
Evaluation Strategies

for

Functional Logic Programming

Sergio Antoy 1

Computer Science Department, Portland State University
P.O. Box 751, Portland, OR 97207, USA

Abstract

Recent advances in the foundations and the implementations of functional logic
programming languages originate from far-reaching results on narrowing evaluation
strategies. Narrowing is a computation similar to rewriting which yields substitu-
tions in addition to normal forms. In functional logic programming, the classes of
rewrite systems to which narrowing is applied are, for the most part, subclasses
of the constructor-based, possibly conditional, rewrite systems. Many interesting
narrowing strategies, particularly for the smallest subclasses of the constructor-
based rewrite systems, are generalizations of well-known rewrite strategies. How-
ever, some strategies for larger non-confluents subclasses have been developed just
for functional logic computations. This paper discusses the elements that play a
relevant role in evaluation strategies for functional logic computations, describes
some important classes of rewrite systems that model functional logic programs,
shows examples of the differences in expressiveness provided by these classes, and
reviews the characteristics of narrowing strategies proposed for each class of rewrite
systems.

Key words: Evaluation Strategies, Narrowing, Definitional Trees,
Constructor-Based Rewrite Systems, Functional Logic Programming.

1 Introduction

Functional logic programming studies programming languages that combine
the distinctive features of functional programming (algebraic data types, lazy

Email address: antoy@cs.pdx.edu (Sergio Antoy).
1 Supported in part by the NSF grants CCR-0110496 and CCR-0218224.

Preprint submitted to Elsevier Science Wed Jul 7 14:57:26 PDT 2004

evaluation, polymorphic typing, first-class functions, monadic I/O) and logic
programming (logic variables, non-determinism, built-in search). A substantial
problem of combining these paradigms is that when executing a program it
may be necessary to evaluate a functional-like expression containing uninstan-
tiated logic variables. Two operational principles have been proposed for this
situation, residuation and narrowing, see Hanus (1994) for a survey. In short,
residuation delays the evaluation of expressions containing uninstantiated logic
variables, whereas narrowing guesses an instantiation for these variables. Func-
tional logic languages can be effectively implemented with either operational
principle: for example, Life Aı̈t-Kaci (1990) and Escher Lloyd (1999) are based
on residuation, Babel Moreno-Navarro and Rodŕıguez-Artalejo (1992) and
T OY López-Fraguas and Sánchez-Hernández (1999) are based on narrowing,
and Curry Hanus (2003) supports both residuation and narrowing. This pa-
per is about narrowing, in particular about narrowing strategies for functional
logic computations.

Functional logic programs can be quite expressive, see Example 1. The lan-
guage used to present the examples is abstract to avoid the details associated
to concrete practical languages. The syntax is inspired by Curry, which in turn
is an extension of Haskell Peyton Jones and Hughes (1999). A brief explanation
of the syntactic conventions made in this paper will follow shortly.

Example 1 Functional logic program for the problem of the Dutch National
Flag Dijkstra (1976): given a sequence of pebbles, each having one of the colors
red, white or blue, rearrange the pebbles so that they appear in the order of the
Dutch flag.

solve FLAG -> solve (X ++ [red | Y] ++ [white | Z])

:- FLAG = X ++ [white | Y] ++ [red | Z]

solve FLAG -> solve (X ++ [red | Y] ++ [blue | Z])

:- FLAG = X ++ [blue | Y] ++ [red | Z]

solve FLAG -> solve (X ++ [white | Y] ++ [blue | Z])

:- FLAG = X ++ [blue | Y] ++ [white | Z]

solve FLAG -> FLAG

:- FLAG = uni red ++ uni white ++ uni blue

uni COLOR -> []

uni COLOR -> [COLOR | uni COLOR]

For the most part, a functional logic program can be seen as a constructor-
based conditional rewrite system (TRS). In presenting the examples, I deviate
a little from the standard notation of TRSs. This deviation keeps the examples
smaller, closer to real programs and easier to understand.

TRSs are first-order languages, but in this paper the notation for function
and constructor application is curried as usual in functional programming. A

2

conditional rewrite rule has the form:

l→ r :− t1 = u1, . . . , tn = un

where l and r are the left- and right-hand sides, respectively, and the condi-
tion is a sequence of elementary equational constraints of the form ti = ui.
The meaning of the symbol “=” in programming languages is slightly more
restrictive than that in rewriting. The difference will be discussed in some
detail later.

The program of Example 1 adopts the familiar Prolog notation for both lists
and variables and uses common infix operators, but this is only syntactic sugar.
The identifier “++” stands for list concatenation and is right associative. The
operation uni returns a list of pebbles all of the color of its argument. A list of
any length can be returned by this operation. The operation solve repeatedly
swaps pebbles until the problem is solved. Any pair of pebbles out of place
with respect to the flag colors can be swapped. The program is executed by
replacing an instance of a rule’s left-hand side with the corresponding instance
of the rule’s right-hand side, provided that the rule’s condition is satisfied.
A free variable in a condition, i.e., X, Y and Z, may be instantiated if its
instantiation is useful for satisfying the condition.

The identifiers uni and solve are referred to as operation rather than function
symbols. These symbols do not identify functions in the ordinary mathemat-
ical sense. For example, the application of uni non-deterministically returns
distinct results for the same argument. The word “operation” may be prefer-
able to highlight this characteristic. However, the words “function” or “non-
deterministic function” are often used, too, to highlight that these symbols can
be used as ordinary function symbols in a functional logic program. In particu-
lar, an application of these symbols can be functionally nested as for ordinary
function symbols. Antoy (1997) shows that functional nesting is crucial for en-
suring the lazy evaluation of expressions and consequently the completeness
of functional logic computations.

To understand the promise of functional logic programming languages, I com-
pare the above program with published examples of programs in declarative
languages proposed for the same problem.

These programas are specified, in natural language, in forms that differ from
Dijkstra’s original formulation of the problem Dijkstra (1976). The specifica-
tion of each program already provides some clues as to what one will find in the
corresponding implementation. It is somewhat intended that the pebbles have
an identity. Otherwise, counting how many pebbles of each color are present
in the input would lead to a simple and efficient solution. Dijstra’s formula-
tion Dijkstra (1976), in natural language, describes two “computer-controlled

3

hands” that pick up two pebbles and swap them. This is all and only what
the program of Example 1 does when two pebbles of whatever color and in
whatever position are out of place for the flag. Both a rewrite system-based
specification Dershowitz (1995) of this problem and an executable specification
in the ASF+SDF meta-environment Brand and Klint (2003) swap exclusively
adjacent pebbles out of place for the flag. Although I can only conjecture, this
deviation from the original formulation is due to the fact that narrowing was
not contemplated for the program execution.

The specifications of both the pure logic O’Keefe (1990) and the pure func-
tional Petersson and Smith (1986) programs describe the problem as comput-
ing a permutation of the pebbles which is sorted according to the flag colors.
The corresponding implementations can be summarized as filtering the peb-
bles of each color and concatenating the results. It appears that the cart is
leading the horse. The specifiers took a considerable liberty. The spirit of
the original, somewhat anthropomorphic, formulation with a “movable eye”
and “two hands” that swap pebbles has been sacrificed to the programming
language paradigms.

The “special requirements” of the original specification Dijkstra (1976) con-
cerning the efficiency of the execution in an imperative language are largely
ignored by these declarative programs, which all execute in the blink of an
eye. Indeed, after a quarter of a century, the focus of a non-negligible portion
of computer science has shifted from saving memory bits and CPU cycles to
producing programs that are easy to code, to prove correct, to maintain and to
understand, perhaps at the expense of an acceptable loss of efficiency. Declar-
ative languages and functional logic languages in particular have a promising
potential in this respect.

The functional logic program is textually shorter, closer to the specification
and conceptually simpler than all the other alternatives. Key factors that con-
tribute to this simplicity and are unavailable in either the functional or the
logic program, or both, are: (1) non-determinism, e.g., the operation solve

swaps any of the possibly many pairs of pebbles that can be out of place, (2)
semantic unification, e.g., the variables X, Y and Z in the equations of the rules,
e.g., FLAG = X ++ [white | Y] ++ [red | Z] in the first rule, are instantiated, if
possible, to solve the equation, (3) functional inversion, i.e., the value of some
argument(s) of a function is computed from the function’s result, e.g., the
above equation is solved to split a list into sublists rather than to concatenate
sublists into a result, and (4) functional nesting and lazy evaluation, e.g., in
the above equation the subexpression [red | Z] is evaluated only after it is rec-
ognized that, for suitable values of X and Y, the subexpression X ++ [white | Y]

is a prefix of FLAG.

Non-determinism, semantic unification, functional inversion, functional nest-

4

ing and lazy evaluation, which are crucial for the expressiveness of functional
logic programs, are supported by two specific aspects of functional logic com-
putations: (1) modern functional logic programs are mostly executed by nar-
rowing, a computation that generalizes both ordinary functional evaluation
and resolution and (2) the classes of TRSs modeling functional logic programs
are more general than those modeling functional programs, e.g., our initial
example includes both non-deterministic operations, such as solve and uni,
and extra variables, such as X, Y and Z in some rules of solve.

It is well-known that certain functional computations can be implemented in a
logic programming language with a technique referred to as flattening Bosco
et al. (1988). Higher-order functions can be accommodated as well Warren
(1982). With this technique, a functional program is transformed, or flattened,
into a logic program intended to compute the same input/output function.
Functional logic programs can be flattened as well since the resolution-based
computation of the logic program simulates or implements the narrowing-
based computation of the original functional logic program. However, some
functional logic programs do not behave as intended when flattened. In par-
ticular, both non-determinism and non-termination are crucial factors.

The program of Example 1, when flattened in Prolog, fails to solve the problem
for some very simple inputs, e.g., [blue,red]. The analysis of its execution
shows that the reason is the depth-first search strategy of the Prolog com-
putation model. The first rule of the program generates an infinite search
space that prevents any attempt to execute other rules. However, the size of
this search space is unmotivated. The program of Example 1 can be coded
in Curry with changes that are mostly syntactic. This program is executed
as intended for any input by the Pakcs compiler-interpreter Hanus et al.
(2003), which translates source Curry code into source Prolog code using the
technique described in Antoy and Hanus (2000). The resulting Prolog code
computes with the depth-first search strategy. The reason why this program
generates a finite search space is that flattening removes functional nesting
and consequently the possibility to evaluate expressions lazily. Example 14,
from Antoy (1997), shows in a much simpler situation that functional nest-
ing and lazy evaluation are essential for the intended as well as the technical
completeness of functional logic computations.

This paper discusses and compares several key aspects of the evaluation of
functional logic computations. The main contribution is a survey of four classes
of TRSs. For each class, the paper presents a narrowing strategy for the exe-
cution of computations in that class. The paper also recalls the notion of defi-
nitional tree Antoy (1992) which ultimately supports each presented strategy.

Section 2 reviews narrowing as the computation of functional logic programs.
Section 3 defines and compares various fundamental classes of TRSs proposed

5

to model functional logic programs and, for each class, presents an evaluation
strategy. Section 4 briefly discusses some extensions to the previous classes
and related issues. Section 5 contains the conclusion.

2 Narrowing

This section briefly recalls basic notions of term rewriting Baader and Nipkow
(1998); Dershowitz and Jouannaud (1990); Klop (1992) and functional logic
programming Hanus (1994).

A rewrite system is a pair, R = 〈Σ, R〉, where Σ is a signature and R is a
set of rewrite rules. The signature Σ is many-sorted and is partitioned into a
set C of constructor symbols and a set F of defined operations or functions.
Term(Σ∪X) is the set of terms constructed over Σ and a countably infinite
set X of variables. Term(C ∪ X) is the set of values, i.e., the set of terms
constructed over C and X . Var(t) is the set of the variables occurring in a
term t. Terms are well-typed.

A pattern is a term of the form f(t1, . . . , tn), n > 0, where f is a function,
or operation, of arity n and t1, . . . , tn are values. An unconditional rewrite
rule is a pair l → r, where l is a linear pattern and r is a term. Lin-
ear means that repeated occurrences of the same variable in l are not al-
lowed. This restriction will be justified later. Traditionally, it is required that
Var(r) ⊆ Var(l). This condition limits the expressiveness of functional logic
programming languages and it is generally relaxed in implementations, al-
though some important results of the theory of narrowing strategies have
been developed with this condition. A substitution is an idempotent mapping
σ : X → Term(C ∪X), implicitly extended to terms, such that the domain of
σ, dom(σ) = {x ∈ X |σ(x) 6= x}, is finite. An unconditional TRS, R, defines
a rewrite relation →R on terms as follows: s →p,R t if there exists a position
p in s, a rewrite rule R = l → r with fresh variables and a substitution σ
such that s|p = σ(l) and t = s[σ(r)]p. The instantiated left-hand side σ(l) of a
rewrite rule l→ r is called a redex (reducible expression). Given a relation→,
+→ and

∗→ denote its transitive closure and its transitive and reflexive closure,
respectively.

A conditional rewrite rule has the form l→ r :− c, where l and r are defined
as in the unconditional case and c is a possibly empty sequence of elementary
equational constraints, i.e., pairs of terms of the form t = u. The definition
of the rewrite relation for conditional TRSs Bergstra and Klop (1986), see
also (Bezem et al., 2003, Sect. 3.5), is more complicated than for unconditional
TRSs. Intuitively, s →p,R t if there exists a position p in s, a rewrite rule
R = l→ r :− c with fresh variables and a substitution σ such that s|p = σ(l),

6

σ(c) holds and t = s[σ(r)]p. There is an apparent or potential circularity in
this intuitive statement since to satisfy the instantiated condition, σ(c), one
refers to the rewrite relation being defined. This problem is resolved by an
inductive definition. For the base case, only syntactically equal terms are in
the rewrite relation, i.e., s

∗→ t iff s ≡ t. For the induction case, if every
elementary equational constraint of σ(c) is in the rewrite relation, then s

∗→ t,
i.e, 〈s, t〉 is in the rewrite relation. In rewriting, the meaning of the symbol
“=” is convertibility, i.e., t = u if and only if t can be converted into u (and
vice versa) by equational reasoning.

A left-linear, conditional, constructor-based TRS is a good model for a func-
tional or a functional logic program. A computation is (abstracted by) an
operation-rooted term. A result is a value, i.e., a constructor term. In func-
tional logic programming the symbol “=” is referred to as strict equality Gio-
vannetti et al. (1991); Moreno-Navarro and Rodŕıguez-Artalejo (1992). Its
meaning, as the name suggests, is stricter than in rewriting. A justification
of this decision is given in Example 19. In functional and functional logic
programming, t = u if and only if t and u can be evaluated to the same value.

Example 2 In programming languages, values are introduced by data type
declarations such as:

data color = white | red | blue

data list a = [] | [a | list a]

and operations are defined by rewrite rules such as those of Example 1. The
identifiers white, red and blue are (constant) data constructors of the type
color. The constructors of the polymorphic type list are [] (empty list) and
[·|·] (non-empty list). The identifier a is a type variable ranging over all
types. A value or data term is a well-formed expression containing variables
and data constructors, e.g., [red,blue] which stands for [red|[blue|[]]].

The fundamental computation mechanism of functional logic languages is nar-
rowing. A term s narrows to t with substitution σ, denoted s ;p,R,σ t, if p is
a non-variable position of s, R is a rewrite rule, and σ is a substitution such
that σ(s)→p,R t. As defined earlier only idempotent constructor substitutions
are considered in this paper. A term s such that σ(s) is a redex is called a nar-
rex (narrowable expression). When σ is the identity substitution, a narrowing
step becomes a rewrite step and a narrex becomes a redex.

Traditionally, it is required that the substitution of a narrowing step is a most
general unifier of a narrex and a rule’s left-hand side. This condition is not
imposed here since narrowing with most general unifiers is suboptimal Antoy
et al. (2000). This will be further addressed later. A computation or evaluation
of a term s is a narrowing derivation s = t0 ;σ1 . . . ;σn tn = t, where t is a
value. The substitution σ1 ◦ · · · ◦σn is called a computed answer and t is called

7

a computed value of s. Computing narrowing steps, in particular narrexes and
their substitutions, is the task of a strategy.

Example 3 The following rewrite rules define the concatenation and the strict
equality of a polymorphic type list. The infix operation “&” is the constraint
conjunction. The identifier success denotes a solved constraint. It is declared
as the constructor of a singleton type not further identified here. It is explicitly
represented in this paper to present computations strictly using only rewrite
rules, but with appropriate conventions it could be eliminated from the concrete
syntax of a language.

[] ++ X -> X R1

[X|Y] ++ Z -> [X | Y++Z] R2

[] = [] -> success R3

[X|Xs] = [Y|Ys] -> X=Y & Xs=Ys R4

success & X -> X R5

The definition of equality presented above leads to a poor operational be-
havior because if s and t are variables, solving s = t requires grounding the
variables. To alleviate this problem, the run-time systems of some functional
logic languages provide the strict equality as a built-in, ad hoc operation that
in the above situation unifies the variables. Within the framework of rewriting,
formalizing this behavior is hard at best. Narrowing calculi, e.g., see González
Moreno et al. (1999); Middeldorp and Okui (1998), are better suited for this
task.

Example 4 The execution of the program of Example 1 requires the solution
of constraints, such as U++V=[red,white,red], which are solved by narrow-
ing. A free variable may have different instantiations. Consequently, expres-
sions containing free variables may be narrowed to different results. Below, is
the initial portion of one of several possible sequences of steps that solve the
constraint, i.e., narrow it to success and in the process instantiate the vari-
ables U and V. Both the rule and the substitution applied in a step are shown
to the right of the reduct:

U++V=[red,white,red]

; [U1|Us++V]=[red,white,red] R2, {U 7→ [U1|Us]}
; U1=red & Us++V=[white,red] R4, {}
; success & Us++V=[white,red] Ri, {U1 7→ red}
; Us++V=[white,red] R5, {}...

where U1 and Us are fresh variables, and Ri denotes some rule, not shown here,
of the strict equality of the type color. This solution instantiates the variable
U to a list with head red.

8

A narrowing strategy is a crucial component of the foundations and the imple-
mentation of a functional logic programming language. Its task is the compu-
tation of the step, or steps, that must be applied to a term. In a constructor-
based TRS, a narrowing step of a term t is identified by a non variable position
p of t, a rewrite rule l→ r, and an idempotent constructor substitution σ such
that t ;p,l→r,σ s iff s = σ(t[r]p). Formally, a narrowing strategy is a mapping
that takes a term t and yields one or more triples of the form 〈p, l → r, σ〉
interpreted as narrowing steps as defined earlier.

Example 5 Continuing Example 3, a narrowing strategy (such as needed nar-
rowing discussed later) applied to the constraint U++V=[red,white,red] com-
putes two steps: 〈1, R1, {U 7→ []}〉 and 〈1, R2, {U 7→ [U1|Us]}〉. The first step
yields a solution with answer U=[] and V=[red,white,red]. The second step
was shown earlier.

It should be obvious that narrowing extends rewriting by instantiating vari-
ables in addition to computing normal forms. For this reason, extra variables
in rewrite rules are not only permitted, but they seem a natural element with
which to compute. An extra variable v is a variable that occurs in the condition
and/or the right-hand side of a rewrite rule R, but not in the left-hand side.
The strategies discussed in the paper apply without problems to rewrite rules
with extra variables, but their most important properties have been proved
for rules without extra variables. More details will be provided later. Consider
again the first rewrite rule of operation solve in Example 1. The variables X,
Y and Z are extra variables of this rule. Given the program of this example
and some sequence of colors, FLAG, the program can evaluate the expression:

FLAG = X ++ [white | Y] ++ [red | Z]

where X, Y and Z are unbound. For FLAG = [red, white, red] this expression
eventually evaluates to success and binds X to [red] and both Y and Z to
the empty list.

A narrowing strategy useful for functional logic programming must be sound,
complete, and efficient. In the next definitions, t and u denote a term and a
value, respectively, and all narrowing derivations are computed by the strat-
egy subject of the discussion. A strategy is sound iff t

∗
;σ u implies σ(t)

∗→ u.
A strategy is complete iff σ(t)

∗→ u implies the existence of a substitution
η 6 σ such that t

∗
;η u

′, where u = ρ(u′), for some idempotent construc-
tor substitution ρ. In practice, only the substitution of the variables of t is
interesting. Both the soundness and the completeness of a strategy have an
intuitive explanation when the initial term of a derivation is an equation con-
taining unknown variables. In this case, the soundness of a strategy guarantees
that any instantiation of the variables computed by the strategy is a solution
of the equation, and the completeness guarantees that for any solution of the

9

equation, the strategy computes another solution which is at least as general.

Efficiency is a more elusive property. In practice, it is desirable to minimize
the overall time and memory consumed to find one or all the values of an
expression. This is somewhat related to the length of the derivations and
even more to the size of the search space, although reasoning about the latter
seems very difficult. In any case, two factors clearly affecting the efficiency of a
strategy are: (1) unnecessary steps should be avoided, and (2) steps should be
computed without consuming unnecessary resources. In both statements, the
exact meaning of “unnecessary” is difficult to formalize at best. Factor (1) is
more related to the theory of a strategy, whereas factor (2) is more related to its
implementation, although the boundaries of these relationships are blurred.
The efficiency of a strategy is somewhat at odds with its completeness. A
straightforward way to ensure the completeness of a strategy is to compute
all possible narrowing steps of a term, but in most cases the strategy would
be quite inefficient since many of these steps would be unnecessary.

Similar to rewriting, different narrowing strategies have been proposed for
different classes of TRSs. Some efficient narrowing strategies are extensions
of corresponding rewrite strategies, whereas other narrowing strategies have
been developed specifically for classes of TRSs well-suited to functional logic
programming and do not originate from previous rewrite strategies. Some of
these classes and their strategies are the subject of the next section.

3 Classes of TRSs

A key decision in the design of functional logic languages is the class of TRSs
chosen to model the programs. In principle, generality is very desirable since
it contributes to the expressive power of a language. In practice, extreme
power or the greatest generality are not always an advantage. The use of “un-
structured” rewrite rules has two interrelated drawbacks: for the programmer
it becomes harder to reason about the properties of a program; for the im-
plementor it becomes harder to implement a language efficiently. For these
reasons, different classes of TRSs potentially suitable for functional logic com-
putations have been extensively investigated. Figure 1 presents a containment
diagram of some major classes. All the classes considered in the diagram are
constructor-based. Rewrite rules defining an operation with the constructor-
discipline O’Donnell (1977) implicitly define a corresponding function, possi-
bly non-deterministic, over algebraic data types such as those of Example 2.
Most often, this is well-suited for programming, particularly when data types
are abstract.

The discussion of this section is limited to first-order computations although

10

WO

OIS
CB

IS

Fig. 1. Containment diagram of rewrite systems modeling functional logic programs.
The outer area, labeled CB, represents the constructor-based rewrite systems. The
smallest darkest area, labeled IS, represents the inductively-sequential rewrite sys-
tems. These are the intersection of the weakly-orthogonal, labeled WO, and the
overlapping inductively-sequential rewrite systems, labeled OIS.

higher-order functions are essential in functional, and hence functional logic,
programming. The following section will address this limitation. The dis-
cussion of this section is also limited to unconditional TRSs. Conditional
constructor-based TRSs can be transformed into unconditional TRSs by a
transformation intended to preserve both values and computations without
loss of either efficiency or generality. This also will be addressed in the next
section. Finally, extra variables are excluded from rewrite rules since some
important results of the theory of narrowing strategies have been proved for
rules without extra variables. Where appropriate, the consequences that extra
variables have on definitions, properties and computations will be discussed.

3.1 Inductively Sequential TRSs

The smallest class in the diagram of Figure 1 is the inductively sequential
TRSs. This class is important because it models the (first order component
of) programs of successful programming languages such as ML and Haskell.
An efficient evaluation strategy with some remarkable properties is known for
this class.

In orthogonal TRSs, every term t that is not in normal form has a needed redex
s. Informally, the normal form of t cannot be reached unless s is contracted.
The formalization of this claim is complicated since s could be affected if some
other redex different from s is contracted in t. In general, s may be erased (of

11

course, in this case it would not be needed), or it may change in the sense
that some proper subredex of s may be contracted, or even several copies of
s may be introduced in the reduct of t. Despite these possible outcomes, the
identity of s can be traced through the rewrite steps of a computation using
the notion of descendant Huet and Lévy (1991). Intuitively, one marks some
symbol occurrences in t, e.g., the root symbol of s, by underlining or coloring
it Boudol (1985), and looks for underlined or colored symbols in the reduct
of t. Thus, a redex s of a term t is a needed redex if a descendant of s is
contracted in any derivation of t to a normal form.

Needed redexes are uncomputable in the whole class of the orthogonal rewrite
systems, but are computable in the smaller subclass of the strongly sequential
rewrite systems. In this class, the call-by-need strategy Huet and Lévy (1991)
repeatedly contracts a needed redex of a term and this suffices to reach a
normal form, if it is exists. This strategy is optimal in the sense that no rewrite
step is wasted, since only redexes that sooner or later must be contracted are
contracted. However, the order in which redexes are contracted may affect the
total number of steps executed to reach a normal form.

The inductively sequential TRSs can be characterized as the strongly sequen-
tial component of the constructor-based TRSs Hanus et al. (1998). Needed
narrowing Antoy et al. (2000) is a conservative extension of the call-by-need
strategy, i.e., rewrite derivations executed by needed narrowing are call-by-
need derivations. Therefore, needed narrowing extends the optimality of the
call-by-need strategy. In addition, needed narrowing offers a second optimality
result concerning computed answers. Narrowing is non-deterministic, thus a
term may have several distinct derivations each computing a substitution and
a value. The substitutions computed by these derivations are pair-wise dis-
joint Antoy et al. (2000). This implies that every needed narrowing derivation
computing a value is needed in the sense that the substitution computed by
one derivation cannot be obtained by any other derivation.

Despite the similarities between needed narrowing and the call-by-need strat-
egy, there exist some interesting differences. The main one is that there is no
longer a good characterization of the notion of a needed redex. In orthogonal
TRSs, a redex uniquely identifies a step of a rewrite computation, but a narrex
does not.

Example 6 Consider the following declaration of the natural numbers, which
for the purpose of this discussion are represented in Peano’s notation, and the
usual addition and “less than or equal to” operations:

data nat = 0 | s nat

0 + Y -> Y

s X + Y -> s (X + Y)

12

0 <= _ -> true

s X <= 0 -> false

s X <= s Y -> X <= Y

Consider the term t = U<=0+0, where U is an unbound variable. The subterm
w = 0+0 of t is a redex, hence it is a narrex. Asking whether w is a needed
narrex of t is not a meaningful question for a functional logic computation. It
is easy to see that U must be instantiated to either 0 or (s -) to compute a
value of t. If U is instantiated to 0, w is not a needed redex of the instantiated
term. However, if U is instantiated to (s -), w is a needed redex of the instan-
tiated term. For this reason, in discussing narrowing computations one talks
of needed steps rather than redexes. Of course, for ground terms, a needed
redex identifies a needed narrowing step and vice versa.

A second interesting difference between the call-by-need rewrite strategy and
needed narrowing concerns the computation of a needed step. In a term whose
normal form is not a value, i.e., it contains some defined operation, needed
narrowing may fail to compute a needed redex. This may happen even in
ground terms.

Example 7 Continuing Example 6, consider the following operation f:

f 0 -> 0

and the term t = f(s(f 0)). The subterm f 0 of t is a needed redex, but needed
narrowing fails to compute it.

This characteristic of needed narrowing is referred to as a “blessing in disguise”
in Antoy et al. (2000). It is easy to see that the normal form of t is f(s 0).
Normal forms containing an operation symbol, f in this case, represent failed
computations in constructor-based TRSs. The early failure of needed narrow-
ing may prevent wasting resources for computations that are doomed to fail.
Needed narrowing is sound and complete for computations that end in a value,
i.e., a constructor term. In constructor-based TRSs, computations that ter-
minate with a normal form containing occurrences of operation symbols are
considered failures or errors Sekar and Ramakrishnan (1993). In functional
logic programming, operation symbols may be allowed in the result of a com-
putation when they are not fully applied, but these terms are ultimately seen
as values Antoy and Tolmach (1999).

Inductively sequential TRSs were initially characterized through the concept
of a definitional tree Antoy (1992). Definitional trees have become the tool
of choice for the formalization and implementation of narrowing strategies for
several subclasses of the constructor-based TRSs. A definitional tree of an
operation f is a finite non-empty set T of linear patterns partially ordered by

13

subsumption and having the following properties up to renaming of variables:

• [leaves property] The maximal elements, referred to as the leaves, of T are all
and only variants of the left hand sides of the rules defining f . Non-maximal
elements are referred to as branches.
• [root property] The minimum element, referred to as the root, of T is
f(X1, . . . , Xn), where X1, . . . , Xn are fresh, distinct variables.
• [parent property] If π is a pattern of T different from the root, there exists

in T a unique pattern π′ strictly preceding π such that there exists no other
pattern strictly between π and π′. π′ is referred to as the parent of π and π
as a child of π′.
• [induction property] All the children of a pattern π differ from each other

only at common position which is referred to as inductive. This is the posi-
tion of a variable in π.

Since all the patterns of a definitional tree are linear, the names of the variables
are irrelevant, hence all the variables could be anonymous. In the following
examples, I give a name to variables to trace them from parent to children.
This eases understanding how a definitional tree, hence the definition of an
operation, is obtained by a structural induction on a type.

Example 8 Consider an operation, take, that returns a prefix of a given
length of a list:

take 0 _ -> []

take (s N) [] -> []

take (s N) [X|Xs] -> [X | take N Xs]

The definitional trees of operation “++”, defined in Example 3, and operation
take just defined are shown below. Lines join patterns in the parent-child
relation. The inductive variable of a parent is boxed. The leaves are variants
of the rules’ left-hand sides.

X ++ Y

��������

????????

[] ++ Y [X1|Xs] ++ Y

take N X

���������

????????

take 0 X take (s N1) X

��������

????????

take (s N1) [] take (s N1) [X1|Xs]

An operation is inductively sequential iff it has a definitional tree. A TRS is
inductively sequential iff all its operations are inductively sequential. Needed
narrowing is defined through definitional trees that are used as finite state
automata to compute narrowing steps. An illustration of this computation is

14

in Example 9. The formal definition is in Antoy et al. (2000).

Example 9 Needed narrowing computes a step of a term t rooted by take,
i.e., t = take n x, as follows. Let π be a maximal element of the definitional
tree of take which unifies with t and let σ be the unifier. If π is a leaf, then
t is a narrex and σ is the substitution of the step. If π is a branch and p is
the position of its inductive variable, then t|p is rooted by some operation f .
Using a definitional tree of f , the strategy computes a needed step of σ(t|p),
say 〈q, l→ r, η〉. Then, 〈p · q, l→ r, σ ◦ η〉 is a needed step of t.

To make the example more concrete, suppose that t = take N ([1]++[2]),
where N is a free variable. The term t unifies with both take 0 X, which is a
leaf, and take (s N1) X, which is a branch. The first is obviously a maximal
element in its tree, since it is a leaf. The second is maximal as well, since t does
not unify with either of its children. Therefore, needed narrowing computes the
two steps shown below. Each steps is shown with its substitution:

take N ([1]++[2]) ;N7→0 []

take N ([1]++[2]) ;N7→(s N1) take (s N1) [1|[]++[2]]

Observe that the substitution of the second step is not most general. This char-
acteristic of needed narrowing is a major departure from previously proposed
narrowing strategies. To understand why renouncing most general unifiers is
an essential contribution to the strategy’s optimality, consider a step with the
same narrex and a most general unifier, i.e.:

take N ([1]++[2]) ;{} take N [1|[]++[2]] (1)

To compute a value of t, some step following (1) must instantiate N to either
0 or (s N1). When N is instantiated to 0, it is easy to verify that t evaluates
to [], the empty list, and step (1) could have been entirely avoided.

The inductive sequentiality of a TRS is a decidable property. A simple, ele-
gant, non-deterministic algorithm for computing definitional trees is presented
in Barry (1996). The algorithm has two main phases. In the first phase, a
sequence of terms is obtained from the left-hand side of each rule of an oper-
ation, say f , by successive generalizations of shallow constructor terms until
f(X1, . . . , Xn) is obtained. A shallow constructor term is a term rooted by
a constructor whose arguments are variables. E.g., both [] and [X|Xs] are
shallow constructor term of the type list. The generalization replaces a shal-
low constructor term with a fresh variable. A plausible sequence originating
from each rule of operation take defined in Example 8 is shown below. The
sequences should be read from the bottom up, i.e., each term of a sequence,
except the bottom one, is a generalization of the term below it. The bottom

15

term is a variant of a rule’s left-hand side.

take M Y take M Y take M Y

take (s N) Y take (s N) Y take 0 Y

take (s N) [X|Xs] take (s N) []

Observe that modulo a renaming of variables, each sequence when traversed
from top to bottom is a path from the root to a leaf of the definitional tree
of the operation take shown in Example 8. The choice of which shallow con-
structor term to generalize is non-deterministic. Different choices from those
presented above are possible for the first two (from the left) sequences, For
example, take (s N) [] could be generalized to take M []. This choice would
prevent building a definitional tree of take.

In the second phase of the algorithm, the sequences computed in the first phase
are assembled into a tree, if possible. This proceeds recursively as follows.
Observe that all the sequences have the same head modulo a renaming of
variables. The heads are merged to become the root of a (sub)tree. The tails
of the sequences are partitioned, if possible, into subsets of sequences such
that: (1) all the sequences in a subset have the same head modulo a renaming
of variables, and (2) the heads of sequences in different subsets differ only for
shallow constructor terms in the same position, which becomes an inductive
position. For the example being discussed, this partition places the first two
subsequences in one set and the remaining subsequence in another.

take M Y
merge

take M Y
merge

take M Y

take (s N) Y
merge

take (s N) Y take 0 Y

take (s N) [X|Xs] take (s N) []

If such a partition is possible, the second phase is recursively applied to each
subset, otherwise the computation of the definitional tree fails. In this example,
the two occurrences of take (s N) Y will be merged and become the root of a
subtree. If a defined operation has a definitional tree, the above algorithm
computes it under the assumption that the non-deterministic choices of the
first phase are angelic.

The needed narrowing strategy, as well as the other strategies based on def-
initional trees, take into account only the left-hand sides of the rules of a
TRS, i.e., the right-hand sides do not play any role in the computation of a
narrex. A consequence of this approach is that the definition of the strategy

16

and its applicability is independent of extra variables, which may occur in the
right-hand sides only. Therefore, the property of being inductively sequential
is meaningful for TRSs with extra variables and needed narrowing steps can
be computed for terms of these systems. For this reason, needed narrowing is
applied, e.g., in Hanus et al. (2003), to inductively sequential TRSs with extra
variables, but its soundness and completeness are proved Antoy et al. (2000)
for TRSs without extra variables.

3.2 Weakly Orthogonal TRSs

The weakly orthogonal TRSs are a proper superclass of the inductively sequen-
tial TRSs. Rewrite rules in this class can overlap, but only if their correspond-
ing critical pairs are trivial (syntactically equal). The rules’s left-hand sides
are patterns and consequently they can overlap only at the root. Therefore,
weakly orthogonal constructor-based TRSs are almost orthogonal. Computa-
tions in this class are sometimes referred to as parallel, and so implemented.
However, this class admits sequential normalizing rewrite strategies, as well,
e.g., Kennaway (1989). There is no meaningful notion of needed redex for this
class.

Example 10 An emblematic non-inductively sequential operation in this class,
called parallel-or, is defined by the rules:

or true _ -> true R6

or _ true -> true R7

or false false -> false R8

The term or (or true u) (or v true) has no needed redex regardless of the
terms u and v.

Several practical normalizing strategies are known for computations in this
class. The parallel outermost strategy O’Donnell (1977), as the name suggests,
contracts simultaneously, or in parallel, the set of all the outermost redexes of
a term. The weakly needed strategy Sekar and Ramakrishnan (1993) equally
contracts in parallel all the redexes of a set called necessary. For a term t,
a necessary set S of redexes of t is contained, possibly strictly, in the set of
the outermost redexes of t and has the property that in any computation of
t to a normal form a redex of S is eventually contracted. A necessary set
of redexes is not difficult to compute. This strategy is optimal for arbitrary
reductions Sekar and Ramakrishnan (1993) when the necessary sets of each
term of a computation is minimal.

The weakly needed rewrite strategy can be formulated by means of defini-
tional trees as well. It is easy to verify that the parallel-or operation has no

17

definitional tree. Generalized forms of definitional trees for operations of this
kind have been proposed, e.g., in Antoy (1991, 1992); Loogen et al. (1993).
Informally, a generalized tree allows more than one inductive variable in a
branch. A simpler viewpoint is to partition the rules of an operation into
subsets for which there exists an ordinary definitional tree. Of course, this is
trivial when each subset is a singleton, although a definitional tree may exist
for larger subsets of rules. For the rules of Example 10, a possible partition
is {R6, R8}] {R7}. A graphical representation of the resulting trees is shown
below.

or X Y

��������

?????????

or false Y or true Y

or false false

or X Y

or X true

Now, an operation may have several “smaller” or partial trees rather than a
single one that includes all (the left-hand sides of) the rules. A redex of a term
t may be computed as it would be for the inductively sequential TRSs, but if
an operation is not inductively sequential, one of its partial trees is arbitrarily
chosen. The union of the redexes computed over all the choices of possibly par-
tial trees is a necessary set. This rewrite strategy, formalized in Antoy (1992),
is equivalent to Sekar and Ramakrishnan (1993). Its extension to narrowing,
known as weakly needed narrowing Antoy et al. (1997), is therefore straight-
forward. However, the resulting narrowing strategy does not have the same
characteristics of the corresponding rewrite strategy.

Example 11 Consider again the operation parallel-or defined in Example 10
and the term t = or U true, where U is an uninstantiated variable. Weakly
needed narrowing computes 3 steps, which are also complete evaluations, of t:

or U true ;{U 7→ true} true

or U true ;{U 7→ false} true

or U true ;{} true

It is clear a posteriori that the first two steps are subsumed by the third one.

In general, a strategy cannot easily determine if a computation is unneces-
sary without lookahead. A refinement of weakly needed narrowing, parallel
narrowing Antoy et al. (1997), avoids some unnecessary computations at the
expenses of a substantial increase in complexity. Among the steps of a term
computed by weakly needed narrowing, parallel narrowing discards, loosely
speaking, certain steps with non-minimal substitutions, such as those in the

18

previous example, and certain steps with non-outermost narrexes. The details
are quite technical. It turns out that if a discarded step is necessary to en-
sure the completeness of a computation, an equivalent step will eventually be
computed again later.

The decision of which steps to discard is based on an analysis of all the steps
computed for a term. Therefore, there are situations in which parallel narrow-
ing performs unnecessary computations because essential information becomes
available in later steps. The following example from Antoy et al. (1997) shows
this point.

Example 12 Extend the TRSs of Example 10 with the following definitions:

f 0 X -> X

h 0 -> true

and consider the term t = or (f U (h V)) (f V (h U)). Parallel narrow-
ing computes two derivations of t beginning with different unifiers eventually
to discover that these derivations compute the same value and substitution.
Therefore, one derivation is redundant. These two derivations are shown be-
low:

t ;{U 7→ 0} or (h V) (f V true) ;{V 7→ 0} or true true ;{} true

t ;{V 7→ 0} or (f U true) (h U) ;{U 7→ 0} or true true ;{} true

3.3 Overlapping Inductively Sequential TRSs

The overlapping inductively sequential TRSs are a proper superclass of the in-
ductively sequential TRSs. They are incomparable with the weakly orthogonal
TRSs. As the name suggests, rewrite rules in overlapping inductively sequen-
tial TRSs can overlap, but it is also required that each operation is inductively
sequential, i.e., it admits a definitional tree. This implies that two rules can
overlap only if their left-hand sides are equal modulo a renaming of variables.
By contrast to the weakly orthogonal TRSs, no restriction is placed on the
right-hand sides of overlapping rewrite rules. By contrast to the inductively
sequential and the weakly orthogonal TRSs, systems in this class are not con-
fluent. For this reason, computations in this class are sometimes referred to as
non-deterministic.

Example 13 The following operations define an alphabet (of digits) and the
(non-empty) regular expressions parameterized by a given alphabet. In this
context, the (meta)symbol “|” defines alternative right-hand sides of a same
left-hand side:

19

digit -> "0" | "1" | ... | "9"

regexp X -> X

| "(" ++ regexp X ++ ")"

| regexp X ++ regexp X

| regexp X ++ "*"

| regexp X ++ "|" ++ regex X

The definition of operation regexp closely resembles the formal definition of
regular expression. Non-deterministic operations contribute to the expressive
power of a functional logic language. For example, to recognize whether a
string, say s = "(01)*", denotes a well-formed regular expression over the al-
phabet of digits it simply suffices to evaluate (regexp digit = s). For parsing
purposes, a less ambiguous definition that also accounts for the usual operator
precedence would be preferable, but these aspects are irrelevant to the current
discussion.

Non-deterministic operations not only contribute to the expressiveness of a
program, they are also essential to preserve the inherent laziness of some
computations. The following example Antoy (1997) shows this point.

Example 14 To keep small the size of this example, the problem is abstract.
Suppose that ok is a unary function that, for all arguments, evaluates to true

(although ok is contrived, functions that do not look at all their arguments
all the time are frequent) and double is a function of a natural number that
doubles its argument:

ok _ -> true

double 0 -> 0

double (s X) -> s (s (double X))

Evaluating whether the “ double of some expression t is ok”, i.e., solving the
goal:

ok (double t)

succeeds regardless of t, i.e., even if t is undefined.

Now, extend the program with a mechanism to halve numbers. I call it “mech-
anism,” rather than function, because halving odd numbers rounds non-deter-
ministically. Even numbers are halved as usual. Following the standard practice
of logic programming, half is encoded by a predicate:

half 0 0 -> true

half (s 0) 0 -> true

half (s 0) (s 0) -> true

half (s (s X)) (s Y) -> half X Y

20

Now, to find out whether the “ half of some expression t is ok”, one must solve
the goal:

and (half t U) (ok U)

where U is a free variable and and is the usual boolean conjunction. Solving this
goal requires to evaluate t. The computation is unnecessarily inefficient and it
may even fail, if t cannot be evaluated to a natural. However, the analogous
computation for double always succeeds.

The loss of laziness shown by the previous example is due to the fact that the
producer of values, the expression rooted by half, is not functionally nested
inside its consumer, the application of ok. Overlapping inductively sequen-
tial TRSs overcome this limitation. The following non-deterministic operation
replaces the predicate half of the previous example:

half 0 -> 0

half (s 0) -> 0 | s 0

half (s (s X)) -> s (half X)

and allows nesting the call to half inside ok:

ok (half t)

This goal is evaluated as the corresponding goal of double.

The evaluation strategy for overlapping inductively sequential TRSs is called
inductively sequential narrowing strategy or INS Antoy (1997). This strategy
has been formulated for narrowing computations since its inception, i.e., it
does not originate from an earlier rewrite strategy. INS steps and needed nar-
rowing steps are computed similarly. An overlapping inductively sequential
operation has a definitional tree exactly as a non-overlapping inductively se-
quential operation. The computation of an INS step goes as follows. First, one
or more definitional trees are used to find a narrex in a term t, i.e., a position
p of t and a unifier σ such that σ(t|p) is a redex. This is the same as for needed
narrowing. However, the narrex computed by INS may have several replace-
ments. Thus, INS non-deterministically computes a set of narrowing steps,
whereas needed narrowing non-deterministically computes a single narrowing
step. This difference entails significant differences in the properties of the two
strategies.

By contrast to needed narrowing, INS is not hypernormalizing on ground
terms. If a ground term is reducible to a value, then there exists no needed
narrowing derivation that computes an infinite number of needed narrowing
steps. Example 15 shows that this does not hold for INS. By contrast to
needed narrowing, INS may execute avoidable steps. Every step of a needed

21

narrowing computation to a value is unavoidable. Example 15 shows that this
does not hold for INS.

Example 15 Consider the following non-deterministic defined operation:

f -> f | 0

The term f has a unique normal form, 0. On f, INS computes, among others,
the following derivation:

f -> f -> 0

where the initial step is clearly useless.

Despite these differences, INS shares, or better it extends, a crucial property
of needed narrowing—and one of the most desirable properties of a strategy:
every INS step is root-needed modulo a non-deterministic choice. A step s of a
term t is root-needed Middeldorp (1997) if every derivation of t to a root-stable
term eventually executes s. These steps are more fundamental than ordinary
needed steps, since they allow the computation of infinitary normal forms.
An INS step of a term t determines a narrex s and a substitution σ. The
term σ(t) cannot be evaluated to a constructor-rooted term unless the redex
σ(s) is contracted. This redex may have several replacements, but not all the
replacements may be needed to compute a constructor-rooted term. INS com-
putes all possible replacements and it seems unlikely that in general useless
replacements can be determined without lookahead. The qualification “mod-
ulo a non-deterministic choice” in the formulation of the root-needed prop-
erty is vacuous for needed narrowing since needed narrowing has no choices
of replacements. If non-determinism is used appropriately, e.g., when the pro-
grammer has no information to make a choice, one can argue that INS does
the best possible job under its conditions of employment.

Non-deterministic operations require re-thinking some semantic aspects of
both evaluation and strategies. For example, the meaning of the equality op-
eration must be generalized, i.e., t =u means that t and u have a common
value González Moreno et al. (1999) — one out of possibly many. Referring
to Example 13, both equations digit = "0" and digit = "1" hold, but one
should not infer that "0" = "1". A more subtle issue is related to the events
that should bind a value to a variable. The following example shows this point.

Example 16 The following function min is intended to compute the minimum
of two natural numbers.

min a b -> if a<=b then a else b

The “less then or equal to” relational operator “<=” was defined in Exam-

22

ple 6. The “ if · then · else ·” construct can be defined, as a ternary function,
by simple, ordinary rewrite rules which are irrelevant to this discussion.

Consider the term t = min (half (s 0)) 0, where half is the non-deterministic
operation defined in Example 14. The term t is a redex. According to the rule
of min, t is reduced to u = if half (s 0)<=0 then half (s 0) else 0. Now,
if the first occurrence of half (s 0) is reduced to 0 and the second to s 0, the
value of t is not what the programmer intended.

The intended behavior of the rule of min is to bind the same value to all the
occurrences of the variable a. This behavior is referred to as call-time choice
semantics Hussmann (1992) and it is an automatic consequence of eager or
call-by-value strategies.

By contrast, the operation regexp discussed earlier has rules with two occur-
rences of variable X. This variable is bound in the initial application of regexp
to a term, e.g., digit, which may eventually be reduced to a one-character
string of a given alphabet. In this case, however, the intended meaning is op-
posite of that of the rule of the operation min. Unless all the occurrences of X
bound to digit are evaluated independently of each other, some regular ex-
pressions would not be generated. In this case, the intended behavior is not to
bind the same value to all the occurrences of X. This behavior is referred to as
need-time choice semantics and it cannot be provided by eager or call-by-value
strategies. The opportunity to compute with the need-time choice semantics
tends to occur more frequently when a computation is parameterized by an-
other non-deterministic computation.

In each case, the intended behavior seems to depend only on the program. The
need-time choice semantics would be unsound for the operation min shown
earlier. Likewise, the call-time choice semantics would be incomplete for the
operation regexp shown earlier. When non-deterministic computations model
the behavior of a program, as it is the case of functional logic computations,
the programming language should allow the programmer to encode in the
program the intended semantics.

Functional logic languages such as Curry and T OY adopt the call-time choice
semantics only. Unrestricted rewriting and narrowing provide the need-time
choice semantics which would be unintended for these languages. Neverthe-
less, the operational behavior of these languages is defined via definitional
trees, e.g., see González Moreno et al. (1999); Hanus et al. (2003), and hence
via the strategies discussed in this paper, to achieve a more satisfactory per-
formance. A simple implementation technique, namely sharing the represen-
tation of all the occurrences of a variable, ensures the call-time choice se-
mantics Albert et al. (2002); Hussmann (1992); Tolmach and Antoy (2003).
Compilers that map source functional logic code into Prolog code, e.g., Hanus

23

et al. (2003), provide sharing easily with the technique described in Antoy and
Hanus (2000).

The proofs of the soundness, completeness and optimality of INS are only
sketched in Antoy (1997).

3.4 Constructor-based TRSs

The constructor-based TRSs are the largest class proposed to model func-
tional logic programs. This class is a proper superclass of all the other classes
discussed previously. Overlapping of the rules’ left-hand sides is unrestricted,
though in constructor-based TRSs the left-hand sides of two rules can overlap
only at the root. No specific restrictions are imposed on the right-hand sides
of overlapping rules.

Example 17 The following rewrite rules define an operation, permute, that
non-deterministically computes a permutation of a list. The operation insert

does not belong to any of the previously discussed classes of TRSs:

permute [] -> []

permute [X|Xs] -> insert X (permute Xs)

insert X Ys -> [X|Ys]

insert X [Y|Ys] -> [Y|insert X Ys]

A potential drawback of computing with a class as large as the constructor-
based TRSs is that outermost rewrite strategies are not normalizing, hence
outermost narrowing strategies are not complete. All the strategies discussed
in the previous sections are outermost, a condition that simplifies reason-
ing about computations and consequently helps proving properties such as
completeness and optimality. Referring to the previous example, consider the
evaluation of the term t = insert u v. This term is a redex regardless of the
values of u and v. However, one may have to evaluate v to apply the second
rewrite rule of insert. If this rule is never applied, some permutations of some
lists cannot be computed Antoy (2001).

Efficient strategies for the whole class of the constructor-based TRSs are not
as well developed as those for the other classes discussed in this paper. An
early rewrite strategy for this class is proposed in Antoy (1991). A general-
ization to narrowing, restricted to the weakly orthogonal TRSs is proposed
in Loogen et al. (1993). Both strategies are based on some form of general-
ized definitional tree. The completeness of these strategies is unknown. These
strategies are commonly referred to as “demand driven,” which informally
means the following. A subterm v of a term t is evaluated if there is a rule R
potentially applicable to t that demands the evaluation of v, i.e., R cannot be

24

applied if v is not further evaluated. However, the application of R to t may
not be necessary for the whole computation in which t occurs. Demand-driven
strategies inspire confidence in their completeness since they try to create the
conditions for the application of every possible rewrite rule to a term. They
are also wasteful if the application of a rule to a term and consequently the
evaluation of subterms for the application of that rule are unnecessary.

The lack of well-defined strategies with provable properties motivated alterna-
tive efforts for computations in this class, e.g., a narrowing calculus González
Moreno et al. (1999), a program transformation Antoy (2001), and a compila-
tion based on an abstract interpretation Marino and Moreno-Navarro (2000).
The latter is outside the scope of this paper. The narrowing calculus, CRWL,
is mainly proposed as the semantics of narrowing computations, but it is
not well-suited as a practical evaluation mechanism. The implementation of
narrowing computations in T OY , which is modeled by CRWL, is based on
definitional trees. Narrowing calculi will be briefly addressed later.

The program transformation Antoy (2001), called sequentialization, maps a
computation of a constructor-based, possibly conditional, TRS R into a com-
putation of an overlapping inductively sequential TRS R′. Computations in
R′ are then executed by INS. The transformation extends the signature of R
with new operation symbols, but no new constructors. The change in signature
generally creates new steps and new normal forms. However, the transforma-
tion is intended to preserve the computations of R in the sense that any term
built over the signature of R is evaluated to the same set of values by the rules
of both R and R′. The additional normal forms of R′ contain defined opera-
tions and consequently represent failed computations. Computations executed
by INS are optimal with respect to the rewrite rules of R′, but not necessarily
with respect to the rewrite rules of R. The correctness of the transformation
has not been formally proved yet.

The sequentialization transformation is relatively straightforward. Every in-
ductively sequential, possibly overlapping, operation of R is unchanged in R′.
If f is not an overlapping inductively sequential operation of R, R′ introduces
a new function fi for every rule li → ri of f in R and redefines f as follows:

f(X1, . . . , Xn)→ f1(X1, . . . , Xn) | . . . | fk(X1, . . . , Xn)

where X1, . . . , Xn are variables and k is the number of rules defining f in R.
Furthermore, fi is defined by the single rule:

l′i → ri

where l′i is equal to li except that its root symbol is fi instead of f .

25

In short, an overlapping of two rules’ left-hand sides is transformed into a
choice of right-hand sides. The following example shows how this works in
practice.

Example 18 The following rules are the sequentialization of the operation
insert defined in Example 17, which is not inductively sequential:

insert X Y -> insert1 X Y | insert2 X Y

insert1 X Y -> [X | Y]

insert2 X [Y | Ys] -> [Y | insert X Ys]

It is easy to verify that, for any terms u and v, the values of (insertu v)
computed using the operation insert defined in Example 17 are the same as
those computed by its sequentialization.

Several refinements and optimizations are applicable to the above scheme.
E.g., the operation insert1 can be entirely eliminated by unfolding. In par-
ticular, a better operational behavior is obtained when it is possible to apply
the transformation, to proper subsets of the set of all the rules defining a
function López-Fraguas and Sánchez-Hernández (2001) rather than to the en-
tire set. Observe that the sequentialization of insert creates some normal
forms that do not exist in the original TRS, e.g., insert2 0 []. Since this term
contains the defined operation insert2, it does not represent a (successful)
computation.

4 Related issues

The previous sections have glossed over some important issues related to func-
tional logic computations. These issues are addressed in this section. The focus,
as in the rest of this paper, is on evaluation strategies.

4.1 Left Linearity

All the classes of TRSs discussed earlier were assumed to be left-linear. The in-
ductively sequential TRSs, whether or not overlapping, and the weakly orthog-
onal TRSs are left-linear by definition, but the larger class of the constructor-
based TRSs was intentionally limited. To understand the issues behind left-
linearity consider the operation f defined by the rule:

f(X,X) -> r (2)

26

The problem is to determine when a term f(u,v), for some terms u and v,
should be contracted with the above rule. Obviously, it should be contracted
if u and v are identical. However, this leaves out a term such as f(2+2,4),
which seems inappropriate for programming. Therefore, a better approach is
to contract f(u,v), if u and v are “equal.” Thus, the problem becomes to
define a suitable notion of equality in this case. One approach would be to
consider u and v equal if they can be narrowed to unifiable terms, but this
cannot be easily determined.

Example 19 Consider the following program:

from N -> [N | from (N+1)]

tailstar [_ | T] -> tailstar T

and the terms s = tailstar (from 2) and t = tailstar (from 0). These
terms are joinable, i.e., there exists a term u such that s

∗→ u
∗← t. However,

despite the fact that the above program is well behaved, e.g., it is inductively
sequential, there are no reasonably efficient general strategies for determining
the joinability of s and t.

Therefore, joinability does not seem an appropriate choice of equality, at least
for programming. Strict equality seems more reasonable since it can be defined
by ordinary rewrite rules and it can be tested with the strategies discussed
earlier. Therefore, it is the choice of functional logic languages such as Curry
and T OY .

With this notion of equality, the terms s and t of the previous example are
not considered equal, although they are joinable. On the positive side, left-
linearity is no longer a restriction because the meaning of (2) is the same as
the following left-linear conditional rule:

f(X,Y) -> r :- X = Y (3)

which can be freely coded in a program.

4.2 Conditional Rules

The classes of TRSs discussed earlier are all unconditional. The outermost-fair
rewrite strategy, which is normalizing for almost orthogonal TRSs O’Donnell
(1977), is also normalizing for conditional almost orthogonal TRSs Bergstra
and Klop (1986). The strategies discussed in Section 3 are based, either di-
rectly or indirectly, on definitional trees. Definitional trees depend on the
left-hand sides of rewrite rules only. Therefore, strategies defined through def-
initional trees are somewhat independent of whether TRSs are conditional.

27

An approach that takes advantage of this consideration is based on a program
transformation, called deconditionalization Antoy (2001).

This transformation maps a computation in a conditional constructor-based
TRS R into an equivalent computation in an unconditional constructor-based
TRS R′. Computations in R′ are executed as discussed in Section 3.4. The
transformation extends the signature ofR with a single new operation symbol,
but no new constructors. The change in signature generally creates new steps
and new normal forms. However, the transformation is intended to preserve
the computations of R in the sense that any term built over the signature of
R is evaluated to the same set of values by the rules of both R and R′. The
additional normal forms of R′ contain defined operations and consequently
represent failed computations. The correctness of the transformation has not
been formally proved yet.

Similar to the sequentialization transformation presented earlier, the decon-
ditionalization transformation is relatively straightforward. In short, the con-
dition of a conditional rewrite rule is moved to the right-hand side using the
newly introduced operation. More precisely, a conditional rewrite rule of the
form:

l -> r :- t1 = u1, . . . , tn = un

is transformed into:

l -> if t1 = u1 & . . . & tn = un then r

where, as expected, the “if · then ·” binary operation returns its second argu-
ment when its first argument succeeds, and & is the constrained conjunction
operator defined earlier.

4.3 Narrowing Calculi

Narrowing calculi have been investigated as alternatives to narrowing strate-
gies, e.g., LCN Middeldorp et al. (1996) for confluent TRSs, OINC Ida and
Nakahara (1997) for orthogonal TRSs and goals whose right-hand side is a
ground normal form, CLNC González Moreno et al. (1999) for left-linear
constructor-based TRSs. A common reason advocated to study a calculus
rather than a strategy is that “narrowing is a complicated operation” Mid-
deldorp and Okui (1998). Calculi also shed light and help formalizing other
issues of computations such as non-determinism, sharing and the behavior of
strict equality.

Calculi come in various flavors, but generally they consist of a handful of in-

28

ference or transformation rules for equational goals. Calculi ease the proofs of
soundness and completeness by simulating narrowing steps by means of a small
number of more elementary inference rules. This fragmentation sometimes in-
creases the non-determinism of a computation and makes implementations
less efficient. Some calculi have been refined to alleviate this problem, e.g.,
LCNd Middeldorp and Okui (1998) for left-linear confluent constructor based
TRSs with strict equality, and S-OINC Ida and Nakahara (1997).

Strong optimality properties have been claimed for narrowing strategies more
often than for narrowing calculi. The implementation of narrowing is still the
subject of active investigation, but it seems safe to guess that, in general,
strategies can be implemented more easily and efficiently than calculi because
strategies more directly related to the terms that are the object of a compu-
tation.

4.4 Higher Order Functions

The final relevant issue about functional logic programming neglected earlier
concerns high-order computations, a cornerstone of functional programming.
Higher-order functions, i.e., functions that take other functions as arguments,
contribute to the expressive power of a language by parameterizing computa-
tions over other computations. A typical example is the function map, which
applies some function to all the elements of list:

map _ [] -> []

map F [X | Xs] -> [F X | map F Xs]

The difference with respect to previous examples is that the first argument of
map does not evaluate to a value, but to an operation.

The theory of higher-order rewriting is not as advanced as that of (first-order)
rewriting, thus not as much is known about rewrite strategies for higher-order
TRSs. However, the well-known outermost-fair rewrite strategy, which is nor-
malizing for almost-orthogonal TRSs O’Donnell (1977), is normalizing also for
weakly-orthogonal higher-order TRSs if an additional condition, full exten-
sion, is imposed on higher-order rewrite rules van Raamsdonk (99). The the-
ory of higher-order narrowing is even less developed. Similar to the first-order
case, several classes of higher-order TRSs have been proposed for higher-order
functional logic computations, e.g., SFL programs González-Moreno (1993);
González-Moreno et al. (1997, 2001), applicative TRSs Nakahara et al. (1995),
and higher-order inductively sequential TRSs Hanus and Prehofer (1996). Dif-
ferent approaches have been adopted to prove properties of functional logic
computations in these classes. Computations in SFL programs are mapped
to first-order computations by a transformation that extends to narrowing a

29

well-know transformation for higher-order logic computations Warren (1982).
Computations in applicative TRSs are executed by a calculus that makes in-
ference steps of a granularity finer than narrowing steps. Computations in
higher-order inductively sequential TRSs are executed using another general-
ization of definitional trees.

A significant difference between functional logic computations and functional
computations is that narrowing is capable of synthesizing functions. In many
cases, functions of this kind would be the result of a top-level computation.
For example, solving for X the constraint:

map X [0,1,2] = [2,3,4]

would return, among other possibilities, the computed answer {X 7→ s ◦ s},
where s is the constructor defined in Example 8 and “◦” is the functional
composition operator typically available in functional and functional logic lan-
guages. This kind of higher-order results can be computed also by means that
do not involve narrowing, e.g., Nadathur and Miller (1988). Most implemen-
tations of functional languages are not equipped to deal with this possibility.
When the result of a computation is a function, functional languages report so,
but do not identify in any expressive form which function. This design choice
would seem to indicate that higher-order results are not particularly interest-
ing, at least in functional programming. Narrowing considerably expands the
power of functional evaluations, and for this reason higher-order narrowing
is being investigated, too, e.g., see Anastasiadis and Kuchen (1996); Prehofer
(1994), but the feasibility and usefulness of computing higher-order results has
not yet been clearly established.

As in other situations, and for the same reasons, transformational approaches
have been proposed for higher-order computations as well. In short, terms with
partially applied symbols are transformed into terms built with new symbols
introduced for this purpose. Every symbol in a transformed term is fully ap-
plied. The original idea Warren (1982) is formulated for functional evaluation
in logic programming, González-Moreno (1993) generalizes it to narrowing,
and Antoy and Tolmach (1999) refines it by preserving type information which
may dramatically reduce the size of the narrowing space. These approaches
are interesting because they extend non-trivial results proved for first-order
strategies to the higher-order case with a modest conceptual effort.

5 Conclusion

This paper offers an overview of evaluation strategies for functional logic pro-
grams. A program is seen as a constructor-based TRSs and an evaluation or

30

computation is a narrowing derivation to a value — a constructor normal form.
Constructor-based TRSs are good models for programs because they compute
with functions defined over algebraic data types. Non constructor-based TRSs
are seldom used as programs.

I presented four subclasses of the constructor-based TRSs. Each subclass cap-
tures some interesting aspect of computing, such as parallelism or non-de-
terminism. Computations in different classes are best accomplished by differ-
ent strategies. For each class, I presented a narrowing strategy and, in some
cases, the rewrite strategy from which it originates. For smaller classes, the
strategies are better understood, i.e., rewrite strategies are normalizing, they
computes the value, if it exists, of a term, and narrowing strategies are sound
and complete, i.e., when used to solve an equation they compute only and
all the equation’s solutions. For larger classes, the properties of the strategies
have been proved to varying degrees of rigor, but these are the strategies most
interesting in practice and adopted in programming languages’ implementa-
tions. Not surprisingly, as classes get bigger the claims about the efficiency of
strategies suitable for these classes get weaker.

Finally, I considered two extensions of the constructor-based TRSs which are
important for programming: conditional and higher-order rewrite rules. Strate-
gies for functional logic computations in these extensions are not as well devel-
oped as the ordinary case. Transformations from extended TRSs to ordinary
TRSs make it possible to reuse the strategies presented earlier and take ad-
vantage of the intellectual efforts invested in their development.

Acknowledgment

I would like to thank Bernhard Gramlich and Salvador Lucas Alba for inviting
me to write a preliminary version of this paper for the International Workshop
on Reduction Strategies in Rewriting and Programming held in Utrecht, The
Netherlands, in May 2001.

The anonymous reviewers made countless useful suggestions which have been
incorporated in the final version.

References

Aı̈t-Kaci, H., 1990. An overview of life. In: Schmidt, J., Stogny, A. (Eds.), Proc.
Workshop on Next Generation Information System Technology. Springer
LNCS 504, pp. 42–58.

31

Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G., 2002. Op-
erational semantics for functional logic languages. In: Comini,
M., Falaschi, M. (Eds.), Electronic Notes in Theoretical Com-
puter Science. Vol. 76. Elsevier Science Publishers, available at
http://www.elsevier.nl/locate/entcs/volume76.html.

Anastasiadis, J., Kuchen, H., March 1996. Higher order Babel: Language and
implementation. In: Dyckhoff, R., Herre, H., Schroeder-Heister, P. (Eds.),
Proc. of the 5th International Workshop on Extensions of Logic Program-
ming (ELP’96). Vol. 1050 of LNCS. Springer, Leipzig, Germany.

Antoy, S., July 1991. Non-determinism and lazy evaluation in logic program-
ming. In: Clement, T. P., Lau, K.-K. (Eds.), Logic Programming Synthesis
and Transformation (LOPSTR’91). Springer-Verlag, Manchester, UK, pp.
318–331.

Antoy, S., 1992. Definitional trees. In: Proc. of the 4th Intl. Conf. on Algebraic
and Logic Programming. Springer LNCS 632, pp. 143–157.

Antoy, S., 1997. Optimal non-deterministic functional logic computations. In:
Proc. of the 6th International Conference on Algebraic and Logic Program-
ming (ALP’97). Springer LNCS 1298, pp. 16–30.

Antoy, S., Sept. 2001. Constructor-based conditional narrowing. In: Proc. of
the 3rd International ACM SIGPLAN Conference on Principles and Prac-
tice of Declarative Programming (PPDP’01). Florence, Italy, pp. 199–205.

Antoy, S., Echahed, R., Hanus, M., 1997. Parallel evaluation strategies for
functional logic languages. In: Proc. of the 14th International Conference
on Logic Programming (ICLP’97). MIT Press, pp. 138–152.

Antoy, S., Echahed, R., Hanus, M., July 2000. A needed narrowing strategy.
Journal of the ACM 47 (4), 776–822.

Antoy, S., Hanus, M., March 2000. Compiling multi-paradigm declarative pro-
grams into prolog. In: Proc. of the 3rd International Workshop on Frontiers
of Combining Systems (FroCoS 2000). Springer LNCS 1794, Nancy, France,
pp. 171–185.

Antoy, S., Tolmach, A., 11 1999. Typed higher-order narrowing without
higher-order strategies. In: 4th Fuji International Symposium on Functional
and Logic Programming (FLOPS’99). Vol. 1722. Springer LNCS, Tsukuba,
Japan, pp. 335–350.

Baader, F., Nipkow, T., 1998. Term Rewriting and All That. Cambridge Uni-
versity Press.

Barry, B., 1996. Needed narrowing as the computational strategy of evaluable
functions in an extension of Gödel. Master’s thesis, Portland State Univer-
sity.

Bergstra, J. A., Klop, J. W., 1986. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences 32 (3), 323–362.

Bezem, M., Klop, J. W., de Vrijer (eds.), R., 2003. Term Rewriting Systems.
Cambridge University Press.

Bosco, P., Giovanetti, E., Moiso, C., 1988. Narrowing vs. sld-resolution. Theor.
Comput. Sci. 59 (1-2), 3–23.

32

Boudol, G., 1985. Computational semantics of term rewriting systems. In: Ni-
vat, M., Reynolds, J. C. (Eds.), Algebraic methods in semantics. Cambridge
University Press, Cambridge, UK, Ch. 5.

Brand, M. v. d., Klint, P., 18th September 2003. ASF+SDF Meta-
Environment User Manual Revision : 1:134. Centrum voor Wiskunde en
Informatica (CWI), The Netherlands.

Dershowitz, N., 1995. 33 examples of termination. In: Comon, H., Jouannaud,
J.-P. (Eds.), French Spring School of Theoretical Computer Science Ad-
vanced Course on Term Rewriting (Font Romeux, France, May 1993). Vol.
909. Springer-Verlag, Berlin, pp. 16–26.

Dershowitz, N., Jouannaud, J., 1990. Rewrite systems. In: van Leeuwen, J.
(Ed.), Handbook of Theoretical Computer Science B: Formal Methods and
Semantics. North Holland, Amsterdam, Ch. 6, pp. 243–320.

Dijkstra, E. W., 1976. A Discipline of Programming. Prentice-Hall.
Giovannetti, E., Levi, G., Moiso, C., Palamidessi, C., 1991. Kernel LEAF:

a logic plus functional language. The Journal of Computer and System
Sciences 42, 139–185.

González-Moreno, J. C., Oct. 1993. A correctness proof for Warren’s HO into
FO translation. In: Proc. GULP’ 93. Gizzeria Lido, Italy, pp. 569–585.

González Moreno, J. C., Fraguas, F. J. L., González, M. T. H., Artalejo, M. R.,
1999. An approach to declarative programming based on a rewriting logic.
The Journal of Logic Programming 40, 47–87.

González-Moreno, J. C., González, M. T. H., Artalejo, M. R., July 1997. A
higher order rewriting logic for functional logic programming. In: Proc. of
the 14th International Conference on Logic Programming ICLP’97. Leuven,
Belgium, pp. 153–167.

González-Moreno, J. C., González, M. T. H., Artalejo, M. R., July 2001. Poly-
morphic types in functional logic programming. Journal of Functional and
Logic Programming 2001 (1).

Hanus, M., 1994. The Integration of Functions into Logic Programming: From
Theory to Practice. The Journal of Logic Programming 19&20, 583–628.

Hanus, M., 2003. Curry: An integrated functional logic language (vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry.

Hanus, M., Antoy, S., Engelke, M., Höppner, K., Koj, J., Niederau, P., Sadre,
R., Steiner, F., 2003. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs.

Hanus, M., Lucas, S., Middeldorp, A., 1998. Strongly sequential and induc-
tively sequential term rewriting systems. Information Processing Letters
67 (1), 1–8.

Hanus, M., Prehofer, C., 1996. Higher-order narrowing with definitional trees.
In: Proc. 7th International Conference on Rewriting Techniques and Appli-
cations (RTA’96). Springer LNCS 1103, pp. 138–152.

Huet, G., Lévy, J.-J., 1991. Computations in orthogonal term rewriting sys-
tems. In: Lassez, J.-L., Plotkin, G. (Eds.), Computational logic: essays in
honour of Alan Robinson. MIT Press, Cambridge, MA, pp. 395–443.

33

Hussmann, H., 1992. Nondeterministic algebraic specifications and nonconflu-
ent rewriting. Journal of Logic Programming 12, 237–255.

Ida, T., Nakahara, K., 1997. Leftmost outside-in narrowing calculi. Journal of
Functional Programming 7 (2), 129–161.

Kennaway, J. R., 1989. Sequential evaluation strategies for parallel-or and
related reduction systems. Annals of Pure and Applied Logic 43, 31–56.

Klop, J. W., 1992. Term Rewriting Systems. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (Eds.), Handbook of Logic in Computer Science, Vol. II. Ox-
ford University Press, pp. 1–112.

Lloyd, J., 1999. Programming in an integrated functional and logic language.
Journal of Functional and Logic Programming (3), 1–49.

Loogen, R., Fraguas, F. L., Artalejo, M. R., 1993. A demand driven com-
putation strategy for lazy narrowing. In: Proc. 5th International Sympo-
sium on Programming Language Implementation and Logic Programming
(PLILP’93). Springer LNCS 714, pp. 184–200.

López-Fraguas, F. J., Sánchez-Hernández, J., 1999. TOY: a multiparadigm
declarative system. In: In Proc. RTA’99, LNCS 1631. Springer, pp. 244–
247.

López-Fraguas, F. J., Sánchez-Hernández, J., 2001. Functional logic program-
ming with failure: A set-oriented view. In: Nieuwenhuis, R., Voronkov, A.
(Eds.), In Proc. 8th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. Vol. 2250 of Lecture Notes in Com-
puter Science. Springer, pp. 455–469.

Marino, J., Moreno-Navarro, J., 2000. Using static analysis to compile non-
sequential functional logic programs. In: Pontelli, E., Costa, V. S. (Eds.),
Practical Aspects of Declarative Languages, Second International Work-
shop, PADL 2000, Boston, MA, USA, January 2000, Proceedings. Vol. 1753
of Lecture Notes in Computer Science. Springer, pp. 63–80.

Middeldorp, A., 1997. Call by need computations to root-stable form. In: Proc.
24th ACM Symposium on Principles of Programming Languages. Paris, pp.
94–105.

Middeldorp, A., Okui, S., 1998. A deterministic lazy narrowing calculus. Jour-
nal of Symbolic Computation 25 (6), 733–757.

Middeldorp, A., Okui, S., Ida, T., 1996. Lazy narrowing: Strong completeness
and eager variable elimination. Theoretical Computer Science 167 (1,2),
95–130.

Moreno-Navarro, J. J., Rodŕıguez-Artalejo, M., 1992. Logic programming with
functions and predicates: The language BABEL. Journal of Logic Program-
ming 12, 191–223.

Nadathur, G., Miller, D., 1988. An overview of λprolog. In: Proc. 5th Con-
ference on Logic Programming & 5th Symposium on Logic Programming
(Seattle). MIT Press, pp. 810–827.

Nakahara, K., Middeldorp, A., Ida, T., 1995. A complete narrowing calculus
for higher-order functional logic programming. In: Proc. 7th International
Symposium on Programming Languages, Implementations, Logics and Pro-

34

grams (PLILP’95). Springer LNCS 982, pp. 97–114.
O’Donnell, M. J., 1977. Computing in Systems Described by Equations.

Springer LNCS 58.
O’Keefe, R. A., 1990. The Craft of Prolog. The MIT Press, Cambridge, MA.
Petersson, K., Smith, J. M., 1986. Program derivation in type theory: A par-

titioning problem. Computer Languages 11 (3/4), 161–172.
Peyton Jones, S. L., Hughes, J., 1999. Haskell 98: A non-strict, purely func-

tional language, http://www.haskell.org.
Prehofer, C., 1994. Higher-order narrowing. In: Proceedings of the Ninth An-

nual IEEE Symposium on Logic in Computer Science. IEEE Computer So-
ciety Press, Paris, France, pp. 507–516.

Sekar, R. C., Ramakrishnan, I. V., 1993. Programming in equational logic:
Beyond strong sequentiality. Information and Computation 104 (1), 78–109.

Tolmach, A., Antoy, S., 2003. A monadic semantics for core curry. In: Vidal, G.
(Ed.), Electronic Notes in Theoretical Computer Science. Vol. 86. Elsevier,
available at http://www.elsevier.nl/locate/entcs/volume86.html.

van Raamsdonk, F., 99. Higher-order rewriting. In: Proceedings of the 10th
International Conference on Rewriting Techniques and Applications (RTA
’99). Springer LNCS 1631, pp. 220–239.

Warren, D., 1982. Higher-order extensions to PROLOG: are they needed? In:
Machine Intelligence 10. pp. 441–454.

35

