
Declarative Programming with Function Patterns?

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Logic Based Program Synthesis and Transformation: 15th Int’nl Symp., LOPSTR 2005
London, UK, September 7–9, 2005

c© Springer-Verlag LNCS Vol. 3901, pages 6–22

Abstract. We propose an extension of functional logic languages that allows the
definition of operations with patterns containing other defined operation symbols.
Such “function patterns” have many advantages over traditional constructor pat-
terns. They allow a direct representation of specifications as declarative programs,
provide better abstractions of patterns as first-class objects, and support the high-
level programming of queries and transformation of complex structures. More-
over, they avoid known problems that occur in traditional programs using strict
equality. We define their semantics via a transformation into standard functional
logic programs. Since this transformation might introduce an infinite number of
rules, we suggest an implementation that can be easily integrated with existing
functional logic programming systems.

1 Motivation

Functional logic languages (see [16] for a survey) integrate the most important fea-
tures of functional and logic languages to provide a variety of programming concepts to
the programmer. For instance, the concepts of demand-driven evaluation, higher-order
functions, and polymorphic typing from functional programming are combined with
logic programming features like computing with partial information (logic variables),
constraint solving, and non-deterministic search for solutions. This combination, sup-
ported by optimal evaluation strategies [6] and new design patterns [8], leads to better
abstractions in application programs such as implementing graphical user interfaces
[18] or programming dynamic web pages [19].

A functional logic program consists of a set of datatype definitions and a set of
functions or operations, defined by equations or rules, that operate on these types. For
instance, the concatenation operation “++” on lists can be defined by the following
two rules, where “[]” denotes the empty list and “x:xs” the non-empty list with first
element x and tail xs:

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

Expressions are evaluated by rewriting with rules of this kind. For in-
stance, [1,2]++[3] evaluates to [1,2,3], where [x1,x2,...,xn] denotes
x1:x2:...:xn:[], in three rewrite steps:
? This work was partially supported by the German Research Council (DFG) under grant Ha

2457/5-1 and the NSF under grant CCR-0218224.



[1,2]++[3] → 1:([2]++[3]) → 1:(2:([]++[3])) → [1,2,3]

Beyond such functional-like evaluations, functional logic languages also compute with
unknowns (logic variables). For instance, a functional logic language is able to solve an
equation like xs++[x] =:= [1,2,3] (where xs and x are logic variables) by guessing
the bindings [1,2] and 3 for xs and x, respectively.

This constraint solving capability can be exploited to define new operations using
already defined functions. For instance, the operation last, which yields the last ele-
ment of a list, can be defined as follows (the “where...free” clause declares logic
variables in rules):

last l | xs++[x] =:= l = x where xs,x free (last1)
In general, a conditional equation has the form l | c = r and is applicable for rewriting
if its condition c has been solved. A subtle point is the meaning of the symbol “=:=”
used to denote equational constraints. Since modern functional logic languages, like
Curry [17, 22] or Toy [25], are based on a non-strict semantics [6, 14] that supports lazy
evaluation and infinite structures, it is challenging to compare arbitrary, in particular
infinite, objects. Thus, the equality symbol “=:=” in a condition is usually interpreted as
strict equality—the equation t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same
constructor term (see [13] for a more detailed discussion on this topic). A constructor
term is a fully evaluated expression; a formal definition appears in Section 3.

Strict equality evaluates both its operands to a constructor term to prove the validity
of the condition. For this reason, the strict equation “x =:= head []” does not hold for
any x. The operation head is defined by the single rule head (x:xs) = x. Therefore,
the evaluation of head [] fails to obtain a constructor term. While the behavior of “=:=”
is natural and intuitive in this example, it is less so in the following example.

A consequence of the strict equality in the definition of last in Display (last1) is
that the list argument of last is fully evaluated. In particular, last [failed,2], where
failed is an operation whose evaluation fails, has no result. This outcome is unnatural
and counterintuitive. In fact, the usual functional recursive definition of last would
produce the expected result, 2, for the same argument. Thus, strict equality is harmful
in this example (further examples will be shown later) since it evaluates more than one
intuitively requires and, thus, reduces the inherent laziness of the computation.

There are good reasons for the usual definition of strict equality [13]; we will see
that just dropping the strictness requirements in equational conditions leads to a non-
intuitive behavior. Therefore, we propose in this paper an extension of functional logic
languages with a new concept that solves all these problems: function patterns. Tra-
ditional patterns (i.e., the arguments of the left-hand sides of rules) are required to be
constructor terms. Function patterns can also contain defined operation symbols so that
the operation last is simply defined as

last (xs++[x]) = x

This definition leads not only to concise specifications, but also to a “lazier” behavior.
Since the pattern variables xs and x are matched against the actual (possibly unevalu-
ated) parameters, with this new definition of last, the expression last [failed,2]

evaluates to 2.
The next section defines the notations used in this paper. Section 3 defines the con-

cept of function patterns, and Section 4 shows examples of its use. Section 5 proposes an

7



implementation of function patterns and shows its performance on some benchmarks.
We compare our approach with related work in Section 6 and conclude in Section 7.

2 Preliminaries

In this section we review some notations for term rewriting [9, 10] and functional logic
programming [16] concepts used in the remaining of this paper.

Since polymorphic types are not important for our proposal, we ignore them and
consider a many-sorted signature Σ partitioned into a set C of constructors and a set
F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. Given a set of variables X , the set of
terms and constructor terms are denoted by T (C∪F ,X ) and T (C,X ), respectively. As
in the concrete syntax of Curry, we indicate the application of a function to arguments
by juxtaposition, e.g., f t1 . . . tn. A term is linear if it does not contain multiple occur-
rences of a variable. A term is operation-rooted (constructor-rooted) if its root symbol
is an operation (constructor). A head normal form is a term that is not operation-rooted,
i.e., it is a variable or a constructor-rooted term.

Given a signature Σ = (C,F), a functional logic program is set of rules of the form

f d1 . . . dn | c = e

where f/n ∈ F is the function defined by this rule, d1, . . . , dn are constructor terms
(also called patterns) such that the left-hand side f d1 . . . dn is linear, the condition c
(which can be omitted) is a constraint, and the right-hand side is an expression.3 A con-
straint is any expression of type Success, e.g., the trivial constraint success which
is always satisfied, the equational constraint t1 =:= t2 which is satisfied if both sides
are reducible to the same constructor term, or the conjunction c1 & c2 which is satisfied
if both arguments are satisfied (operationally, “&” is the basic concurrency combina-
tor since both arguments are evaluated concurrently). To provide a simple operational
meaning of conditional rules, we consider the rule “l | c = r” as equivalent to the
unconditional rule “l = cond c r” where the auxiliary operation cond is defined by

cond success x = x

Note that rules can overlap so that operations can be non-deterministic. For instance,
the rules

x ? y = x

x ? y = y

define a non-deterministic operation “?” that returns one of its arguments, and
insert x [] = [x]

insert x (y:ys) = x : y : ys ? y : insert x ys

define a non-deterministic insertion of an element into a list.
We need a few additional notions to formally define computations w.r.t. a given

program. A position p in a term t is represented by a sequence of natural numbers.
3 In the concrete syntax, the variables x1, . . . , xk occurring in c or e but not in the left-hand

side must be explicitly declared by a where-clause (where x1, . . . , xk free) to enable some
consistency checks.

8



Positions are used to identify specific subterms. Thus, t|p denotes the subterm of t at
position p, and t[s]p denotes the result of replacing the subterm t|p by the term s (see
[10] for details). A substitution is an idempotent mapping σ : X → T (C ∪ F ,X ).
Substitutions are extended to morphisms on terms in the obvious way. A rewrite step
t → t′ is defined w.r.t. a given program P if there are a position p in t, a rule l = r ∈ P
with fresh variables, and a substitution σ with t|p = σ(l) and t′ = t[σ(r)]p. A term t is
called irreducible or in normal form if there is no term s such that t → s.

Functional logic languages also compute solutions of free variables occurring in
expressions by instantiating them to constructor terms so that a rewrite step becomes
applicable. The combination of variable instantiation and rewriting is called narrowing.
Formally, t ;σ t′ is a narrowing step if σ(t) → t′ and t|p is not a variable for the
position p used in this rewrite step. Although the latter condition is a substantial restric-
tion on the possible narrowing steps, there are still too many possibilities to apply this
definition of narrowing in practice. Therefore, older narrowing strategies (see [16] for
a detailed account), influenced by the resolution principle, require that the substitution
used in a narrowing step is a most general unifier of t|p and the left-hand side of the
applied rule. As shown in [6], this condition prevents the development of optimal eval-
uation strategies. Therefore, many recent narrowing strategies relax this requirement
but provide other constructive methods to compute a small set of unifiers and positions
used in narrowing steps [5]. In particular, needed or demand-driven strategies perform
narrowing steps only if they are necessary to compute a result. For instance, consider
the following program containing a declaration of natural numbers in Peano’s notation
and operations for addition and a “less than or equal” test (the pattern “_” denotes an
unnamed anonymous variable):

data Nat = O | S Nat

leq O _ = True

add O y = y leq (S _) O = False

add (S x) y = S (add x y) leq (S x) (S y) = leq x y

Then the subterm t in the expression “leq O t” need not be evaluated since the
first rule for leq is directly applicable. On the other hand, the first argument of
“leq (add v w) O” must be evaluated to rewrite this expression. Furthermore, the
expression “leq v (S O)” becomes reducible after the instantiation of v to either O or
S z.

This strategy, called needed narrowing [6], is optimal for the class of inductively
sequential programs that do not allow overlapping left-hand sides. Its extension to more
general programs with possibly overlapping left-hand sides can be found in [3, 4]. A
precise description of this strategy with the inclusion of sharing, concurrency, and ex-
ternal functions is provided in [1]. In the following, we denote by t

∗

;σ t′ a sequence
of needed narrowing steps evaluating t to t′, where σ is the composition of all the sub-
stitutions applied in the sequence’s steps.

3 Function Patterns

As already mentioned, strict equality is the usual interpretation of equational conditions
in functional logic languages based on a non-strict semantics. Since this looks like a

9



contradiction, first we explain the reasons for using strict equality, then we explain our
proposal.

Strict equality holds between two expressions if both can be reduced to
a same constructor term. Consequently, strict equality is not reflexive; e.g.,
“head [] =:= head []” does not hold. One motivation for this restriction is the diffi-
culty of solving equations with a reflexive meaning in the presence of non-terminating
computations. For instance, consider the following functions:

from x = x : from (x+1)

rtail (x:xs) = rtail xs

Demanding reflexivity in equational conditions implies that the condition
rtail (from 0) =:= rtail (from 5)

should hold since both sides are reducible to rtail (from n) for every n ≥ 5. How-
ever, this is not a normal form, so it is unclear how far some side of the equation should
be reduced. Although this problem could be solved by an exhaustive search of the in-
finite reduction space (clearly not a practical approach), there are also problems with
reflexivity in the presence of infinite data structures. For instance, the condition

from 0 =:= from 0

should hold if “=:=” is reflexive. Since both sides describe the infinite list of natural
numbers, the condition

from 0 =:= from2 0

should also hold w.r.t. the definition
from2 x = x : x+1 : from2 (x+2)

Obviously, the equality of infinite structures defined by syntactically different functions
is undecidable in general (since this requires solving the halting problem). Therefore,
one needs to restrict the meaning of equational conditions to a non-reflexive interpre-
tation. Note that this condition is not specific to functional logic languages: Haskell
[27] also defines the equality symbol “==” as strict equality by default (this could be
changed by the use of type classes).

Although the previous examples have shown that there are good reasons to avoid
reflexivity of equality, one might think that the evaluation of some parts of an expres-
sion in an equational condition is unnecessary or even unintended, as discussed with
the function last defined in Section 1. For instance, one could propose to relax strict
equality as follows: to solve the equation x =:= t, bind x to t (instead of binding x to the
evaluation of t). Although in some cases, such as the operation last, this policy seems
to produce the desired behavior, in other cases it would lead to a non-intuitive behavior.
For instance, consider the function:

f x | x =:= from 0 = 99

The expression “let x free in f x” would evaluate to 99 since x would
be bound to from 0 which would not be further evaluated. Similarly,
“let x free in (f x,99)” would evaluate to (99,99). However, the evalua-
tion of “let x free in (f x,f x)” would not terminate, since the evaluation of
the equational condition “from 0 =:= from 0” would not terminate. In fact, “f x”

10



should be evaluated twice, the first time with x unbound and the second time with x

bound to “from 0”.
This example shows that a simple binding of logic variables to unevaluated expres-

sions is also problematic. Therefore, non-strict functional logic languages usually bind
logic variables only to constructor terms. However, pattern variables, i.e., variables oc-
curring in patterns, can be bound to unevaluated expressions. Thus, in order to relax the
strictness conditions in equational conditions, one needs a finer control over the kind of
involved variables, i.e., one needs to distinguish between logic variables that are bound
to constructor terms and pattern variables that can be bound to unevaluated expressions.
For this purpose, we propose to use function patterns as an intuitive and simple solution
to the problems discussed above. We explain the details below.

A function pattern is a pattern that contains, in addition to pattern variables and con-
structor symbols, defined operation symbols. For instance, if “++” is the list concate-
nation operation defined in Section 1, (xs++[x]) is a function pattern. Using function
patterns, we can define the function last as

last (xs++[x]) = x (last2)
This definition not only is concise but also introduces xs and x as pattern variables
rather than logic variables as in definition (last1) above. Since pattern variables can
be bound to unevaluated expressions, last returns the last element of the list without
evaluating any element of the list. For instance, last [failed,2] evaluates to 2, as
intended.

To extend functional logic languages with function patterns, we have to clarify two
issues: what is the precise meaning of function patterns, and how are operations defined
using function patterns executed? We prefer to avoid the development of a new theory of
such extended functional logic programs and to reuse existing results about semantics
and models of traditional functional logic programs (e.g., [14]). Therefore, we define
the meaning of such programs by a transformation into standard programs. The basic
idea is to transform a rule containing a function pattern into a set of rules where the
function pattern is replaced by its evaluation(s) to a constructor term.

Consider the definition (last2) above. The evaluations of xs++[x] to a constructor
term are

xs++[x]
∗

;xs7→[] [x]

xs++[x]
∗

;xs7→[x1] [x1,x]

xs++[x]
∗

;xs7→[x1,x2] [x1,x2,x]

. . .

Thus, the single rule (last2) is an abbreviation of the set of rules
last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

These rules exactly describe the intended meaning of the operation last. Obviously,
this transformation cannot be done at compile time since it may lead to an infinite
set of program rules. Therefore, in Section 5 we discuss techniques to perform this
transformation at run time. The basic idea is, for an invocation of last with argument

11



l, to compute the single ordinary (constructor) pattern p of the rule that would be fired
by that invocation and to match, or more precisely to unify since we narrow, l and p.

This idea has two potential problems. First, we have to avoid its potential underly-
ing circularity. Evaluating a function pattern must not involve executing the operation
being defined since its definition is not available before the function pattern has been
evaluated. For instance, a rule like

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

is not allowed since the meaning of the function pattern (xs++ys) depends on the def-
inition of “++”. In order to formalize such dependencies, we introduce level mappings.

Definition 1. A level mapping l for a functional logic program P is a mapping from
functions defined in P to natural numbers such that, for all rules f t1 . . . tn | c = e, if g
is a function occurring in c or e, then l(g) ≤ l(f). 2

For instance, consider the program P consisting of the rule (last1) and the rules defining
“++”. Then l(++) = 0 and l(last) = 1 is a possible level mapping for P . Using level
mappings, we can define the class of acceptable programs.

Definition 2. A functional logic program P with function patterns is stratified if there
exists a level mapping l for P such that, for all rules f t1 . . . tn | c = e, if g is a defined
function occurring in some ti (i ∈ {1, . . . , n}), then l(g) < l(f). 2

The restriction to stratified programs ensures that, if an operation f is defined using a
function pattern p, the evaluation of p to a constructor term does not depend, directly or
indirectly, on f .

The second potential problem of our intended transformation of rules containing
function patterns is nonlinearity. For instance, consider the operation idpair defined
by

idpair x = (x,x)

and the rule
f (idpair x) = 0 (f1)

After evaluating the function pattern (idpair x), the rule (f1) would be transformed
into

f (x,x) = 0 (f2)
However, this rule is not left-linear and therefore is not allowed in traditional func-
tional logic programs. Relaxing the left-linearity condition on rules is not viable since
it causes difficulties similar to those we discussed for relaxing strict equality. Usually,
the intended meaning of multiple occurrences of a variable in the left-hand side is that
the actual arguments at these variables’ positions should be equal in the sense of an
equational condition [4]. This can be expressed by introducing new pattern variables
and equational conditions. Thus, the rule (f2) is finally transformed into the valid rule

f (x,y) | x=:=y = 0

The above considerations motivate the following interpretation of functional logic pro-
grams with function patterns.

12



Definition 3. Let P be a stratified functional logic program with function patterns. The
meaning of P is the program P ∗ defined by:

P ∗ = {lin(f t1 . . . tn | σ(c) = σ(e)) s.t. f e1 . . . en | c = e ∈ P,

(e1, . . . , en)
∗

;σ (t1, . . . , tn), and
t1, . . . , tn are constructor terms}

where lin denotes the linearization of a rule defined by

lin(l | c = r) =







l | c = r if l is linear;
lin(l[y]q | (x =:= y & c) = r) if l|p = x = l|q , p 6= q,

x is a variable and y is fresh. 2

The associated program P ∗ is well defined (since P is stratified) and a valid functional
logic program, since the patterns in the left-hand sides are linear constructor terms.
Since function patterns are transformed into ordinary patterns, the variables occurring
in function patterns become ordinary pattern variables that can be bound to unevalu-
ated expressions. Thus, function patterns relax the strict evaluation conditions of strict
equality without any difficulties. The only potential problem is the generation of an in-
finite number of rules for P ∗ in case of function patterns involving recursive functions.
Therefore, we show in Section 5 a transformation, executed at run time, that generates
only the rules that are required for a specific application of an operation defined by a
function pattern.

4 Examples

In this section we present a few more examples of programs that use function patterns.
The following example makes essential use of function patterns. The proposed design
would not work with strict equality.

Example 1. This example is a problem of the 1993 East-Central Regionals of the ACM
International Collegiate Programming Contest. Given a number n, we form the chain
of n by:

(1) arranging the digits of n in descending order,
(2) arranging the digits of n in ascending order,
(3) subtracting the number obtained in (2) from the number obtained in (1) to form a

new number, and
(4) repeating these steps for the new number.

E.g., the chain of 123 is 198, 792, 693, 594, 495, 495. . . The problem is to compute the
length of the chain up to the first repeated number—seven for 123.

The implementation is simpler if one separates the task of constructing the chain of
a number from the task of finding the first repeated element in the chain. The solution
of the problem is obtained by (“.” denotes function composition):

lengthUpToRepeat . chain

13



where the function chain constructs the chain of a number and the function
lengthUpToRepeat measures the length of the chain up to the first repeated element.
The latter function, coded below, uses a function pattern.

lengthUpToRepeat (p++[r]++q)

| nub p == p && elem r p

= length p + 1

The pattern breaks the infinite chain of a number into a prefix p, the first repeated ele-
ment r, and the rest of the chain q. The symbols nub and elem denote library functions.
nub removes repeated elements from a list. Hence, the condition nub p == p ensures that
there are no repeated elements in p. elem tells whether an element is a member of list.
The conjunction of the two conditions ensures that r is the first repeated element in the
chain.

By contrast, an implementation that uses strict equality, i.e., that attempts to solve
p++[r]++q =:= chain n, would be flawed. By design, chain n is an infinite list,
and therefore strict equality would not terminate. 2

The second example shows the use of function patterns to specify transformations in
tree-like structures.

Example 2. This example addresses the simplification of symbolic arithmetic expres-
sions. E.g., 1 ∗ (x + 0) simplifies to x. We define expressions as

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

The following non-deterministic function, evalTo, defines a handful of expressions
that for every expression e evaluate to e itself. Obviously, many more are possible, but
the following ones suffice to make our point.

evalTo e = Add (Lit 0) e

? Add e (Lit 0)

? Mul (Lit 1) e

? Mul e (Lit 1)

The following function replaces in an expression a subexpression identified by a posi-
tion with another subexpression.

replace - [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)

replace (Mul l r) (1:p) x = Mul (replace l p x) r

replace (Mul l r) (2:p) x = Mul l (replace r p x)

Observe that replace c p e, where c is a “context”, p is a position and e is an ex-
pression, is the term replacement operation denoted by c[e]p in Section 2. Finally, the
simplification operation, simplify, replaces in a context c an expression that evaluates
to x with x itself. p is the position of the replacement in the context.

simplify (replace c p (evalTo x)) = replace c p x

E.g., if t1 = Mul (Lit 1) (Add (Var "x") (Lit 0)), then simplify t1 evaluates to
t2 = Add (Var "x") (Lit 0) and simplify t2 evaluates to Var "x". If an expression
t cannot be simplified, simplify t fails; otherwise, it non-deterministically executes
a single simplification step. The application of repeated simplification steps to an ex-

14



pression until no more simplification steps are available can be controlled by Curry’s
search primitives [21]. Note that this example shows two useful applications of func-
tion patterns: the possibility to define abstractions for complex collections of patterns
(via operation evalTo) and the ability to specify transformations at arbitrary positions
inside an argument (via operation replace). The latter technique can be also exploited
to formulate queries on expressions. For instance, the operation

varInExp (replace c p (Var v)) = v

non-deterministically returns a variable occurring in an expression. One can easily ex-
tract all variables occurring in an expression, by wrapping this operation with search
primitives like findall [21]. 2

Thus, function patterns are handy to provide executable high-level definitions of com-
plex transformation tasks and queries on tree-like structures. Further examples of this
kind (which we omit due to space limitations) are transformations and queries of XML
terms.

5 Implementation

The transformational definition of the meaning of function patterns (Definition 3) does
not lead to a constructive implementation since it might generate an infinite set of pro-
gram rules. Any execution of a program, though, would make use of only a finite subset
of these rules. In this section, we show a specialization of this transformation that, un-
der suitable assumptions discussed later, enumerates the results of all the program rules
that would be used in a specific execution of a program. These rules can be determined
only at run time. This approach is easily integrated into existing implementations of
functional logic languages, e.g., the Curry programming environment PAKCS [20]. We
present some benchmarks of our implementation of this approach.

To integrate function patterns into existing implementations of functional logic lan-
guages, we eliminate the function patterns from the left-hand sides and move their func-
tionality into the conditional part by means of a new function pattern unification oper-
ator “=:<=”. The following transformation formalizes this process:

Definition 4. Let P be a stratified functional logic program with function patterns. The
function pattern elimination function elim maps each rule into a rule without function
patterns as follows:

elim(f t1 . . . tn | c = r) =














elim(f t1 . . . ti−1 x ti+1 . . . tn | ti =:<=x & c = r) if t1, . . . , ti−1 ∈ T (C,X ),
ti contains functions,
x fresh variable;

f t1 . . . tn | c = r otherwise 2

For instance, elim maps rule (last2) to
last ys | xs++[x] =:<= ys = x where xs,x free (last3)

i.e., the pattern variables xs and x become logic variables in the transformed program.
Their specific status will be used in the implementation of “=:<=”.

15



It remains to implement the operator “=:<=”. Its semantics is determined by Def-
inition 3, i.e., the left argument must be evaluated to a constructor term that is finally
matched against the right argument. This must be done with some care since the com-
putation space of the left argument may be infinite. For instance, this situation occurs
with the rule (last3). Consider again the computation of last [failed,2]. There are
infinitely many evaluations of xs++[x] to a constructor term. However, among these
evaluations every list with more or less than two elements cannot match [failed,2].

To handle this situation, the evaluation of the function pattern by “=:<=” is demand-
driven. This means that the function pattern is evaluated to a head normal form that
is compared with the structure of the right argument and is further evaluated only if
necessary. The details of function pattern unification follow.

To evaluate e1 =:<= e2:
1. Evaluate e1 to a head normal form h1

2. If h1 is a variable: bind it to e2

3. If h1 = c t1 . . . tn (where c is a constructor):
(a) Evaluate e2 to a head normal form h2

(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh
variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

Obviously, this implements the evaluation of the left argument of “=:<=” to a con-
structor term that is matched against the right argument. Since the evaluation of the
left argument is interleaved with the matching, the search space of the evaluation of
xs++[x] =:<= [failed,2] using the rule (last3) is finite (due to the failure in case
3d).

So far, we have only described the evaluation and binding of function patterns.
However, the semantics of Definition 3 requires also the linearization of the evaluated
function pattern combined with the addition of a strict equality constraint. One could
consider integrating the linearization with the evaluation of “=:<=” in step 3: if the left
argument is evaluated to the constructor-rooted term c t1 . . . tn, we could replace mul-
tiple occurrences of a variable by new variables and generate strict equality constraints
that are solved after the variables have been bound. Unfortunately, this method would be
incorrect according to the semantics of Definition 3, since some repeated occurrences
of a variable could be erased before the end of the evaluation. For instance, consider the
following program:

k0 x = 0

pair x y = (x,y)

f (pair (k0 x) x) = 0

The meaning of f is equivalent to
f (0,x) = 0

by Definition 3. Consequently, f (0,failed) should evaluate to 0. In the evaluation of
pair (k0 x) x =:<= (0,failed), the left argument is reduced to the constructor-
rooted term (k0 x,x) where the variable x occurs twice. If we replace the first oc-
currence by y and generate the strict equality y=:=x, eventually we have to solve the

16



strict equality y=:=failed which causes the failure of the complete evaluation. Thus,
the generation of strict equalities for the linearization of function patterns is a dynamic
property. We have to keep track of the variables in function patterns that occur in the
evaluated term. We can do this by marking the pattern variables that appear in the evalu-
ated function pattern (i.e., in step 2). In this case the generated strict equality constraints
are only executed when both involved variables have been marked during the evaluation
of “=:<=”. Thus, we obtain an incremental implementation of matching with function
patterns conforming to the semantics specified by Definition 3.

Since the checking for multiple variable occurrences and the demand-driven gener-
ation of strict equality constraints for the involved variables might consume a consider-
able amount of time during function pattern unification, it is reasonable to optimize this
part. Therefore, we have also implemented a second function pattern unification oper-
ator “=:<<=”, which behaves like “=:<=” but does not check for multiple occurrences
of variables in evaluated function patterns. It is safe to replace “=:<=” by the more ef-
ficient operation “=:<<=” if all the evaluations of the function pattern are linear. For
instance, if a function pattern is linear and all the involved operations (i.e., also the ones
that might be indirectly called) have rules with right-linear sides, then one can safely
replace “=:<=” by “=:<<=”. This is the case for our definition of last with rule (last2).

We formalize the correctness of our implementation as follows. For the sake of
simplicity, we consider only unary functions, which typically are the only functions
defined by a function pattern. Let R be a TRS, m = f p → r a rule defined by a
function pattern and m′ = f x | p =<:=x → r the transformed rule, where x is a fresh
variable. For all terms t and u, f t → u in R ∪ {m} iff f t → u in R ∪ {m′}. The
proof is simple except for the following claim: In R, for all terms p and t, p =<:= t

iff there exists a constructor term l and a substitution σ such that p
∗

; l and σ(l) =
σ(t). A rigorous proof of this result hinges on a formalization of our pattern unification
algorithm that goes beyond the scope of this paper. In particular, the implementation
requires a complete strategy to ensure that any constructor term l such that p

∗

; l is
computed.

We have implemented function patterns in the Curry programming environment
PAKCS [20]. This environment includes a compiler from Curry into Prolog [7], which
we used for our benchmarks. The implementation is based on the ideas sketched above.
Rules with function patterns are transformed into standard rules by putting the calls to
“=:<=” in the condition part. Although function patterns aim at expressiveness rather
than efficiency, we also show a few benchmarks where execution differences between
function patterns and traditional strict equality are substantial. The benchmarks refer
to the examples in this paper and are executed with strict equality (“=:=”), general
function patterns (“=:<=”), and linear function patterns (“=:<<=”). The following table
shows the execution results on a Pentium-M (1.6GHz) (all the times, in milliseconds,
are the average of ten executions):4

4 The operation inc x n increments n times x by 1. All the other operations are defined either in
the standard prelude or in this paper. simplify* is the repeated application of the operation
simplify to a large term with many opportunities for simplification, and varsInExp extracts
all variables from a large term based on the operation varInExp.

17



Expression: “=:=” “=:<=” “=:<<=”
last (take 10000 (repeat failed) ++ [1]) no solution 380 250
last (map (inc 0) [1..2000]) 20900 90 60
lengthUpToRepeat ([1..50]++[1]++[51..]) ∞ 200 200
simplify* 1200 1080 690
varsInExp 2240 1040 100

As one can see, the specialization of matching linear function patterns with “=:<<=”
can improve the efficiency considerably. Further improvements can be obtained by spe-
cializing the function patterns at compile time. For this purpose, we define an auxiliary
operation

evalFP fp x e | fp =:<= x = e

Now, consider again the definition of last. Using evalFP, we can transform rule
(last3) into (here, we omit the declaration of logic variables by where-clauses):

last zs = evalFP (xs++[x]) zs x (last4)
According to Definition 3, the argument (xs++[x]) must be evaluated by narrow-
ing before it is matched against zs. Since there are two possible narrowing steps for
(xs++[x]), we can replace the latter rule by:

last zs = last1 zs ? last2 zs

last1 zs = evalFP [x] zs x =⇒ last1 [x] = x

last2 zs = evalFP (y:(ys++[x])) zs x

=⇒ last2 (y:zs) = evalFP (ys++[x]) zs x

Since “evalFP (ys++[x]) zs x” is a variant of the right-hand side of rule (last4),
with a folding step, we replace it by last zs and obtain the final definition

last zs = last1 zs ? last2 zs

last1 [x] = x

last2 (y:zs) = last zs

This is a functional logic program without function patterns. If we execute our previous
benchmarks with this transformed program, we obtain the following results:

Expression: Transformed last

last (take 10000 (repeat failed) ++ [1]) 120
last (map (inc 0) [1..2000]) 30

The speedup by a factor of 2 shows the advantages of this transformation. The spe-
cialization of a program rule with function patterns is similar to the partial evaluation
of functional logic programs [2]. As such, it is difficult to predict whether a rule will
yield a finite set of specialized rules and/or these rules will execute more efficiently
then the transformation. The setting of function patterns differs from partial evaluation
so that existing results and techniques cannot be directly applied. This demands for the
development of new techniques — an interesting topic for future work.

6 Related Work

Although the idea to allow arbitrary user-defined functions in patterns is new in the
context of functional logic languages, there exist many approaches to improve pattern

18



matching in declarative languages. Here we discuss the ones which have a closer rela-
tion to our work.

In functional logic languages, the considered kinds of patterns are usually construc-
tor terms. Exceptions are languages like SLOG [12] or ALF [15], which allow func-
tions in patterns that are useful to simplify terms before narrowing them. However,
these languages are based on strict evaluation strategies and require the termination of
the underlying rewrite system. Most other work in functional logic programming re-
lated to pattern matching considers only constructor patterns and concentrates mainly
on sophisticated matching strategies in order to reduce the search space of narrowing
computations (see [5, 16] for surveys).

Also in purely logic languages, patterns are constructor terms, and pattern matching
is generalized to unification. An exception is constraint logic programming [23], where
evaluable functions over constraint domains are allowed in patterns. However, they do
not play any role in the pattern matching process since they are usually compiled into
the right-hand side and passed to a separate constraint solver. Thus, most of the related
work has been done for purely functional languages, as we will discuss next.

Context patterns [26], proposed for the functional language Haskell, are most
closely related to our approach. The motivation for context patterns is somehow similar
to the introduction of function patterns, since context patterns support the definition of
functions based on the matching of subterms at an arbitrary depth. For instance, our
last example can be defined with context patterns as

last (c [x]) = x

Here, c denotes a context, i.e., a term with a hole that is filled with the argument [x].
Similarly to function patterns, context patterns are useful to define queries and trans-
formations over complex structures with a relatively small effort. However, due to the
underlying functional base language, context patterns are more restricted. The holes in
a context pattern are matched in a top-down left-to-right traversal against the actual ar-
gument and only the first match is taken. The author argues that this behavior, although
incomplete, fits well into the framework of functional programming. Actually, he writes
that a “non-deterministic approach would fit better in a integrated functional-logic lan-
guage like Curry.” It is interesting to note that the functional logic setting allows also to
omit some other restrictions of context patterns, like the strict order of the traversal.

First-class patterns [28] are an approach to treat patterns as first-class objects (by
considering patterns as functions of type “a -> Maybe b”) in order to build abstractions
for patterns and support user-defined strategies for pattern matching. This covers one
aspect of function patterns in a purely functional setting, but the definition of opera-
tions with first-class patterns is rather clumsy even after introducing a specific language
extension to support syntactic sugar for first-class patterns.

Transformational patterns [11] are another extension that supports the inclusion of
user-defined functions in patterns. These functions are applied to the actual arguments
before pattern matching in order to support a different view of the actual data (whose
structure might be hidden in an abstract data type). This is orthogonal to our approach,
in which functions are formal parameters that are evaluated and matched against the
actual parameters.

19



Other related works include approaches to simplify writing code for term traversals.
For instance, [24] shows a technique to support generic term traversals by defining small
code pieces for each data type (comparable to the operation replace of Example 2)
from which general functions to transform and query data structures can be derived.
Although this technique leads to generic and efficient programs for manipulating trees,
it does not have the generality of function patterns that can be also used to specify
complex conditions on data structures (compare definition of last and Example 1).

7 Conclusions

We have proposed extending functional logic languages with function patterns. We have
defined their semantics by transformation into traditional programs and shown that their
implementation can be obtained by a specific unification procedure. Function patterns
are advantageous because they evaluate conditions on actual arguments more lazily and
thus avoid some known problems of strict equality. Moreover, they allow the high-level
programming of queries and transformations of complex structures and support new
abstractions of patterns.

This extension is specific to integrated functional logic languages since purely logic
languages do not support evaluable functions and purely functional languages do not
support nondeterminism and function inversion. The versatility and ease of implemen-
tation of function patterns show that an integrated functional logic language is an ex-
cellent environment for building high-level abstractions.

In future work, we plan to develop techniques to partially evaluate programs with
function patterns at compile time to improve their efficiency. It might be interesting
to develop specific calculi to support reasoning directly about programs with function
pattens instead of using the transformational approach defined in this paper.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Declarative
Multi-Paradigm Languages. Journal of Symbolic Computation, Vol. 40, No. 1, pp. 795–829,
2005.

2. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, pp. 768–844,
1998.

3. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc. Interna-
tional Conference on Algebraic and Logic Programming (ALP’97), pp. 16–30. Springer
LNCS 1298, 1997.

4. S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP
2001), pp. 199–206. ACM Press, 2001.

5. S. Antoy. Evaluation Strategies for Functional Logic Programming. Journal of Symbolic
Computation, Vol. 40, No. 1, pp. 875–903, 2005.

6. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the ACM,
Vol. 47, No. 4, pp. 776–822, 2000.

7. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into Prolog. In
Proc. International Workshop on Frontiers of Combining Systems (FroCoS’2000), pp. 171–
185. Springer LNCS 1794, 2000.

20



8. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th International
Symposium on Functional and Logic Programming (FLOPS 2002), pp. 67–87. Springer
LNCS 2441, 2002.

9. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
10. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.
11. M. Erwig and S. Peyton Jones. Pattern Guards and Transformational Patterns. Electronic

Notes in Theoretical Computer Science, Vol. 41, No. 1, 2000.
12. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Super-

position and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pp.
172–184, Boston, 1985.

13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus Func-
tional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139–185,
1991.

14. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodrı́guez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal
of Logic Programming, Vol. 40, pp. 47–87, 1999.

15. M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int. Workshop on
Programming Language Implementation and Logic Programming, pp. 387–401. Springer
LNCS 456, 1990.

16. M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

17. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In Proc.
of the 24th ACM Symposium on Principles of Programming Languages (Paris), pp. 80–93,
1997.

18. M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00), pp. 47–
62. Springer LNCS 1753, 2000.

19. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’01), pp. 76–92.
Springer LNCS 1990, 2001.

20. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2004.

21. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In Principles of
Declarative Programming (Proc. Joint International Symposium PLILP/ALP’98), pp. 374–
390. Springer LNCS 1490, 1998.

22. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.

23. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 14th ACM Sympo-
sium on Principles of Programming Languages, pp. 111–119, Munich, 1987.

24. R. Lämmel and S.L. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In Proceedings of the 2003 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation (TLDI’03), pp. 26–37. ACM Press, 2003.

25. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System.
In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

26. M. Mohnen. Context Patterns in Haskell. In Implementation of Functional Languages, pp.
41–57. Springer LNCS 1268, 1997.

27. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

28. M. Tullsen. First class patterns. In 2nd International Workshop on Practical Aspects of
Declarative Languages (PADL’00), pp. 1–15. Springer LNCS 1753, 2000.

21


