
Concurrent Distinct Choices?

Sergio Antoy1 Michael Hanus2

1 Computer Science Department, Portland State University,
P.O. Box 751, Portland, OR 97207, U.S.A.

antoy@cs.pdx.edu

2 Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstr. 40, D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract. An injective finite mapping is an abstraction common to
many programs. We describe the design of an injective finite mapping
and its implementation in Curry, a functional logic language. Functional
logic programming supports the concurrent asynchronous execution of
distinct portions of a program—a condition that prevents passing from
one portion to another the structure containing a partially constructed
mapping to ensure that a new choice does not violate the injectivity con-
dition. We present some motivating problems and we show fragments of
programs that solve these problems using our design and implementa-
tion. The complete programs are available on-line.

1 Introduction

A finite mapping is one of the most common abstractions in computer pro-
grams. Finite mappings are so ubiquitous that many programming languages
offer a builtin type, the array, with a special notation to ease the implementa-
tion and use of finite mappings. In some situations, e.g., when a programming
language does provide builtin arrays or when a mapping has particular require-
ments, dynamic structures such as linked lists, trees or hash tables are suitable
representations of a mapping.

Regardless of the underlying representation, a mapping is a (total) function
µ from a set I of indices to a set V of values, i.e., µ : I → V . The type of both the
indices and the values is arbitrary. A mapping is injective when distinct indices
are mapped to distinct values, i.e., if i1, i2 ∈ I and i1 6= i2, then µ(i1) 6= µ(i2).
A mapping is finite when the set of indices is finite.

We make either one of two additional assumptions on the set V of values.
The first assumption requires the a priori knowledge of a finite subset V ′ of V
containing µ(I). If µ is a injective finite mapping, V ′ necessarily exists, since µ(I)
has the same cardinality as I, and hence is finite. However, V ′ must be known

? This research has been partially supported by the DAAD/NSF grant INT-9981317,
the German Research Council (DFG) grant Ha 2457/1-2 and the NSF grant CCR-
0110496.

http://www.cs.pdx.edu/~antoy/index.html
http://www.informatik.uni-kiel.de/~mh/
http://www.cs.pdx.edu/
http://www.pdx.edu/
mailto:antoy@cs.pdx.edu
http://www.informatik.uni-kiel.de/
http://www.uni-kiel.de/
mailto:mh@informatik.uni-kiel.de
http://www.informatik.uni-kiel.de/~curry
https://www.fastlane.nsf.gov/servlet/showaward?award=9981317
http://www.nsf.gov/
https://www.fastlane.nsf.gov/servlet/showaward?award=0110496
https://www.fastlane.nsf.gov/servlet/showaward?award=0110496


before computing µ. This assumption trivially holds when V itself is finite. The
second assumption, much weaker, requires the existence of an enumeration func-
tion of the values, i.e., a bijection ν : N→ V . Since in a program V is represented
by either a primitive type or an algebraic type, this second assumption is easily
satisfied for most problems.

In this paper we describe the design and implementation of an injective fi-
nite mapping with two particular characteristics. Our programming language
is declarative, thus neither state updates nor side effects are allowed. Our pro-
gramming language is concurrent, thus different portions of the mapping are
computed concurrently and asynchronously by different portions of a program.
This second characteristic has some non-trivial consequences that will be dis-
cussed later.

A class of puzzles knows as cryptarithms is an ideal problem to discuss our
design and implementation of an injective finite mapping: the mapping itself is
the solution of the problem and it is convenient to compute index-value pairs
of this mapping concurrently. This second condition will be explained and mo-
tivated in Section 3.

The Merriam-Webster OnLine dictionary defines a cryptarithm as “an arith-
metic problem in which letters have been substituted for numbers and which
is solved by finding all possible pairings of digits with letters that produce a
numerically correct answer.” A well-known example of cryptarithm is:

S E N D + M O R E = M O N E Y (1)

Customarily, in a cryptarithm distinct letters stand for distinct digits and leading
zeros are not allowed.

The solution of a cryptarithm is an injective finite mapping. The indices are
the letters occurring in the cryptarithm. The values are the digits. The solution
of (1), graphically represented as a mapping, is shown below in a form that eases
verifying its correctness:

S E N D + M O R E = M O N E Y
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
9 5 6 7 + 1 0 8 5 = 1 0 6 5 2

A cryptarithm such as (1) in which letters form meaningful words, often in
meaningful phrases, is referred to as an alphametic. There exist a large number
of witty alphametics. Alphametics with a unique solution, such as (1), are more
elegant, but a unique solution is not required. The following alphametic has 130
solutions:

T O O + M U C H = B E E R

Solving a cryptarithm by brute force, i.e., by generating and testing every plau-
sible mapping, is inefficient. Finite domain constraint solvers find solutions effi-
ciently. Our program for cryptarithms is not as efficient, although it finds solu-
tions in milliseconds. Our focus is not on the program itself. Rather, the program
is a concrete environment for discussing the design and implementation of an
injective finite mapping. Our solution contributes the simplicity and efficiency of

2

http://www.m-w.com/dictionary.htm


this program. Our solution is also general and we will sketch other applications
in which it can be applied.

This paper is structured as follows. Section 2 briefly recalls some principles
of functional logic programming and the programming language Curry which
we use to present the examples. Section 3 presents the design of an injective
finite mapping in a functional logic program and its implementation in Curry.
Section 4 concludes the paper.

2 Functional Logic Programming and Curry

This section introduces both the basic ideas of functional logic programming
and the elements of the programming language Curry that are necessary to
understand the subsequent examples.

Functional logic programming integrates in a single programming model the
most important features of functional and logic programming (see [6] for a de-
tailed survey). Thus, functional logic languages declare algebraic datatypes, de-
fine functions by pattern matching and evaluate expressions containing logical
variables. Supporting the latter requires some built-in search principle to guess
the appropriate instantiations of logical variables. There exist many languages
that are functional logic in this broad sense, e.g., Curry [9], Escher [10], Le Fun
[2], Life [1], Mercury [16], NUE-Prolog [12], Oz [15], Toy [11], among others.

One of the most characterizing features of functional logic programming is the
evaluation—particularly the lazy evaluation—of expressions containing logical
variables. Both narrowing and residuation serve this purpose.

When an expression e cannot be evaluated due to the presence of an unin-
stantiated logical variable X, narrowing non-deterministically instantiates X to
keep the evaluation of e from halting. By contrast, residuation suspends the eval-
uation of e, transfers control to another portion of the program, and resumes
the evaluation of e if and when X becomes sufficiently instantiated.

Residuation is conceptually simple and relatively efficient, but incomplete,
i.e., not always able to obtain the result of a computation. By contrast, narrow-
ing is complete if an appropriate strategy [3,4] is chosen, but it is potentially
less efficient than residuation for its propensity to generate a larger search space
in some situations. Functional logic languages can be effective with either mech-
anism. Curry offers both residuation and narrowing to the programmer in a
unified computation model [7].

Curry has a Haskell-like syntax [13], i.e., (type) variables and function names
usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”). In addition to Haskell, Curry supports logic programming by
means of free (logical) variables in both conditions and right-hand sides of defin-
ing rules. Thus, a Curry program consists of the definition of functions and the
declaration of data types on which the functions operate. Functions are evalu-

3

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry


ated lazily and can be called with partially instantiated arguments. In general,
functions are defined by conditional equations, or rules, of the form:

f t1 . . . tn | c = e where vs free

where t1, . . . , tn are data terms (i.e., terms without defined function symbols),
the condition c is either a Boolean function or constraint, e is an expression
and the where clause introduces a set of free variables. The condition c and the
where clause are optional. Curry predefines equational constraints of the form
e1 =:= e2 which are evaluated by narrowing and are satisfiable if both sides e1

and e2 are narrowed to unifiable data terms. Furthermore, “c1 & c2” denotes the
concurrent conjunction of the constraints c1 and c2 which is evaluated by solving
both c1 and c2 concurrently.

The where clause introduces the free variables vs occurring in c and/or e but
not in the left-hand side. Similarly to Haskell, the where clause can also contain
other local function or pattern definitions. In contrast to Haskell, where the first
matching function rule is applied, in Curry all matching (to be more precise,
unifiable) rules are non-deterministically applied to support logic programming.
This enables the definition of non-deterministic functions which may have more
than one result for a given input. An example follows:

insert :: a -> [a] -> [a]
insert e [] = [e]
insert e (x:xs) = e : x : xs
insert e (x:xs) = x : insert e xs

As in Haskell, [] (empty list) and : (non-empty list) are the constructors of the
polymorphic type list. The symbol a is a type variable ranging over all types. The
first line of the code declares the type of the function insert. This declaration
is optional, since the compiler can infer it, and it is stated only for checkable
redundancy. The type expression α -> β denotes the type of all functions from
type α to type β. Since the application of a function is curried, insert takes an
element of type a, a list of elements of type a and returns a list of elements of
type a, where a is any type. The function insert inserts an element into a list
at some non-deterministically chosen position.

The second and third rule defining insert overlap. As a consequence, the
expression (insert 1 [3,5]) has three values: [1,3,5], [3,1,5], and [3,5,1].
Using insert, we define a permutation of a list by:

perm [] = []
perm (x:xs) = insert x (perm xs)

As an example of solving constraints, we define a function that checks whether
some list starts with a permutation of another list and delivers the list of the
remaining elements. For this purpose we use the concatenation of two lists which
we define as:

(++) eval flex
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

4

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry


The first line declares that the operator “++” is flexible. The application of “++”
may instantiate variables in the arguments, if this is necessary to execute a
computation step. By default, only constraints are flexible.

Now we define the required function by a single conditional rule:

pprefix xs ys | perm ys ++ zs =:= xs
= zs
where zs free

The operational semantics of Curry, precisely described in [7,9], is a conserva-
tive extension of both lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic programming. Since
computations are based on an optimal evaluation strategy [3,4], Curry can be
considered a generalization of concurrent constraint programming [14] with a
lazy (optimal) evaluation strategy. Furthermore, Curry also offers features for
application programming like modules, monadic I/O, ports for distributed pro-
gramming, and specialized libraries. We do not discuss these aspects since they
are unnecessary to understand our ideas.

There exist several implementations of Curry. The examples presented in
this paper were all compiled and executed by Pakcs [8], a compiler/interpreter
for a large subset of Curry.

3 Design and Implementation

As outlined in the introduction, an injective finite mapping is a component of
the solution of many problems. A plausible implementation of a finite mapping
is any structure defining index-value pairs, e.g., an array, a list of pairs, etc.
Index-value pairs are computed during the execution of a program. To ensure
injectivity, when a new index-value pair is computed the program must check
whether a pair with the same index was previously computed and, if so, whether
the value in the previous and the new pairs are the same.

A problem with this approach arises if a functional logic program computes
index-value pairs concurrently, e.g., due to residuation. This condition prevents
sequentially passing a partially constructed mapping through the portions of a
program computing index-value pairs to ensure that a newly computed pair does
not violate the injectivity condition. Concurrency is quite common in declara-
tive programming (see also Erlang [5] or Oz [15]) and not uncommon in modern
imperative languages. The declarative coordination of concurrent activities de-
mands for specific techniques. In the following, we will show one such technique
for the case of injective finite mappings. We make this point more concrete by
discussing the architecture of a simple program to solve a cryptarithm.

A program to solve (1) declares one variable for each letter. Initially, these vari-
ables are uninstantiated:

vs,ve,vn,vd,vm,vo,vr,vy free

The solution of the problem is a suitable instantiation of these variables, which
implicitly defines the mapping which is the subject of this paper. The instanti-

5

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry


ation of each variable is determined by the equation of the problem. This equa-
tion can be processed as a single unit or it can be broken into a set of “smaller”
equations. These smaller equations establish the conditions that the letters must
satisfy for the column of the units, the tens, the hundreds, etc., exactly as one
would perform the addition by hand. The following display depicts the situation:

c3 c2 c1 c0
S E N D +
M 0 R E =

M 0 N E Y

(2)

where ci, for i = 0, 1, 2, 3, is a carry. For example, the equations of the units and
the tens are:

D + E = 10 ∗ c0 + Y
c0 + N + R = 10 ∗ c1 + E

Splitting the problem’s equation into a set of smaller equations is a slight com-
plication, since it requires the introduction of additional variables for the carries.
However, a set of smaller equations has a significant advantage. With appropri-
ate control, the program detects a wrong instantiation, i.e., an instantiation of
a variable that does not satisfy some equation, when fewer variables are instan-
tiated. This considerably improves the efficiency of the program execution.

Thus, the program encodes as follows the set of equations that the variables
must satisfy:

vd+ve =:= c0*10+vy &
vn+vr+c0 =:= c1*10+ve &
ve+vo+c1 =:= c2*10+vn &
vs+vm+c2 =:= c3*10+vo &

c3 =:= vm

where c0 is the carry of the units, c1 of the tens, etc. Each carry must be either
0 or 1 and consequently it is (non-deterministically) initialized as follows:3

ci = 0!1 i = 0, . . . , 3

It follows from the conventions of the problem that vm is not zero and conse-
quently c3 is equal to one. Our simple program ignores this precise inference.
However, this equation together with the equation defining the carry constrain
the possible values of vm to zero and one only.

As we mentioned, splitting the equation of the problem into a set of smaller
equations considerably improves the efficiency of the execution, but it intro-
duces a substantial complication. The solutions of the equations are computed
concurrently. The order in which the solution of each equation is computed is
undetermined. Since the variables, vs, ve, . . . that stand for the letters of the

3 The infix operator ! returns one of its arguments. It is defined by the two rules:
x ! y = x

x ! y = y

6



puzzle are initially unbound and the addition and multiplication operators resid-
uate, the execution of the equations that the variables must satisfy is suspended
until both the operands of an operator become bound. Each variable is non-
deterministically bound to a digit, similarly to the carries. In this case, though,
the choice ranges over every digit, or every positive digit for vm and vs. It is
inappropriate to non-deterministically instantiate the variables as it is done for
the carries, e.g.:

vd =:= 0!1!2!3!4!5!6!7!8!9
...
vm =:= 1!2!3!4!5!6!7!8!9

(3)

since some of these instantiations do not ensure that distinct variables are bound
to distinct digits. It is inappropriate as well to pass around a structure containing
the current binding of the variables, since the order in which the variables will
be instantiated cannot be easily determined in advance. Here is where our ideas
make the difference.

We represent the mapping as a list referred to as the store. The store is
indexed by the values of the problem. In the particular case of cryptarithms, this
indexing is natural and straightforward since the values are the digits 0,1,. . .,9.
Initially, the elements of the store are free variables. The elements in the store
are referred to as tokens. Putting a token into the store represents the action of
choosing a value that must be different from the value of any other choice. The
type of the tokens is arbitrary. Often, it is convenient to represent the tokens
with the indices of the problem. In the particular case of the alphametic (1), we
choose the characters S, E, N, . . . as the tokens.

Thus, the indexes and values of a problem are used as values and indexes
respectively, in the store, i.e., the roles they have in the problem is reversed in
the store. We will shortly explain why this reversal of roles is a natural and
necessary aspect of the design. In the particular case of the alphametic (1), the
set of values is finite. This enables us to create the store when the execution
of the program begins. The store is a list of length 10. At the end of the only
successful computation for our example (note that in general there can be more
than one successful computation), the content of the store is shown below, where
• represents an uninstantiated variable:

O M Y • • E N D R S

Thus, in the program, the initial store is a list of 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]
where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

(4)

A letter of the cryptarithm is paired to a digit by the function digit defined as
follows:

digit token | store !! x =:= token
= x
where x = 0!1!2!3!4!5!6!7!8!9

7



Although the associated digit is non-deterministically selected, the condition on
the store ensures the injectivity of the mapping. The argument token must be
unique for each letter, hence, it is natural and convenient to represent it with
the letter itself—a character in the program. The store, identified by the variable
store, is defined in the scope of the function digit, hence it does not appear
as an argument. The operator !! applied to arguments l and i returns the i-th
(counting from zero) element of the list l.

Thus, the letters of the cryptarithm are nondeterministically instantiated as
follows:

vs =:= nzdigit ’S’
ve =:= digit ’E’
vn =:= digit ’N’
...

where nzdigit is a variant of digit that returns only non-zero digits. For exam-
ple, (digit ’Y’) returns 2 if and only if the second (counting from zero) element
of the store is bound to ’Y’. The entire program for this problem is available
on-line4.

The reversal of the roles of indices and values in the store may be confusing
at first, but it has a natural explanation. The injectivity requirement is intended
to prevent the condition in which two distinct indices, say l and m, satisfy
µ(l) = v = µ(m), for some value v. In the store, the value v is associated to
some value of the problem, i.e., a digit i. Specifically, the variable v is the i-th
element of the store. Every time an index of the problem, i.e., some letter L, is
mapped to i, the program attempts to unify, hence instantiate, the variable v
to L. The attempt succeeds if and only if either v was uninstantiated, or v was
instantiated to L already. Thus, no two distinct indices of the problem can be
mapped to the same value of the problem.

In the program that we are discussing, the association between a variable v
of the store and a value i of the problem is positional. The store is a list and
the variable v is the i-th element of the list. The store is constructed by (4),
since the set of values of the problem is finite and known in advance. There are
many variations of this design. We discuss two of these variations below. The
first variation is useful when no finite set of values is known in advance. The
second variation allows more efficient access to the data.

The first variation constructs the list lazily. The !! operator, defined in the
prelude, is rigid. We define an analogous operator flexible—the rewrite rules are
unchanged:

(!!!) eval flex
(x:xs) !!! n = if n==0 then x else xs !!! (n-1)

If we replace the standard index operator “!!” with “!!!” in the definition of
digit, we can replace (4) with the following:

store = x where x free

4 http://www.cs.pdx.edu/~antoy/flp/patterns/distinct-choices-dir/

8

http://www.cs.pdx.edu/~antoy/flp/patterns/distinct-choices-dir/index.html
http://www.cs.pdx.edu/~antoy/flp/patterns/distinct-choices-dir/


This variation is interesting when the set of values of the problem is infinite.
The store is indexed by the values of the problem, which in general will not be
natural numbers. In this case, we use the enumeration function, ν, discussed in
the introduction. In this case, a value v is indexed in the store by ν−1(v).

The second variation represents the store with a tree rather than a list. In
this case, a positional association between the variables of the program and the
values of the problem is unfeasible or inconvenient. Thus, each node of the tree
representing the store is decorated by both indices and values. The tree is filled
with all the values of the problem to establish the association between a value
and a variable which for lists is implicitly established by the position of the
variable in the list. Initially, a node contains a value i of the problem and an
uninstantiated variable v. As the program’s execution progresses, and an index
l of the problem is mapped to the value i, the node of the store containing i is
retrieved and the index l is unified, if possible, with v. This variation requires the
a priori knowledge of a finite set containing the index mapped by the problem.

The crucial feature of the injective finite mapping that we discussed is the
possibility of concurrently computing index-value pairs. However, the proposed
design can be employed also in problems where concurrency is not an issue. For
example, the n-queens puzzle can be implemented in this way. The proposed
program, similar to many others for this problem, computes a permutation of
the integers 0, 1, . . . , n− 1, where the i-th element of the permutation is the row
in which the queen in the i-th column is placed. A permutation can be seen as
an injective mapping of the values 0, 1, . . . , n − 1 into themselves. In this case,
both the indexes and the values of this problem’s mapping are most naturally
represented by the integer numbers in the range 0 through n− 1.

The only difference between an implementation using an the injective finite
mapping and a more traditional implementation is how a permutation is com-
puted. Using our design, a function to compute a permutation of the integers
0, 1, . . . , n− 1 is:

permute n = result n
where result n = if n==0 then [] else pick n : result (n-1)

pick i | store !!! k =:= i = k where k = range n
range n | n > 0 = range (n-1)
range n | n > 0 = n-1
store free

This implementation computes the store lazily. As discussed earlier, this requires
the flexible version of the index operator, “!!!”, which was defined earlier.

We compared the execution time of a program computing all the solutions of
the n-queens puzzle using the above function with a similar program using the
following function:

permute n = result [0..n-1]
where result [] = []

result (x:xs) = insert x (result xs)
insert x y = x:y
insert x (y:ys) = y:insert x ys

9



Using the Pakcs implementation of Curry, the first program takes about 50%
more time, regardless of n, than the second program. The memory allocated
is the same in each program. This simple experiment suggests that using our
implementation of an injective finite mapping imposes no severe overhead w.r.t.
more traditional implementations.

As we mentioned above, the splitting of a problem into smaller parts that
are solved concurrently has the advantage that wrong instantiations of some
variables (i.e., those cannot lead to a solution) are detected earlier. This can
lead to a considerable reduction of the search space. For instance, a naive func-
tional solution to our cryptarithm (i.e., enumerating all the digits and testing
equation (1)) has an inacceptable execution time. This solution can be improved
by merging partial tests with the enumeration of values in a sophisticated way.
However, the resulting code is less concise and more difficult to generalize than
our concurrent implementation of injective finite mappings.

4 Conclusion

Functional logic programs, in addition to ordinary functional computations, pro-
vide both concurrency and logic variables. Concurrency supports a powerful and
expressive programming style, but it complicates some tasks, in particular the
computation of an injective finite mapping. We have presented the design and
implementation of one such mapping for a functional logic language.

The design relies on a representation of index-value pairs where the values of
the problem play the role of indices in the representation and the indices of the
problem are initially unbound variables. During the computation, the variables of
the representation are non-deterministically bound to the indices of the problem.
This design ensures the injectivity of the mapping even when index-value pairs
are computed concurrently and independently.

We have shown the implementation of our design in Pakcs, a popular com-
piler/interpreter of Curry. We have discussed a few implementations with differ-
ent characteristics—in particular, linear and tree-based implementations when
the set of the values of the problem is finite. We have compared our implemen-
tation of an injective finite mapping with more traditional implementations. We
have found that the overhead of supporting the concurrent asynchronous com-
putation of index-value pairs is an increase in computing time by a very small
factor.

References

1. H. Aı̈t-Kaci. An overview of LIFE. In J. Schmidt and A. Stogny, editors,
Proc. Workshop on Next Generation Information System Technology, pages 42–
58. Springer LNCS 504, 1990.

2. H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and functions.
In Proc. 4th IEEE Internat. Symposium on Logic Programming, pages 17–23, San
Francisco, 1987.

10

http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry


3. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Inter-
national Conference on Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

5. J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Program-
ming in Erlang. Prentice Hall, 1996.

6. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

7. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

8. M. Hanus, S. Antoy, K. Höppner, J. Koj, P. Niederau, R. Sadre, and F. Steiner.
PAKCS: The Portland Aachen Kiel Curry System. Available at http://www.

informatik.uni-kiel.de/~pakcs/, 2002.
9. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.7). Avail-

able at http://www.informatik.uni-kiel.de/~curry, 2000.
10. J. Lloyd. Programming in an integrated functional and logic language. Journal of

Functional and Logic Programming, (3):1–49, 1999.
11. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative

System. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.
12. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium

on Programming Language Implementation and Logic Programming, pages 15–26.
Springer LNCS 528, 1991.

13. S. Peyton Jones and J. Hughes. Haskell 98: A non-strict, purely functional lan-
guage. http://www.haskell.org, 1999.

14. V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
15. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer

Science Today: Recent Trends and Developments, pages 324–343. Springer LNCS
1000, 1995.

16. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, 1996.

11

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.haskell.org

	Concurrent Distinct Choices
	Introduction
	Functional Logic Programming and Curry
	Design and Implementation
	Conclusion
	References


