary 2. The correctness of the Fair Scheme is a relatively straightfor-
ward consequence of this corollary.

Corollary 1 (N termination). Let S be a source program and N the normalize proce-
dure of the corresponding target program. For any expression e of S, the execution of
N(e) terminates.

Proof. We show that ∆(N(e)) is finite by structural induction on e. If e is matched by
the pattern in rule N.1 or in rule N.2, N(e) has a single child which is a step. If e is
matched by the pattern in rule N.3, the claim is a direct consequence of the induction
hypothesis. The last rule, N.4, is intended only when e is operation-rooted. In this case,
the claim is a consequence of Theorem 1. If e is not operation-rooted, then e is choice-
root and N(e) has no execution. In passing, we note that, for any x, in ∆(D(x))) N is
never called with a choice-root argument. ut

Lemma 5 (Space). Let S be a source program, D the dispatch procedure of the corre-
sponding target program, and e an expression of S. If ∆(D(e)) is infinite, then:

1. ∆(D(e)) has exactly one infinite path, say B;
2. B is rightmost in ∆(D(e));
3. B contains all and only the applications of D in ∆(D(e));
4. rule D.4 is applied an infinite number of times in B.

Proof. If b0, b1, . . . is an infinite path in ∆(D(e)), then, for all i in N, bi is a call to
D. In fact, if bi were not a call to a target procedure, it would be a leaf in ∆(D(e)),
and if bi were a call to either S and N, then the call tree of bi would be finite by Th. 1
and Cor. 1, respectively. For all i > 0, bi is a recursive invocation of D resulting from
the application of a rule of D since these are the only rules that invoke D. In all these
rules, there is a single recursive invocation of D. This invocation is the last action in
the right-hand side of the rule that produces the recursive invocation. By Def. 10, the
recursive invocation is the rightmost child of bi−1. Thus, the infinite path of ∆(D(e))
is the rightmost one, hence it is unique, and it consists exclusively of applications of
D. In ∆(D(e)), there are no other applications of D outside this path. Now suppose
that the rightmost path of ∆(D(e)) is infinite, but has a finite number of applications
of rule D.4. There exists some k such that bk = D(Lk) and, for i > k, bi = D(Li) is
obtained from D(Li−1) with rule D.1, D.2, or D.3. The elements of Li are the same as
the elements of Li−1 except that one element l of Li−1 is either removed or replaced
by two elements that both have fewer nodes than l itself. For all i, Li is not the empty
sequence, otherwise ∆(D(e)) would be finite. Therefore, for some j > k, the first
element of Lj is an expression consisting of a single node, say p. Node p is labeled by
an operation symbol, since constructors and failures would have been removed by rules
D.2 and D.3. Hence, by the definition of D in Fig. 1, rule D.4 must be applied to D(Lj),
contrary to the assumption. ut

Lemma 6 (State subexpressions). Let S be a source program, D the dispatch proce-
dure of the corresponding target program, and e an expression of S. If D(L0),D(L1), . . .
is the (finite or infinite) rightmost path of ∆(D(e)), then for every Li in the path, the
elements of Li are subexpressions of a state of the computation of e.

16

Proof. The proof is by natural induction on i. Base case: i = 0. By the Def. 10, L0 is
a queue containing only e which trivially is a state of the computation of e. Ind. case:
i > 0. If Li is obtained by applying a rule of D to D(Li−1), except rule D.4, the
claim is immediate from the definition of D in Fig. 1, under the induction hypothesis
assumption that the claim holds for Li−1. If Li is obtained by applying rule D.4 to
D(Li−1), then Li−1 = g; Ḡ, for some expression g and sequence of expressions Ḡ.
In ∆(D(e)), D(Li−1) has two children N(g) and D(Li). By the definition of target
procedures in Fig. 1 Li = Ḡ; g. In the children of D(Li−1), both g and Ḡ are the
traces of the corresponding nodes in Li−1. By the induction hypothesis, every element
of Li−1 is a subexpression or a state of the computation of e. By the definition of N in
Fig. 1, the execution of N(g) results in the application of rewrite and/or pull-tab steps
to g. Hence, the trace of every element in Li−1 is a state of the computation of some
subexpression of e, and consequently every element in Li is a subexpression or a state
of the computation of e. ut

Corollary 2 (Simulation). Let S be a source program, D the dispatch procedure of
the corresponding target program, and e an expression of S. ω(D(e)) is a pull-tabbing
derivation of e.

Proof. By the definition of the target procedures in Fig. 1, every step in ω(D(e)) is a
rewrite or pull-tab step of some expression which, by Lemma 6 is a subexpression of a
state of a computation of e. Thus, in the context of e, the sequence of these steps is a
pull-tabbing derivation of e. ut

Corollary 2 shows that a computation in the target program can be seen as a pull-
tabbing computation in the source program. Each element in the queue argument of D is
a subexpression s of a state of a computation t of the top-level expression e. Expression
t is not explicitly represented. Every node in the path from the root of t to s, excluding
the root of s, is labeled by the choice symbol. Hence, any value of s is a value of
e. Furthermore, s can be evaluated independently of any other element of the queue
argument of D, though it may share subexpressions with them, which both improves
efficiency and simplifies computing the values of e.

As presented in Fig. 1, the queue argument of D may contain expressions that com-
bine the left and right alternatives of the same choice, an example of which is in Fig. 2.
These expressions are unintended. The following statement characterizes all and only
the intended values. A simple modification of D, discussed shortly, avoids creating these
unintended expressions in the target program. A consistent computation, formally de-
fined in [7, Def. 4], avoids combining the left and right alternatives of the clones of a
same choice produced by pull-tab steps.

Theorem 2 (Correctness). Let S be a source program, D the dispatch procedure of the
corresponding target program, e an expression of S, and ω(D(e)) = t0 Ξ→ t1 Ξ→ . . . the
simulated computation of e. Modulo a renaming of nodes: (1) if e ∗→ v in S, for some
value v of S, and tk is an element of ω(D(e)), for some k > 0, then tk

∗→ v, for some
consistent computation in S; and (2) if tk is an element of ω(D(e)), for some k > 0,
and tk

∗→ v is a consistent computation in S, for some value v of S, then e ∗→ v in S.

17

Proof. By Corollary 2, e ∗Ξ→ tk defines a pull-tabbing derivation of e in S that executes
no choice steps [7, Def. 4]. Therefore, points (1) and (2) are direct consequences of (1)
and (2), respectively, of [7, Th. 1]. ut

Given an expression e of the source program, we evaluate D(e) in the target pro-
gram. From any state of the computation of e, through consistent computations, we find
all and only the values of e in S. Point (1) ensures a weak form of completeness—from
any state of the computation of e in target program it is possible to produce any value of
e. Point (2) ensures the soundness of the fair scheme—the target program does not pro-
duce any value of e that would not be produced in the source program. We will address
the weakness of our completeness statement shortly.

The consistent computations sought for obtaining the values of e come almost for
free with the fair scheme. A simple modification of D eliminates inconsistencies so that
only intended values are produced. A fingerprint [20] is a finite set {(c1, a1), . . . , (cj , aj)},
where ci is a choice identifier [7, Def. 1] and ai ∈ {1, 2}. A fingerprint is associated to
a path in an expression. Given an expression e and a path p = n0, n1, . . . in e starting
at the root of e, the fingerprint of p in e, denoted Fe(p), is defined by induction on the
length of p as follows. Base case: Fe(n0) = ∅. Ind. case: Let f = Fe(n0, n1, . . . nk),
for k > 0. If nk is labeled by the choice symbol and has choice identifier i, then
Fe(n0, n1, . . . nk+1) = f ∪ {(i, h)}, where h = 1, resp. h = 2, iff nk+1 is the first,
resp. second, successor of nk. Otherwise, nk is not labeled by the choice symbol, and
Fe(n0, n1, . . . nk+1) = f . A fingerprint f is inconsistent iff for some choice identifier i
both (i, 1) and (i, 2) are in f . Pull-tabbing creates expressions reachable through paths
with inconsistent fingerprints, see Fig. 2 for an example. These paths should be ignored.

An implementation associates a fingerprint to each expression in the queue argu-
ment of D. Expressions with consistent fingerprints are evaluated as discussed earlier
whereas expressions with inconsistent fingerprints are removed from the queue

D(g; Ḡ) =

if fingerprint(g) is consistent
then case g of
. . . rules as in Fig. 1 . . .

else D(Ḡ);

Fig. 4. Refinement of the dispatch procedure to avoid evaluating inconsistent expressions.

We close this section with a final interesting property of the fair scheme unrelated
to its correctness or optimality. Let Ḡ be the argument of D during the computation of
some expression e, and g1 and g2 two elements of Ḡ. If a step is computed on both
g1 and g2, then the redex (including pull-tabs) patterns [17, Def 2.7.3] of these steps
are either disjoint or the same since the only overlapping rules are (1) and these rules
are not used. This implies that distinct steps over distinct elements of Ḡ, i.e., distinct
needed steps of e, can be executed simultaneously. Thus, the fair scheme is able both to
extract some parallelism from a program without having the programmer to explicitly

18

encode or annotate the program for parallel execution, and to exploit this parallelism
during the execution of the program.

5 Strong Completeness

The completeness statement of Th. 2 is weak since, e.g., any hypothetical target pro-
gram that keeps rewriting any expression to itself satisfies the same completeness state-
ment. Of course, rewriting any expression to itself is useless, whereas our target pro-
gram rewrites only needed redexes (Th. 1.2).

We believe that if S is a source program and T is the corresponding target program,
for any expression e, if v is a value of e in S, then v is eventually produced by T . In the
following, first we argue why a proof of this claim does not appear to be a low-hanging
fruit. Then we describe a construction that might lead to a formal proof.

In orthogonal systems, repeatedly reducing needed redexes eventually leads to a
normal form, if it exists [34, Th. 3.26]. This seminal result does not cross over to our
framework. We work with a particular kind of graph instead of terms, but we believe
that this difference is not crucial; actually it simplifies some aspects of the discussion.
We adopt a different definition of need, but we believe that this difference is not crucial
either, since the two notions coincide on the deterministic portions of a computation.
The reason why the theorem of [34] does not extend to LOIS systems is the choice
operation. Consider the rewrite rule:

f(n)→ f(n+ 1) ?n (6)

The (infinite) derivation f(0)
+→ f(1) ? 0

+→ f(2) ? 1 ? 0
+→ . . . makes only steps

without which some value of f(0) could not be reached. Hence, in an intuitive sense
these steps are needed for those values. Yet the derivation does not end in a normal
form of f(0) (nor does it end at all). The example suggests that we have to extend not
only proofs, but also some of their underlying concepts—as we did for the notion of
need in Def. 5. In particular, pull-tabbing would benefit from a more flexible notion of
termination. In fact, f(0) has an infinite number of normal forms which in practice are
all produced by a computation of f(0) that does not terminate. Instead of proposing
new concepts, a task that seems impossible within the confines of this paper, we take a
different route.

Let S be a source program, T the program obtained from S according to the Fair
Scheme. Informally speaking, we would like to show that if a computation of e in S
produces a value v, then some computation of e in T produces v as well. Formaliz-
ing this statement is complicated by the fact that the computation of e in T may not
terminate, yet still produce the value v. These considerations suggest to formulate the
(strong) completeness of our scheme as follows.

Referring to the previous example, the following derivation shows that f(0) has
value 0. Observe that the derivation has not minimal length and, for simplicity, additions
steps are omitted.

f(0)
+→ f(1) ? 0

+→ f(2) ? 1 ? 0
+→ 0 (7)

19

Below, we show the same derivation with an explicit representation of nodes labeled
by operations. Without loss of generality, let {1, 2, 3, . . .} be the set of nodes. We de-
viate from the customary linear notation of graphs used in the rest of the paper for a
reason that will become clear shortly. Nodes, which are arbitrarily chosen, are shown
as subscripts of the symbols labeling them.

f1(0)→ f2(1) ?3 0→ f4(2) ?5 1 ?3 0→ 0 (8)

Now, we combine a symbol/node pair into a new symbol, called subscripted symbol,
and construct from S a new graph rewriting system S′ that computes with subscripted
symbols. For the running example, the rules of S′ are shown below, where again for
simplicity addition is not subscripted since it does not play any significant role.

f1(n)→ f2(n+ 1) ?3 n
f2(n)→ f4(n+ 1) ?5 n
x ?3 y → y

(9)

In S′, the rules of a subscripted symbol originating from a non-choice symbol of S are
the same as in S except for the presence of subscripts. A symbol of S might generate a
family of symbols of S′ that differ only for the subscripts, see the first two rules of (9). A
subscripted choice has a single rule yielding either the left or right argument according
to the rule used in the derivation of e ∗→ v in S, see the third rule of (9). Using graph
rewriting instead of term rewriting is essential for meaningful subscripting of choices.
In term rewriting, a symbol may have two residuals [34], i.e., be duplicated, by a step.
If a choice is duplicated, one occurrence could be reduced to the left argument whereas
the other occurrence to the right argument. This would prevent defining a subscripted
choice with a single rule. In graph rewriting, every node has at most one residual (is
never duplicated) by a step. Hence a subscripted choice is reduced at most once and our
construction of S′ is sensible.

System S′ is inductively sequential since every operation has a definitional tree.
In particular, for any non-choice operation f and subscript i, fi in S′ has the same
definitional tree(s) as f in S except for the subscripts. The inductive sequentiality of
subscripted choices is trivial. Thus, S′ is orthogonal [32]. The fact that reducing needed
redexes is a (hyper)normalizing strategy is proved for orthogonal term rewriting sys-
tems. We believe that the same proof holds for the expressions (acyclic, single-root
graphs in inductively sequential graph rewriting systems) that we consider. Thus, we
assume that reducing needed redexes in S′ is normalizing.

If we compile S′ according to the Fair Scheme and obtain a target T ′, then the sim-
ulated computation of the subscripted e, which we denote e′, will reduce only redexes
that by Th. 1 are needed according to our definition and by Lemma 2 are needed ac-
cording to [34]. Hence, the simulated computation of e′ in T ′ produces the normal form
of e′ in S′ which is a subscripted normal form of e in S. Since only operation symbols
are subscripted, these normal forms are equal (modulo a renaming of nodes).

If we compile S according to the Fair Scheme and obtain a target T , then the sim-
ulated computation of e in T will reduce the same redexes reduced in the computation
of e′ in T ′ as follows. Non-choice symbols have the same definitional trees, hence non-
choice-rooted redexes undergo exactly the same steps in both targets except for the

20

subscripts. In T ′, a choice-rooted needed redex is reduced to either of its alternatives. In
T , the same (except for subscripts) redex is not (explicitly) reduced. Rather, the choice
is pulled up in a way that, by Th. 2, allows us to produce each expression that would
be obtained by reducing the choice to either of its alternatives. Indeed, both these ex-
pressions are produced by rule D.1 which has the same effect as reducing a choice to
each of its alternatives. Hence, the normal form of e′ computed in T ′ is computed in T
as well. In the above argument, our construction is rigorous, but we assumed that some
facts about term rewriting systems cross over to graph rewriting systems of the same
class. For this reason, we present the strong completeness of our compilation scheme
as a conjecture.

Statement (Strong Completeness) Let S be a source program, D the dispatch proce-
dure of the corresponding target program, and e an expression of S. If e ∗→ v in S, for
some value v, then ∆(D(e)) has a node D(v; Ḡ) for some, possibly empty, sequence of
expressions Ḡ.

The above statement is exactly what we need in practice. If e has value v, node D(v; Ḡ)
of ∆(D(e)) is where v becomes available for consumption.

6 Implementation

An implementation of the Fair Scheme in C++ [36] is under way. Very preliminary
benchmarks, that focus on the functional aspects of the implementation’s back end are
presented in [15].

An expression e of the source program is represented by a C++ class, Node, ab-
stracting the node at the root of e. Specialized subclasses of Node are defined for op-
erations, constructors, the choice, and failures. Although structurally different, all these
subclasses have the same storage size. This constraint enables efficient subexpression
replacement. When a redex is replaced, the root node of the replacement is placed in
the same memory location that was previously allocated for the root node of the re-
dex through a unique feature of C++ called placement new. This approach eliminates
the need for pointer redirection [23, Def. 8], which saves many small, though cumula-
tively expensive, operations. Replacement in place by collapsing rules, i.e., rewrite rules
whose right-hand side is a variable, is known to potentially duplicate computations. We
currently avoid this problem with “indirection nodes” [39, Sec. 8.1].

A node has a handful of attributes including references to its successors. Since the
storage size of a node is constant, nodes labeled by symbols of arity three or greater
link to overflow storage to accommodate all of the successors. A node attribute called
tag tells whether the label of a node is an operation, a constructor, a failure, etc. For
constructor symbols, the tag also identifies the specific constructor. The tag is an integer
in a small range that supports efficient pattern matching by means of a jump table.

The target procedures are implemented by C++ methods of class Node. For the
most part, the implementation is close to the definition presented in Fig. 1 with a few
adjustments. The argument of function D is a queue of objects consisting of an expres-
sion and a fingerprint. The fingerprint is used to discard inconsistent expressions in the
manner explained at the end of Sec. 4. The Fair Scheme as defined in Fig. 1 executes a

21

step of an expression e by traversing e from the root of e to the root of some the redex
t. Executing a traversal for each step ensures the termination of N, which is essential
for the strong completeness of the Fair Scheme. We have shown in Th. 1 that the step
at t is needed for e. Consequently, if the reduct of t is not constructor rooted, another
step at (the reduct of) t is needed. This situation is likely to result in repeated traversals
from the root of e down to the root, say n, of t. A simple and effective optimization is
to keep reducing e at n until either the label of n becomes a constructor symbol or a
fixed number of steps has been executed. The latter preserves the completeness of the
scheme.

A second major optimization of the Fair Scheme concerns rule D.3 of Fig. 1. A naive
test for determining whether an expression g is a value entails the traversal of g. This
traversal is avoided by storing a flag in each node. This flag is set by the implementation
of target procedure N and makes the test of rules D.3 fast and straightforward. The flag
is also used by rule N.3. The recursive application of N to a successor of the root is
skipped, if the flag reports that the successor is a value already.

7 Related Work

Our work principally relates to the implementation of functional logic languages [19,
21, 22, 24, 30, 45]. This is a long-standing and active area of research whose difficulties
originate from the combination of laziness, non-determinism and sharing [41].

The 90’s saw various implementations, such as PAKCS [30] and T OY [22], in which
Prolog is the target language. This target environment provides built-in logic variables,
hence sharing, and non-determinism through backtracking. The challenge of these ap-
proaches is the implementation in Prolog of lazy functional computations [27].

The following decade saw the emergence of virtual machines, e.g., [14, 33, 44, 45],
with a focus on operational completeness and/or multithreading. In some very recent
implementations [18, 19, 24] Haskell is the target language. This target environment
provides lazy functional computations and to some extent sharing. The challenge of
these approaches is the implementation of non-determinism in Haskell.

Our approach follows [16], which relies less on the peculiarities of the target envi-
ronment than most previous approaches. The target procedures, being abstract, can be
mapped to a variety of programming languages and paradigms. For example, [16] maps
to OCaml [46] using its functional, but not its object-oriented, features.

Our work extends the Basic Scheme of [16]. The Fair Scheme is fair in the sense
that any subexpression of a state of a computation which could produce a result is even-
tually reduced with a needed step. Fairness ensures that, given enough computational
resources, all the values of any expression are eventually produced, a very desirable
property of computations in any declarative language. We showed that achieving fair-
ness is both conceptually simple, the complexities of the definitions of Fair and Basic
Scheme are comparable, and computationally feasible, preliminary results show that the
performances our implementation [15] and [16] are comparable. One major contribu-
tion of the Fair Scheme is its provability. No proof of optimality is given in [16] and the
Basic Scheme is not strongly complete.

22

A strategy for the same class of source programs accepted by our compiler is in
[3]. This strategy executes rewrite (and narrowing) steps, but not pull-tabs, and is non-
deterministic, i.e., it assumes that a choice is always reduced to the “appropriate” alter-
native to produce a result, when there exists such a result. This assumption is obviously
unrealistic. In practice, all implementations of [3] resolves this non-determinism in one
way or another, but without any guarantees. By contrast, the Fair Scheme strategy is
deterministic and its essential properties are well-understood and provable.

8 Conclusion

We presented the design of a compiler for functional logic programming languages.
Our compiler is abstract and general in the sense that both source programs input to
the compiler and target programs output from the compiler are encoded in intermedi-
ate languages. This separation greatly contributes to the flexibility of our compilation
scheme. A source program is a graph rewriting system obtainable from a program in a
concrete syntax such as Curry and T OY . A target program consists of three procedures
that make recursive calls and rewriting and pull-tab steps. From these procedures, it is
easy to obtain concrete code in any number of programming languages.

Our compiler is remarkably simple—it is described by the 15 rules presented in
Fig. 1. The simplicity of the compiler description enables us to prove properties of
the compilation to a degree unprecedented for a work of this kind. We showed both
correctness and optimality. Loosely speaking correctness means that the target code
produces all and only the results produced by the source code, and optimality means
that the target program makes only steps that the source program must make to obtain
a result.

The focus of this paper has been formalizing the Fair Scheme and discovering and
proving some of its fundamental properties. Future work will focus on the implemen-
tation [15]. The presentation of the Fair Scheme in Fig. 1 is conceptually simple and
suitable to prove various properties of the computations of the target program. This
presentation is not intended as a faithful or complete blueprint of an implementation.

The Fair Scheme is the only deterministic strategy for non-deterministic functional
logic computations with a proof of optimality and correctness.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation, 40(1):795–829, 2005.

2. S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors, Proceedings of the Third
International Conference on Algebraic and Logic Programming, pages 143–157, Volterra,
Italy, September 1992. Springer LNCS 632.

3. S. Antoy. Optimal non-deterministic functional logic computations. In Proceedings of the
Sixth International Conference on Algebraic and Logic Programming (ALP’97), pages 16–
30, Southampton, UK, September 1997. Springer LNCS 1298. Extended version at http:
//cs.pdx.edu/∼antoy/homepage/publications/alp97/full.pdf.

23

4. S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd International Confer-
ence on Principles and Practice of Declarative Programming (PPDP’01), pages 199–206,
Florence, Italy, September 2001. ACM.

5. S. Antoy. Evaluation strategies for functional logic programming. Journal of Symbolic
Computation, 40(1):875–903, 2005.

6. S. Antoy. Programming with narrowing. Journal of Symbolic Computation, 45(5):501–522,
May 2010.

7. S. Antoy. On the correctness of pull-tabbing. TPLP, 11(4-5):713–730, 2011.
8. S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic graph rewrit-

ing. In Proc. of the 3rd International Workshop on Term Graph Rewriting, Termgraph’06,
pages 61–70, Vienna, Austria, April 2006.

9. S. Antoy, D. Brown, and S.-H. Chiang. On the correctness of bubbling. In F. Pfenning,
editor, 17th International Conference on Rewriting Techniques and Applications, pages 35–
49, Seattle, WA, August 2006. Springer LNCS 4098.

10. S. Antoy and M. Hanus. Functional logic design patterns. In Proceedings of the Sixth
International Symposium on Functional and Logic Programming (FLOPS’02), pages 67–
87, Aizu, Japan, September 2002. Springer LNCS 2441.

11. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
In Twenty Second International Conference on Logic Programming, pages 87–101, Seattle,
WA, August 2006. Springer LNCS 4079.

12. S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP 2009), pages 73–82, Lisbon, Portugal, September 2009.

13. S. Antoy and M. Hanus. Functional logic programming. Comm. of the ACM, 53(4):74–85,
April 2010.

14. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic com-
putations. In Proc. of the 16th International Workshop on Implementation and Application
of Functional Languages (IFL 2004), pages 108–125, Lubeck, Germany, September 2005.
Springer LNCS 3474.

15. S. Antoy and A. Jost. A target implementation for high-performance functional programs. In
Presentation at the 14th International Symposium Trends in Functional Programming (TFP
2013), Provo, Utah, 2013. Available at http://web.cecs.pdx.edu/∼antoy/homepage/

publications/tfp13/paper.pdf.
16. S. Antoy and A. Peters. Compiling a functional logic language: The basic scheme. In Proc. of

the Eleventh International Symposium on Functional and Logic Programming, pages 17–31,
Kobe, Japan, May 2012. Springer LNCS 7294.

17. M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term Rewriting Systems. Cambridge Univer-
sity Press, 2003.

18. B. Brassel. Implementing Functional Logic Programs by Translation into Purely Functional
Programs. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2011.

19. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to
Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

20. B. Brassel and F. Huch. On a tighter integration of functional and logic programming. In
APLAS’07: Proceedings of the 5th Asian conference on Programming languages and sys-
tems, pages 122–138, Berlin, Heidelberg, 2007. Springer-Verlag.

21. B. Brassel and F. Huch. The Kiel Curry System KiCS. In D. Seipel and M. Hanus, edi-
tors, Preproceedings of the 21st Workshop on (Constraint) Logic Programming (WLP 2007),
pages 215–223, Würzburg, Germany, October 2007. Technical Report 434.

22. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language (version
2.3.1), 2007. Available at http://toy.sourceforge.net.

24

23. R. Echahed and J. C. Janodet. On constructor-based graph rewriting systems. Techni-
cal Report 985-I, IMAG, 1997. Available at ftp://ftp.imag.fr/pub/labo-LEIBNIZ/

OLD-archives/PMP/c-graph-rewriting.ps.gz.
24. S. Fischer, O. Kiselyov, and C. Chieh Shan. Purely functional lazy nondeterministic pro-

gramming. J. Funct. Program., 21(4-5):413–465, 2011.
25. W. Fokkink and J. van de Pol. Simulation as a correct transformation of rewrite systems.

In In Proceedings of 22nd Symposium on Mathematical Foundations of Computer Science,
LNCS 1295, pages 249–258. Springer, 1997.

26. J. C. González Moreno, F. J. López Fraguas, M. T. Hortalá González, and M. Rodrı́guez
Artalejo. An approach to declarative programming based on a rewriting logic. The Journal
of Logic Programming, 40:47–87, 1999.

27. M. Hanus. Efficient translation of lazy functional logic programs into Prolog. In LOPSTR
’95: Proceedings of the 5th International Workshop on Logic Programming Synthesis and
Transformation, pages 252–266, London, UK, 1996. Springer-Verlag.

28. M. Hanus, editor. Curry: An Integrated Functional Logic Language (Vers. 0.8.2), 2006.
Available at http://www-ps.informatik.uni-kiel.de/currywiki/.

29. M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International Con-
ference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

30. M. Hanus, editor. PAKCS 1.9.1: The Portland Aachen Kiel Curry System, 2008. Available
at http://www.informatik.uni-kiel.de/∼pakcs.

31. M. Hanus, H. Kuchen, and J. J. Moreno-Navarro. Curry: A truly functional logic language.
In Proceedings of the ILPS’95 Workshop on Visions for the Future of Logic Programming,
pages 95–107, Portland, Oregon, 1995.

32. M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential and inductively sequential term
rewriting systems. Information Processing Letters, 67(1):1–8, 1998.

33. M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation
in Java. Journal of Functional and Logic Programming, 1999(Special Issue 1):1–45, 1999.

34. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In J.-L. Lassez
and G. Plotkin, editors, Computational logic: essays in honour of Alan Robinson. MIT Press,
Cambridge, MA, 1991.

35. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewriting. Journal
of Logic Programming, 12:237–255, 1992.

36. ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++.
International Organization for Standardization, Geneva, Switzerland, February 2012.

37. T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In J.-P. Jouan-
naud, editor, Functional Programming Languages and Computer Architecture, pages 190–
203, Nancy, France, 1985. Springer-Verlag, LNCS 201.

38. J. F. T. Kamperman and H. R. Walters. Simulating TRSs by minimal TRSs a simple, efficient,
and correct compilation technique. Technical Report CS-R9605, CWI, 1996.

39. J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. de Vries. The adequacy of term graph
rewriting for simulating term rewriting. In M. R. Sleep, M. J. Plasmeijer, and M. C. J. D.
van Eekelen, editors, Term Graph Rewriting Theory and Practice, pages 157–169. J. Wiley
& Sons, Chichester, UK, 1993.

40. F. J. López-Fraguas and J. de Dios-Castro. Extra variables can be eliminated from functional
logic programs. Electron. Notes Theor. Comput. Sci., 188:3–19, 2007.

41. F. J. López-Fraguas, E. Martin-Martin, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
Rewriting and narrowing for constructor systems with call-time choice semantics. Theory
and Practice of Logic Programming, pages 1–49, 2012.

42. F. J. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. A simple rewrite
notion for call-time choice semantics. In PPDP ’07: Proceedings of the 9th ACM SIGPLAN

25

international conference on Principles and practice of declarative programming, pages 197–
208, New York, NY, USA, 2007. ACM.

43. F. J. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative system.
In Proceedings of the Tenth International Conference on Rewriting Techniques and Applica-
tions (RTA’99), pages 244–247. Springer LNCS 1631, 1999.

44. W. Lux. An abstract machine for the efficient implementation of Curry. In H. Kuchen,
editor, Workshop on Functional and Logic Programming, Arbeitsbericht No. 63. Institut für
Wirtschaftsinformatik, Universität Münster, 1998.

45. W. Lux, editor. The Münster Curry Compiler, 2012. Available at http://danae.

uni-muenster.de/∼lux/curry/.
46. Ocaml. Available at http://caml.inria.fr/ocaml/index.en.html, 2004.
47. D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig, G. Engels and G. Rozenberg,

editors, Handbook of Graph Grammars, volume 2, pages 3–61. World Scientific, 1999.
48. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine Intelli-

gence 10, pages 441–454, 1982.

26

