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Abstract. We introduce a framework for assessing the effectiveness of
partial evaluators for functional logic programs. Our framework is based
on properties of the rewrite system that models a functional logic pro-
gram and, consequently, our assessment is independent of any specific
language implementation or computing environment. We define several
criteria for measuring the cost of a computation: number of steps, num-
ber of function applications, and effort for pattern matching. Most im-
portantly, we express the cost of each criterion by means of recurrence
equations over algebraic data types, which can be automatically inferred
from the partial evaluation process itself. In some cases, the equations
can be solved by transforming their arguments from arbitrary data types
to natural numbers. In other cases, it is possible to estimate the improve-
ment of a partial evaluation by analyzing the recurrence equations.

1 Introduction

Partial evaluation (PE) is a source-to-source program transformation technique
for specializing programs w.r.t. parts of their input (hence also called program
specialization). This technique has been studied, among others, in the context
of functional [8, 14], logic [10, 15], and functional logic programming languages
[4]. A common motivation of all PE techniques is to improve the efficiency of
a program while preserving its meaning. Rather surprisingly, relatively little
attention has been paid to the development of formal methods for reasoning
about the effectiveness of this program transformation; usually, only experi-
mental tests on particular languages and compilers are undertaken. Clearly, a
machine-independent way of measuring the effectiveness of PE would be useful
to both users and developers of partial evaluators.

Predicting the speedup achieved by partial evaluators is generally undecid-
able. Andersen and Gomard’s [5] speedup analysis predicts a relative interval of
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the speedup achieved by a program specialization. Nielson’s [16] type system
formally expresses when a partial evaluator is better than another. Other inter-
esting works study cost analyses for logic and functional programs which may
be useful for determining the effectiveness of program transformations [9, 17].

All these efforts mainly base the cost of executing a program on the number
of steps performed in a computation. However, simple experiments show that
the number of steps and the computation time are not easily correlated.

Example 1. Consider the well-known operation app to concatenate lists: 1

app [] y = y
app (x1 : xs) y = x1 : app xs y

and the following PE (obtained by the partial evaluator Indy [2]):

app2s [] y = y
app2s (x : []) y = x : y
app2s (x1 : x2 : xs) y = x1 : x2 : (app2s xs y)

This residual program computes the same function as the original but in approx-
imately half the number of steps. This might suggest that the execution time of
app2s (for sufficiently large inputs) should be about one half the execution time
of app. However, executions of function app2s in several environments (e.g., in
the lazy functional language Hugs [13] and the functional logic language Curry
[12]) show that speedup is hardly measurable, i.e., between 1% and 2%.

In order to reason about these counterintuitive results, we introduce several for-
mal criteria to measure the efficiency of a computation. We consider inductively
sequential rewrite systems as programs and needed narrowing [6] as operational
semantics (a call-by-name mechanism that has been proved optimal in functional
logic programming). We formally define the cost of evaluating an expression in
terms of the number of steps, the number of function applications, and the com-
plexity of pattern-matching or unification involved in the computation. Similar
criteria are taken into account (though experimentally) in traditional profiling
approaches (e.g., [18]). The above criteria are useful to estimate the speedup
achieved by the narrowing-driven PE scheme of [4]. In particular, we use re-
currence equations to compare the cost of executing the original and residual
programs. These equations can be automatically derived from the PE process
itself. Unlike traditional recurrence equations used to reason about the complex-
ity of programs, our equations are defined on data structures rather than on
natural numbers. This complicates the computation of their solutions, although
in some cases useful statements about the improvements achieved by PE can be
made by a simple inspection of the sets of equations. In other cases, these equa-
tions can be transformed into ordinary recurrence equations and then solved by
well-known mathematical methods.

An extended version of this paper can be found in [3].
1 Although we consider in this work a first-order language, we use a curried notation

in the examples (as is usual in functional languages).
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2 Preliminaries

For the sake of completeness, we recall in this section some basic notions of term
rewriting [7] and functional logic programming [11]. We consider a (many-sorted)
signature Σ partitioned into a set C of constructors and a set F of (defined)
functions or operations. The set of terms and constructor terms with variables
(e.g., x, y, z) from V are denoted by T (C ∪ F ,V) and T (C,V), respectively. The
set of variables occurring in a term t is denoted by Var(t). A term is linear if it
does not contain multiple occurrences of one variable.

A pattern is a term f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈ T (C,V).
A position p in a term t is represented by a sequence of natural numbers. t|p
denotes the subterm of t at position p, and t[s]p denotes the result of replacing the
subterm t|p by the term s. We denote a substitution σ by {x1 7→ t1, . . . , xn 7→ tn}
with σ(xi) = ti for i = 1, . . . , n (with xi 6= xj if i 6= j), and σ(x) = x for all
other variables x. A substitution σ is constructor, if σ(x) is a constructor term
for all x. The identity substitution is denoted by {}. A term t′ is a (constructor)
instance of t if there is a (constructor) substitution σ with t′ = σ(t).

A set of rewrite rules l→ r such that l 6∈ V, and Var(r) ⊆ Var(l) is called a
term rewriting system (TRS). Terms l and r are called the left-hand side (lhs)
and the right-hand side (rhs) of the rule, respectively. A TRS R is left-linear
if l is linear for all l → r ∈ R. A TRS is constructor-based if each lhs l is a
pattern. A functional logic program is a left-linear constructor-based TRS. A
rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there
exists a position p in t, a rewrite rule R = l → r and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p. Given a relation →, we denote by →+ its transitive
closure, and by →∗ its transitive and reflexive closure.

To evaluate terms containing variables, narrowing non-deterministically in-
stantiates the variables so that a rewrite step is possible. Formally, t ;(p,R,σ) t

′

is a narrowing step if p is a non-variable position in t and σ(t) →p,R t′. We
denote by t0 ;n

σ tn a sequence of n narrowing steps t0 ;σ1 . . . ;σn tn with
σ = σn ◦ · · · ◦ σ1. Due to the presence of free variables, an expression may be
reduced to different values after instantiating free variables to different terms.
Given a narrowing derivation t0 ;∗σ tn, we say that tn is a computed value and
σ is a computed answer for t0. To avoid unnecessary narrowing computations
and to provide computations with infinite data structures, the most recent work
has advocated lazy narrowing strategies. Needed narrowing [6] is based on the
idea of evaluating only subterms which are needed in order to compute a result.

3 Formal Criteria for Measuring Computational Cost

The cost criteria that we introduce in this section are independent of the partic-
ular implementation of the language. Rather, they are formulated for a rewrite
system, which we intend as a program, and are based on operations that are,
in one form or another, performed by likely implementations of rewriting and
narrowing. For simplicity, we do not consider non-deterministic computations,
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although our cost measures could be extended along the lines of [9]. On the
other hand, it is often the case that PE methods cannot significantly change the
non-determinism of computations, i.e., the search spaces for a given goal in the
original and residual programs have essentially the same structure.

The first cost criterion that we consider has been widely used in the literature.
This is the number of steps, or length, of the evaluation of a term.

Definition 1 (number of steps). We denote by S a function on rewrite rules,
called the number of steps, as follows. If R is a rewrite rule, then S(R) = 1.

The second cost criterion is the number of symbol applications that occur within
a computation. Counting applications is interesting because, in most implemen-
tations of a functional logic language, an evaluation will execute some machine
instructions that directly correspond to each symbol application. The following
definition bundles together all applications. It can be easily specialized to con-
structor or defined symbol applications only, denoted by Ac and Ad respectively.

Definition 2 (number of applications). We denote by A a function on
rewrite rules, called the number of applications. If R = l → r is a rewrite rule,
then A(R) is the number of occurrences of non-variable symbols in r.

The above definition is appropriate for a first-order language in which function
applications are not curried. In a fully curried language, A(l→ r) would be one
less the number of symbols in r (including variables).

The third cost criterion abstracts the effort performed by pattern matching.
We assume that the number of rewrite rules in a program does not affect the
efficiency of a computation. The reason is that in a first-order language a ref-
erence to the symbol being applied can be resolved at compile-time. However,
when a defined operation f is applied to arguments, in non-trivial cases, one
needs to inspect (at run-time) certain occurrences of certain arguments of the
application of f to determine which rewrite rule of f to fire.

Definition 3 (pattern matching effort). We denote by P a function on
rewrite rules, called pattern matching effort, as follows. If R = l → r is a
rewrite rule, then P(R) is the number of constructor symbols in l.

In the following, we denote by C any cost criterion, i.e., C stands for S, A or P.
The previous definitions establish the cost of a derivation as the total cost of

its steps: given a narrowing derivation E : t ;(p1,R1,σ1) . . . ;(pn,Rn,σn) u, then
C(E) =

∑n
i=1 C(Ri). However, it is more convenient to reason about efficiency

when a cost measure is defined over terms rather than entire computations. We
use “computation” as a generic word for the evaluation of a term, i.e., a nar-
rowing derivation ending in a constructor term. In general, different strategies
applied to a same term may produce evaluations of different lengths and/or fail
to terminate. For instance, if term t contains uninstantiated variables, there may
exist distinct evaluations of t obtained by distinct instantiations of t’s variables.
Luckily, the needed narrowing strategy gives us some leeway. We allow uninstan-
tiated variables in a term t as long as these variables are not instantiated by some
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evaluation, t ;∗{ } c, of t. In this case, the value and answer computed by any
other needed narrowing derivation of t are c and {}, respectively. Therefore, we
fix a concrete strategy of needed narrowing, i.e., that denoted by λ in [6]. In the
following, we consider that the cost of term t, C(t), is n iff there exists a needed
narrowing derivation t ;(p1,R1,σ1) . . . ;(pk,Rk,σk) c, where c is a constructor
term, σk ◦ · · · ◦ σ1 = { }, and n =

∑k
i=1 C(Ri).

Example 2. Continuing Ex. 1, the next table summarizes (with minor approxi-
mations to ease understanding) the cost of computations with both functions:

S Ac Ad P
app n n n n

app2s 0.5n n 0.5n n

other 2n n 2n 2n

Here n denotes the size of the inputs to the functions, i.e., the number of el-
ements in the first argument of app and app2s. The third row represents the
overhead for constructing the input and evaluating the output of either opera-
tion (see [3]). If we assume equal unit cost for each criterion, the total cost of the
computations with app is 11n. Likewise, the cost of computations with app2s is
10n. The comparison gives a speedup of only 9%. If we increase the unit cost of
Ac and decrease that of S—probably a more realistic choice—the improvement
of app2s over app estimated by our criteria closely explains the disappointing
speedup measured experimentally (between 1% and 2%).

4 Measuring the Effectiveness of a Partial Evaluation

In this section, we are concerned with the problem of determining the improve-
ment achieved by a PE in the context of a functional logic language.

4.1. Narrowing-driven PE. Here we briefly recall some basic notions of the
narrowing-driven PE scheme of [4] for the specialization of inductively sequential
programs based on needed narrowing.

Roughly speaking, given a programR and a set of finite (possibly incomplete)
narrowing trees for a set of calls S, a PE of S in R is obtained in two stages. (i)
Compute an independent renaming ρ for the terms in S, where ρ is mapping from
terms to terms such that, for all s ∈ S, ρ(s) = f(x1, . . . , xn), x1, . . . , xn are the
distinct variables of s, and f is a fresh function symbol. The renaming of residual
rules is necessary to ensure the generation of legal program rules (i.e., with linear
patterns in the lhs’s) and to remove some redundant structures. To rename the
rhs’s of residual rules, the auxiliary function renρ is introduced. It recursively
replaces each call in a given expression by a call to the corresponding renamed
function (according to ρ). (ii) Construct a renamed resultant σ(ρ(s))→ renρ(t),
for each narrowing derivation s ;+

σ t in the considered narrowing trees.
Following [15], we adopt the convention that any derivation is potentially

incomplete. A failing derivation is a needed narrowing derivation ending in an
expression that is neither a constructor term nor can be further narrowed.
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Definition 4 (partial evaluation). Let R be a program, S = {s1, . . . , sn} a
finite set of terms, and ρ an independent renaming of S. Let N1, . . . ,Nn be finite
needed narrowing trees for si in R, i = 1, . . . , n. A partial evaluation of S in R
(under ρ) is obtained by constructing a renamed resultant, σ(ρ(s)) → renρ(t),
for each non-failing needed narrowing derivation s ;+

σ t in N1, . . . ,Nn.

Example 3. Consider again the function app together with the set of calls:

S = {app (app xs ys) zs), app xs ys} .
An independent renaming ρ for S is the mapping:

{app xs ys 7→ app1s xs ys, app (app xs ys) zs 7→ dapp xs ys zs} .
A possible partial evaluation of S in R (under ρ) is:

dapp [] ys zs = app1s ys zs
dapp (x : xs) ys zs = x : dapp xs ys zs
app1s [] ys = ys
app1s (x : xs) ys = x : app1s xs ys

4.2. Automatic Generation of Recurrence Equations. The development
of this section is inspired by the standard use of recurrence equations to analyze
the complexity of algorithms in terms of their inputs (see, e.g., [1] for impera-
tive, [17] for functional, and [9] for logic programs). We present a technique for
deriving recurrence equations which parallels the construction of resultants:

Definition 5. Let R be a program, S a finite set of terms, and ρ an independent
renaming for S. Let R′ be a PE of S in R (under ρ) computed from the finite
needed narrowing trees N1, . . . ,Nn. Then, we produce a pair of equations

C(σ(s)) = C(t) + k / C(σ(ρ(s))) = C(renρ(t)) + k′

for each needed narrowing derivation s ;+
σ t in N1, . . . ,Nn.2 Constants k and k′

denote the observable cost of the considered derivation in the original and residual
programs, respectively, i.e., k = C(s ;+

σ t) and k′ = C(ρ(s) ;σ renρ(t)).

Example 4. Consider the operation app of Ex. 1. Given the narrowing derivation:

s = app (app x y) z ;{x 7→x′:xs} app (x′ : app xs y) z ;{ } x
′ : app (app xs y) z = t

which produces the residual rule:

dapp (x′ : xs) y z︸ ︷︷ ︸ = x′ : dapp xs y z︸ ︷︷ ︸
σ(ρ(s)) renρ(t)

with σ = {x 7→ x′ : xs} and ρ = {app (app x y) z 7→ dapp x y z}, we get:S(σ(s)) = S(t) + 2 / S(σ(ρ(s))) = S(renρ(t)) + 1
A(σ(s)) = A(t) + 4 / A(σ(ρ(s))) = A(renρ(t)) + 2
P(σ(s)) = P(t) + 2 / P(σ(ρ(s))) = P(renρ(t)) + 1

2 Note that there is no risk of ambiguity in using the same symbols for both equations,
since the signatures of R and R′ are disjoint by definition of PE.
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The generated equations are correct in the sense that each equation (locally)
holds w.r.t. the original definitions of each cost criterion (see Th. 1 in [3]).

Reasoning about recurrence equations of this kind is not easy. The problem
comes from the laziness of the computation model, since interesting cost criteria
are not compositional for non-strict semantics [17]. In particular, the cost of eval-
uating an expression f(e) will depend on how much function f needs argument
e. The following condition of closedness avoids this problem.

Definition 6. Let R be a program, S a finite set of terms, and ρ an independent
renaming for S. Let R′ be a PE of S in R (under ρ). Let E be the set of
recurrence equations computed according to Def. 5. Then, we say that E is closed
iff for each pair of equations: C(σ(s)) = C(t)+k / C(σ(ρ(s))) = C(renρ(t))+k′,
t is a constructor instance of some term in S.

The relevance of closed recurrence equations stems from their use to compute
the cost of a term. In particular, given a term t that is a constructor instance of
the lhs of some equation, if t ;∗{} u is a needed narrowing derivation for t and
C(t) = n, then C(t) can be computed by rewriting, i.e., C(t) →∗ n using the
recurrence equations and the definition of the addition “+” (see Th. 2 in [3]).

In practice, recurrence equations are not usually closed. However, some sim-
plification rules can be applied to achieve this form in many cases. For instance,
the following (trivial) properties can be used: i) C(x) = 0, for all x ∈ V, and ii)
C(c(t1, . . . , tn)) = C(t1) + . . .+ C(tn), for all c ∈ C, with n ≥ 0.

In some cases, recurrence equations can be transformed into ordinary recur-
rence equations over natural numbers and then solved by well-known mathe-
matical methods (see [3] for some examples). In other cases, we can still extract
useful information about the overall speedup of a program from its loops, since
sufficient long runs will consume most of the execution time inside loops. In our
method, loops are represented by recurrence equations. Therefore, they consti-
tute by themselves a useful aid for determining the speedup (or slowdown) asso-
ciated to each loop. Actually, for each residual rule σ(ρ(s))→ renρ(t) with a pair
of associated recurrence equations: C(s) = C(t)+k / C(ρ(s)) = C(renρ(t))+k′,
we can add the set of tuples (k, k′) which describe its variation. For instance,
given the partial derivation of Ex. 4, we produce the (decorated) residual rule:

dapp (x′ : xs) y z = x′ : dapp xs y z /∗ {(2, 1), (4, 2), (2, 1)} ∗/
From this information, the user can easily see that all cost criteria have been
improved (and also quantify this improvement).

5 Conclusions and Future Work

To the best of our knowledge, this is the first attempt to formally measure the
effectiveness of PE with cost criteria different from the number of evaluation
steps. Our characterization of cost enables us to estimate the effectiveness of a
PE in a precise framework. We also provide an automatic method to infer some
recurrence equations which allow us to reason about the improvement achieved.
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Both contributions mixed together help us to reconcile theoretical results and
experimental speedups. Although the introduced notions and techniques are tai-
lored to narrowing-driven PE, they could be transferred to other related PE
methods (e.g., positive supercompilation [19] or partial deduction [15]).

There are several possible directions for further research. On the practical
side, we plan to develop an analytical tool for estimating the improvements
achieved by residual programs. On the theoretical side, we will investigate which
cost criteria are always improved by PE and which are not.
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