TLP 11 (4-5): 713-730, 2011. © Cambridge University Press 2011
doi:10.1017/51471068411000263
Draft Wed Mar 30 17:21:24 PDT 2011 713

On the Correctness of Pull-Tabbing

Sergio Antoy

Computer Science Department
Portland State University
Portland, OR 97207, U.S.A.

antoy@cs.pdx.edu

Abstract

Pull-tabbing is an evaluation approach for functional logic computatioased on a graph trans-
formation recently proposed, which avoids making irrevocable noeraénistic choices that would
jeopardize the completeness of computations. In contrast to otherambowith this property, it
does not require an upfront cloning of a possibly large portion of tleécefs context. We formally

define the pull-tab transformation, characterize the class of progmanvghich the transformation

is intended, extend the computations in these programs to include the traagém, and prove the
correctness of the extended computations.
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1 Introduction

Functional logic programming (Antoy and Hanus 2010) joma Bingle paradigm the fea-
tures of functional programming with those of logic programg. Logic programming
contributes logic variables that are seamlessly intedrat€functional computations by
narrowing. The usefulness and elegance of programming neitlowing is presented in
(Antoy and Hanus 2002; Antoy 2010). At the semantics levet fvariables are equiva-
lent to non-deterministic functionAntoy and Hanus 2006), i.e., functions that for some
arguments may return any one of many results. Thus, at thieingmtation level vari-
ables can be replaced by non-deterministic functions whemdeterministic functions
appear simpler, more convenient and/or more efficient tddmpnt (Brassel and Huch
2007). This paper focuses on a graph transformation rgcpraposed for the implemen-
tation of non-determinism of this kind. This transformatie intended to ensure the com-
pleteness of computations without cloning too eagerly gelgyortion of the context of
a non-deterministic step. The hope is that steps followirggttansformation will create
conditions that make cloning the not yet cloned portion ef¢bntext unnecessary.

2 Motivation

Non-determinism is certainly the most characterizing gmgealing feature of functional
logic programming. It enables encoding potentially diffiqaroblems into relatively sim-
pler programs. For example, consider the problem of alisitathe dependencies among
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the elements of a set such as the functions of a program or ithgets of a graphical
user interface. In abstractions of this kirmhmponent partébuild” composite objectA
non-deterministic functiorpuilds, defines which objects are dependent on each part. The
syntax is Curry (Hanus 2006).

builds pl = ol

builds pil 02

builds p2 = ol

@)

A part can build many objects, e.g.: patt builds objects1 ando2. Likewise, an object
can be built from several parts, e.g.: objettis built by partsp1 andp2. Many-to-many
relationships, such as that between objects and partskieisthed, are difficult to abstract
and to manipulate in deterministic languages. However, finational logic setting, the
non-deterministic functiobuilds is straightforward to define and is sufficient for all other
basic functions of the abstraction.

For example, a function that non-deterministically conesid part of an object is simply
defined by:

is_built_ by (builds x) = x (2)

whereis_built_by is defined using &unctional pattern(Antoy and Hanus 2005). The set
of all the parts of an object is computed by built_by’set, the implicitly definedset
function(Antoy and Hanus 2009) afs_built_by.

The simplicity of design and ease of coding offered by fumwdi logic languages through
non-determinism do not come for free. The burden unloadenh fthe programmer is
placed on the execution. All the alternatives of a non-aeieistic choice must be ex-
plored to some degree to ensure that no result of a computgties missing. Doing this
efficiently is a subject of active research. Below, we sunimeahe state of the art.

3 Approaches

There are three main approaches to the execution of nonadatstic steps in a func-
tional logic program. A fourth approach, call@dll-tabbing (Algaddoumi et al. 2010),
still underdeveloped, is the subject of this paper. Pulbiag offers some appealing char-
acteristics missing from the other approaches.

3.1 Running example

We borrow from (Algaddoumi et al. 2010) a simple example tespnt the existing ap-
proaches and understand their characteristics:
flip 0 = 1
flip 1 = 0 (3)
coin =0 7 1
We want to evaluate the expression

(flip %, flip x) where x = coin 4)

We recall that #’ is a library function, callecchoice that returns either of its arguments,
i.e., itis defined by the rules:
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X 7?7 _=x rule C4

_?7y=y rule Cy ©)
and that theshere clause introducessharedexpression. Every occurrencesoin (4) has
the same value throughout the entire computation accotditiggcall-time choiceseman-
tics (Hussmann 1992;dpez-Fraguas et al. 2007). By contrast(flip coin, flip coin)
each occurrence afoin is evaluated independently of the other. Fig. 1 highlighesdif-
ference between these two expressions when they are dépetgaphs.

) (@)
N /N
flip flip flip flip
N \_ \.

coln coln coln

Fig. 1. Depiction of (4) (left) and of (f1ip coin, flip coin) (right) as graphs. The symbol
(,) denotes the pair constructor.

A contextis an expression with a distinguished symbol caliete denoted []'. If C'is a
context,C|x] is the expression obtained by replacing the hol€ ith z. E.g., the expres-
sion in (4) can be written aS[coin]|, in whichC'is (f1ip x, flip x) where x = [].
The contex{ ] is calledemptycontext. An expression rooted by a noddabeled by the
choice symbol is informally referred to aschoiceand each argument of the choice sym-
bol, or successor o, is referred to as a choicegternative

3.2 Previous approaches

Backtrackingis the most traditional approach to non-deterministic cotatons in func-
tional logic programming. Evaluating a choice in some ceitsay C[u?v], consists in
selecting either alternative of the choice, ewg(the criterion for selecting the alternative
is not relevant to our discussion), replacing the choicé wie selected alternative, which
givesC|[u], and continuing the computation. In typical interpretérand when the com-
putation ofC'[u] completes, the result is consumed, e.g., printed, and #eisigiven the
option to either terminate the execution or compufe]. Backtracking is well-understood
and relatively simple to implement. It is employed in sustellanguages such as Prolog
(ISO 1995) and in language implementations such as PAKC&y$§a008) andr O)
(Caballero and &chez 2007). The major objection to backtracking is itermgleteness.
If the computation of”[u] does not terminate, no result6fv] is ever obtained.

Copying(or cloning) is an approach that fixes the inherent incompleteness dfiaa&-
ing. Evaluating a choice in some context, $8y.7v], consists in evaluating simultaneously
(e.g., by interleaving steps) and independently ot andC|[v]. In typical interpreters,
if and when the computation of either completes, the resubnsumed, e.g., printed, and
the user is given the option to either terminate the exeowiaontinue with the computa-
tion of the other. Copying is simpler than backtracking arisl used in some experimental
implementations of functional logic languages (Antoy et24l05; Tolmach et al. 2004).
The major objection to copying is the significant investmeitime and memory made
when a non-deterministic step is executed. If an alteraativa choice eventually fails,
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cloning the context may have been largely useless. For aivemiexample, notice that in
1+(2+(.. +(n ‘div‘ coin)...)) an arbitrarily large context is cloned when the choice
is evaluated, but for one alternative this context is alnmostediately discarded.

Bubblingis an approach proposed to avoid the drawbacks of backtrgaad copying
(Antoy et al. 2006; bpez-Fraguas et al. 2008). Bubbling is similar to copyingthat it
clones a portion of the context of a choice to concurrentiypgote all its alternatives, but
the portion of cloned context is typically smaller than tiéire context. We recall thatin a
rooted graply, a nodel is adominatorof a noden, properwhend # n, iff every path from
the root ofg to n containsd. An expressiorC[u?v] can be seen aS; [Ca[u?v]] in which
the root ofC5 is a dominator of the hole. A trivial case arises wiién= [] andCy = C.
Evaluating a choice in some context, sgju?v], distinguishes whether or n6tis empty.

If C'is the empty contexty andv are evaluated simultaneously and independently, as in
copying, but there is no context to clone. Otherwise, théuagen consists in finding’;
andCs such thatC[u?v] = C1[Cs[u?v]] and the root of’; is a proper dominator of the
choice, and evaluating [C>[u]|?C>[v]]. When( is the empty context, then bubbling is
exactly as copying. Otherwise a smaller context, (&. instead ofC, is cloned. Bub-
bling intends to reduce cloning in hopes that some alteraati a choice will quickly fail.

An objection to bubbling is the cost of find- ;

ing a choice’s immediate dominator and the / ' \

risk of paying this cost repeatedly for the ) W)

same choice. This cost entails traversing|a yZ ’ . V ’ .
possibly-large portion of the choice’s cony ¢4 flip  flip flip
text. Traversing the context is more effi

cient than cloning it, since cloning requires \o/ \1/

node construction in addition to the traver-

sal, but it is still unappealing, since the -
Fig. 2. Graph depiction of the state of the com-

cost of a non-deterministic step is not preIoutation of (4) after a bubbling step. Since the

dictable_and it may grow with the size of anyominator of the choice is the root, bubbling and
expression. copying are the same for this example.

3.3 Pull-Tabbing

Pull-tabbing which is at the core of our work, was first sketched in (Algauti et al.
2010). The name “pull-tab” originates from the metaphorufipg the tab of a zipper. For
an expression, a choice is a tab and a choice’s spine is arzigpthe tab/choice is pulled
up, the zipper/spine opens into two equal strands each ahwias a different alternative
of the choice at the end.

Evaluating a choice in some context, sayu?v], distinguishes whether or nat is
empty. If C' is empty,u andv are evaluated simultaneously and independently, as in-copy
ing and bubbling, without any context to clone. Otherwibe, éxpression to evaluate is of
the formC/[s(u?v)], for some symbo$ (for ease of presentation we assume thistunary,
but there are no restrictions on its arity) and some con@exull-tabbing transforms the
expression int@'[s(u)?s(v)]. Without some caution, this transformation is unsound.
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Unsoundness may occur when some choice has two predegessdnsour running
example. The choice will be pulled up along two paths cregtivo pairsof strands that
eventually must be pair-wise combined together. Some awatibins will contain mutually
exclusive alternatives, i.e., subexpressions impostitbtain in languages such as Curry
and7 Q) that adopt the call-time choice semantics. Fig. 3 presamxample of this
situation.

() ) )

./(’)\. flip/ \flip ?/ \flip ?/ flip
fllp\ ./fllp — \ / — fllp/ \flip l — 1/ \0 ‘

coin O/.\l \

Fig. 3. Initial portion of the computation of4) with pull-tabbing. The choice in the second expres-
sion is being pulled up along the left path to the root. This computation wouldwalgnproduce
several results including1,0) which mixes the left and right alternatives of the same choice.

We will show that the soundness is recovered if the left aglatiternative of a choice are
not combined in the same expression. To this aim, we attach anifiée to each choice
of an expression. We preserve this identifier when a choipelled up. If eventually the
choice is reduced to either of its alternatives every otlwiae with the same identifier
must be reduced to the same alternative. A very similar ideerather different setting is
proposed in (Brassel and Huch 2007; Brassel 2011).

A pull-tab step clones a single node, a predecessor of theebeing pulled up. If the
choice is pulled all the way up to the root of an expressioa,dhoice’s entire spine is
cloned. But if an alternative of the choice fails before theice reaches the root, further
cloning of the choice’s context becomes unnecessary.

4 Formalization
4.1 Background

We define a term graph in the customary way (Echahed and Jat@@é), but extend the
decorations of nodes with choice identifiers.

Definition 1 (Expression) Let ¥ be asignature X a countable set ofvariables N a
countable set ofnodes 2 a countable set othoice identifiers A (rooted) graphover
(X,N, X,Q) is a5-tupleg = (N, L4, Sy, Rootsg, id,) such that:

. N, C N is the set of nodes @f

. Ly : N, — X U X is thelabelingfunction mapping each node gfto a signature symbol
or a variable;

. 8g : Ny — N is thesuccessoiunction mapping each node gfo a possibly empty string
of nodes ofy such that if£,(n) = s, wheres € ¥ U X, and (for the following condition,
we assume that a variable has arity zetw)ty(s) = k, then there existy, ..., n; in N
such thatS,(n) = ni ... ng;

. Roots, C N, is a subset of nodes ofcalled therootsof g;
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.idg + Ny — Qis a partial function mapping nodes labeled by the choicet®yjrto a
choice identifier;

. ifLg(ny) € X andLy(ne) € X andL,(n1) = L4(n2), thenn, = no, i.e., every variable
of ¢ labels one and only one node gfand

. for eachn € V,, eithern € Roots, or there is a path fromr to n wherer € Roots,, i.e.,
every node of is reachable from some root of

A graphg is called aterm (graph)or more simply arexpressionif Roots, is a singleton.

Typically we will use “expression” when talking about pragrs and “graph” when mak-
ing formal claims. Choice identifiers play a role in compiatias. Thus, we will explicitly
define theid mapping only after formally defining the notion of compubati Term graphs
can be seen, e.g., in Figs. 1 and 2. Every choice node of exaph @f Fig. 3 would be dec-
orated with the same choice identifier. Choice identifieesabitrary and only compared
for equality. Node names are arbitrary and irrelevant totrposposes and are typically
omitted. However, some definitions and proofs of our clairechto explicitly refer to
some nodes of a graph. For this purpose, we adopliribar notation for graphgEcha-
hed and Janodet 1997, Def. 4). With this convention, thedefph of Fig. 1 is denoted
ng:(ny:£flip nso:coin, ng:flip no), where the node names are the italicized identi-
fiers starting with #’. We also make the convention that names of nodes that doewat n
to be referenced can be omitted, her@@ip no:coin, flip no). The latter is con-
ceptually identical to (4). In the linear notation for grapimfix operators are applied in
prefix notation, e.g., see Lemma 3. This practice eases stageling the correspondence
between a node identifier and the label of that node.

The definition of graph rewriting (Echahed and Janodet 1$9@mp 1999) is more
laborious than, although conceptually very similar to} thiaterm rewriting (Baader and
Nipkow 1998; Bezem et al. 2003; Dershowitz and Jouannau@;1R®p 1992). Sections
2 and 3 of (Echahed and Janodet 1997) formalize key concéppsph rewriting such
asreplacementmatching homomorphisirewrite rule, redex andstepin a form ideal for
our discussion. Therefore, we adopt entirely these dedfimgtiincluding their notations, and
only discuss the manipulation of choice identifiers, sirfegytare absent from (Echahed
and Janodet 1997).

4.2 Programs

We now formalize the class of rewrite systems that we considthis paper. Aprogram
is a rewrite system in a class calli@mited overlapping inductively sequentiabbreviated
LOIS. In LOIS systems, the rules are left-linear and constructor-baSédaonnell 1985).
The left-hand sides of the rules are organized in a hieraatbtructure called definitional
tree (Antoy 1992) that guides the evaluation strategy (Antoy®0h LOISsystems, there
is a single operation whose rules’ left-hand sides ovefléags operation is calledhoice
is denoted by the infix binary operatiom™ and is defined by the rules of (5).

LOISsystems have been investigated in some depth. Below weidtigimformally the
key results that justify our choice &OIS systems.

1. Any LOISsystem admits a complete, sound and optimal evaluatiotegirgAntoy
1997).
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2. Any constructor-based conditional rewrite system isainally equivalent to a
LOISsystem (Antoy 2001).

3. Anynarrowingcomputation in 4 OlSsystem is semantically equivalent toeavrit-
ing computation in another simil&rOIS system (Antoy and Hanus 2006).

For the above reasonisQIS systems are an ideal core language for functional logic pro-
grams. Informally summarizind,OIS systems are general enough to perform any func-
tional logic computation (Antoy 2001) and powerful enougltdompute by simple rewrit-
ing (Antoy and Hanus 2006) and without wasting steps (An@§7).

4.3 Computations

In our setting, acomputationof e is a sequence = eg =>e; = ... such thate; = e; 1
is astep i.e., is either one of two graph transformations: a reywdenoted by “»”, or a
pull-tab, denoted by=". A rewriteis the replacement in a graph of an instance of a rewrite
rule left-hand side (theedeX with the corresponding instance of the rule right-hane sid
(the replacement The pull-tab transformation is formally defined in the he&ction. In
principle, we do not exclude choice reductions, i.e., netedninistic steps, but in practice
we limit them to the root of an expression. The reason is thdticing a choice makes
an irrevocable commitment to one of its alternatives. Rabilsteps are equivalent to non-
deterministic steps in the sense, formally stated and pravéhe next section, that they
produce all and only the same results, but without any iicatste commitment.

A computation can be finite or infinite. A computationsisccessfubr it succeedsff
its last element is @alug i.e., a constructor normal form. A computation ifadure or it
fails iff its last element is a normal form with some node labeledhbyoperation symbol.
In non-deterministic programs, such as those considerttsipaper, the same expression
may have both successful computations and failures. Egutession of a computation is
also referred to as stateof the computation.

A strategy determines which step(s) of an expression toutgeEssential properties of
a strategy, such as to succeed whenever possible, will b#gedn Sec. 5.

4.4 Transformations

As described in Section 4.3, a computation is a sequenceprésgsions such that each
expression of the sequence, except the first one, is obtaim@dhe preceding expression
by either of two transformations. One transformation is ahiraryredex replacemente
defer to (Echahed and Janodet 1998, Def. 23) the preciseaifation of this transformation
and to the next section the handling of decorations by thissfiormation. The second
transformation is defined below.

Definition 2 (Pull-tab) Letg be an expressiom, a node ofy, referred to as théarget not
labeled by the choice symbol and. .. s; the successors of in g. Leti be an index in
{1,...k} such thats;, referred to as thsource is labeled by the choice symbol anddet
andt, be the successors sfin g. Letg;, for j = 1,2, be the graph whose root is a fresh
noden; with the same label as and successors, ... s;_1t;s;+1 ... ;. Letg’ = g17g.
Thepull-tabof g with sources; and targetn is g[n < ¢'] and we writeg = g[n + ¢'].
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Fig. 3 depicts the result of a pull-tab step. For a trivialtte example (0 + 2) 7 (1 +
2)) * 3 is the pull-tab of((0? 1) + 2) = 3. The definition excludes targets labeled by the
choice symbol. These targets are not a problem for the ahltransformation, but would
complicate, without any benefit, our treatment.

A pull-tab step is conceptually very similar to an ordinat®s—in a graph a (sub)graph
is replaced. The difference with respect to a rewrite stefnas the replacement is not
constructed by a rewrite rule, but according to Def. 2. linsgeery natural for pull-tab
steps too to calledexthe (sub)graph being replaced.

Term and graph rewriting are similar formalisms that for sn@noblems are able to
model the expressions manipulated by functional logic pogs. Not surprisingly, expres-
sions are terms in term rewriting and graphs in graph rewgitA significant difference
between these formalisms is the identification of a subesgiwa of an expression. Term
rewriting uses positions, i.e., paths in a tree, whereaghgrawriting uses nodes. Nodes
are used for defining both rewrite rules and expressionsdhiate. Nodes are “placed in
service” (1) to define rewrite rules, (2) when an expressiatiedtop-leve| is defined or
created for the purpose of a computation, and (3) to define@ustouct the replacement
used in a step. We agree that any node is placed in seyuigeoncei.e., the same node is
never allocated to distinct top-level expressions andépfacements. However, the same
node may be found in distinct graphs related by a step, sirste@makes a localized
change in a graph. These stipulations are formalized bydllmafing principle, which is a
consequence of placing nodes in senoogy once

Principle 1 (Persistence)Letg, andg, be graphs. Ifz is a node inV,, N N, , then there
exists a graply such thaty <> g, andg = go.

4.5 Decorations

To support pull-tabbing and ensure its correctness wehatidditional information to an
expression. This additional information is formalized ateaoration of a node similar to
other decorations present in graph, e.g., label and sumsess this section, we rigorously
define the function that maps nodes to choice identifiers.

Definition 3 (Decorations) Let A : gy => g1 = ... be a computation. We define the,
mapping, for each elemept of A, by induction oni, as follows:id,, takes a node of;
labeled by the choice symbol and produces the node’s chaécgifier. Base casé:= 0.
idg,(n), wheren is in gy and is labeled by the choice symbol, is an arbitrary element
of ), provided thatid,, is one-to-one. Ind. case: > 0. By the induction hypothesis,
idg,_, is defined for any choice node. In the sigp; => g;, whether rewrite or pull-tab, a
subexpression af;_; rooted by a node is replaced by an expression rooted by a ngde
Letn be a node ofj;.

1. If nis anode ofy;_ labeled by the choice symbol, théfy, (n) = id,, ,(n).

2. Otherwise, ifg;_1 — g; (an ordinary rewrit§ andn is labeled by the choice symbol, then

idg,(n) = «, for an arbitrary o € Q provided thatid,, (m) # « for all j < i and all
m € g; andidy, (n) # idg, (m) for n # m (i.e.,« is fresh.
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3. Otherwise, ifg;—1 = g; (a pull-tab) andn = ¢, thenidy, (n) = id,, , (m), wherem is the
source node of the pull-tab.

The above definition is articulated, but conceptually senfelow, we give an informal
account of it. In a typical step =+ ¢/, most nodes off end up ing’. The choice identi-
fier, for choices, of these nodes remains the same. In a evgGime nodes are created.
Any choice node created in the step gets a fresh choice figgntin a pull-tab, informally
speaking, the source (a choice) “moves” and the target (obbice) “splits.” The choice
identifier “moves” with its source. Split nodes have no clkeddentifier.

Each node in the “universe” of nodA$ may belong to several graphs. In (Echahed and
Janodet 1997), and accordingly in our extension (see Defisd13), the function mapping
a node to a decoration depends on each graph to which the etmiegb. It turns out that
some decorations of a node, e.g., the labelirarsutablei.e., the function mapping a node
to such decorations does not depend on any graph. We proiertngability claim for our
extension, the choice identifier. Obviously, there is naarobf time when one discusses
expressions and considers the decorations of a node. Hemeatable decorations “are
set” with the nodes. In practice, these decorations “bedarmown” when a node is “placed
in service” for the purpose of a computation or is created biep.

Lemma 1 (Immutability) Letg; andg, be expressions. i is a node inV,, NN, then

Proof If a noden belongs taV,, N N,,, then, by Principle 1, there exists an expression
g and computationsl; : g =» g; and A, : g = go. By induction on the length oft;,
resp. A, using point 1 of Def. 3id,, (n) = idy(n), resp.idy, (n) = idy4(n). The claim
follows by transitivity. [

In view of this result, we drop the subscript framsince this practice simplifies the nota-
tion and attests a fundamental invariant.

Pull-tab steps may produce an expression with distinctogsowith the same choice
identifier. The same identifier tells us that to some exteesdéhredexes are the “same”.
Therefore, when a computation replaces one such redex hatleft, resp. right, alter-
native, every other “same” redex should be replaced withefieresp. right, alternative,
too. If this does not happen, the computation is unacceptdhble notion of consistency of
computations introduced next abstracts this idea.

Definition 4 (Consistency) A rewrite step that replaces a redex rooted by a nodbeled
by the choice symbol is callecchoice stepA computatio is consisteniff for all « € €,
there exists an (either 1 or 9 such that every choice step dfat a node identified by
applies ruleC; of “ 7" defined in(5).

5 Correctness

A strategydetermines which step(s) of an expression to execute. fegiras usually de-
fined as a function that takes an expressi@md returns a se&f of steps of this expression
or, equivalently, the reducts efaccording to the steps 6f. We will not define any specific
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strategy. A major contribution of our work is showing thag ttorrectness of pull-tabbing
is strategy-independent.

The classic definition of correctness of a stratéjis stated as the ability to produce
for any expressiomr (in the domain of the strategy) all and only the results thatild be
produced by rewriting. “All and only” leads to the following notions.

Soundnessf e <> v is a computation of in which each step is according &andv is a
value (constructor normal form), then™ v.

Completenessf e = v, wherew is a value (constructor normal form), then there exists a
computatiore > v in which each step is according &

In the definitions of soundness and completeness proposac athe same expression
is evaluated both according t® and by rewriting. This is adequate with some conven-
tions. Rewriting is not concerned with choice identifierbisTdecoration can be simply
ignored in rewriting computations. In particular, in reting (as opposed to rewriting and
pull-tabbing) a computation is always consistent. In graphriting, equality of graphs
is modulo a renaming of nodes. A precise definition of thiscemt is in (Echahed and
Janodet 1997, Sect. 2.5).

Typically, the proof of soundness is trivial for strategilkat execute only rewrite steps,
but our strategy executes also pull-tab steps, hence itey@xpressions that cannot be
produced by rewriting. Indeed, some of these expressiolishawe to be discarded to
ensure the soundness. The proof of correctness of puliAglidnon-trivial and relies on
two additional conceptsepresentatiorandinvariance which are presented in following
sections.

5.1 Parallel Moves

Proofs of properties of a computation are often ac-
complished by “rearranging” the computation’s steps in
some convenient order. A fundamental result in rewrit-
ing, known as the Parallel Moves Lemma (Huet and RECTUI
Lévy 1991), shows that in orthogonal systems the steps
of a computation can be rearranged at will. A slightly = =
weaker form of this result carries overlt®ISsystems. R
A pictorial representation of this result is provided in
Fig. 4. The' symbo! 5" denotes t.he reflexive cIosureFig. 4 The Parallel Moves
of the rewrite relation. The notation—,, ", wheren | emma for LOIS graph rewrit-
is a node and- is a rule, denotes either equality or #hg systems under appropriate
rewrite step at node with ruler. conditions on nodes and rules.

Lemma 2 (LOIS parallel moves) Let e, e; and e, be expressions such that ,, <
e —ny,ry €2, Where fori = 1,2, n; is a node and; is a rule. Ifny # ny or bothn; = ny
andr; = 7o, then there exists an expressignsuch that(modulo a renaming of nodgs
€1 —=>

’ -
na,ro € ny,r$ €2-

Proof By cases on the assumption’s condition. When bath= n, andr; = r5, the two
steps are the same, henrge= ¢’ = e;. Whenn, # ns: the claim is a restriction of (Antoy
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1997, Lemma 20) to rewriting ihOISsystems. [J

5.2 Representation

A characteristic of pull-tabbing, similar to bubbling anabying, is that the completeness
of computations is obtained by avoiding or delaying a commaitt to either alternative of

a choice. In pull-tabbing, similar to bubblingoththe alternatives of a choice are kept or
“represented” in aingleexpression throughout a good part of a computation. Thefproo
of the correctness of pull-tabbing is obtained by reasoaimgut this concept, which we
formalize below.

Definition 5 (Representation) We define a mappin@ that takes an expression and
returns a setR, called therepresented set af as follows. Lety be an expression. An
expressiore is in R, iff there exists a consistent computatigr™ e (modulo a renaming
of node} that makes all and only the choice stepg of

In other words, we select either alternative for every ch@tan expression. For choices
with the same identifier, we select the same alternativeceSitistinct choice steps occur
at distinct nodes, by Lemma 2 the order in which the choigesséee executed to produce
any member of the represented set is irrelevant. Therefloeenotion of represented set
is well defined The notion of represented set @fs a simple syntactic abstraction not to
be confused with the notion of set of values of an expresgi@dntoy and Hanus 2009),
which is a semantic abstraction fairly more complicated.

5.3 Invariance

The proof of correctness of pull-tabbing is based on twoltesbat informally speaking
establish that the notion of represented set is invariatit by pull-tab steps and by non-
choice steps.

Lemma 3 (Invariance by pull-tab) If g=g¢’ is a pull-tab step, thefil) for any expression
e € Ry, there exists an expressiehe R, such that = ¢’ (modulo a renaming of nodgs
and (2) for any expressior’ € R, there exists an expressienc R, such thate = ¢’
(modulo a renaming of nodgs

Proof We set up the notation for both claimsglt ¢’ is a pull-tab step, then by Def. 2:
g = Cng:f(s1,...,n:?(ni:x,n2y),. .. sp)]
g = Cn'2(ng:f(s1,...nix, .. s5),npf(s1,. . n2ty, .. s))]

whereC' is some contextp ¢, n, ny, ne, n’, ny, andny, are nodesf # 7; s1,...s; and
x andy are expressiong; is thei-th successor af ¢, n, resp.ns, is thei-th successor of
ny,, respny,.

Claim (1): letA : ¢ — e be a computation witnessing that R,, i.e., a consistent com-
putation making all and only the choice stepsyof-rom this computation we construct a
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computationA’ of ¢’ that produces an expressiehsatisfying the claim. Without loss of
generality, since the notion of represented set is well ddfive assume that the first step
of Aisg —, ¢, h, for someh, whereC; is eitherC; or C; of (5). Leth andh’ be expres-
sions defined by the following computatiogi: — ./ ¢, h —=>n,cj h'. Noden may or may

not be ing’. In particular,n is in ¢’ iff n has more than one predecessoy.itf n € N/,
thenn € Nj,; otherwise, the step —=>n’cj I’ does not replace any subexpression’cind

h! = h. We explicitly construct a homomorphism: A}, — A, that shows thab = b’
modulo a renaming of nodes. We show that (a) for each mede N, with m # ny,,

m € N, and vice versa, (b) for each node € N/, with m # ny, m € Nj. To prove

(@), letm # ny be anode ofi. Sinceg —,, ¢, h is a choice stepy is either in the context

C of g orin the subexpression rooted hy. These portions of are preserved by the steps
that producey’, h andh’. Thus,m € N . The proof of (b) is analogous. Therefore, we
definep(ny) = ny, andp(m) = m, if m # ny. By (a) and (b) and by constructiopjs a
bijection. By constructiony preserves root, label, and successors of every node. Taus th
computationA’ starts withg — h, followed byh — A’ if h # h'. Then, for any step oft
starting with expressioh at nodep with rule r there is a step ofl’ starting with expres-
sionh’ at nodep(p) with rule r. These computations start at equal expressions (modulo a
renaming of nodes) and make the same steps, hence they enchbérpressions (modulo

a renaming of nodes). Sinckis consistent, so igl’. Let e’ be the last expression of .

This proves that’ € R,.

Claim (2): letA’ : ¢ = ¢’ be a computation witnessing thdte R, i.e., a consistent
computation making all and only the choice stepg/ofFrom this computation we con-
struct a computatiom of g that produces an expressiehsatisfying the claim. Without
loss of generality, since the notion of represented set Ikdeéined, we assume that’
begins with the stepg’ — ./ ¢, h —imcj h'. The rule must be the same in both steps
because, ifi € AV}, thenid(n) = id(n’) and A’ is consistent. Node may or may not be
in g’. In particular,n is in ¢’ iff n has more than one predecessoyinf n € N/, then

n € Nj; otherwise, the step —n.C, h’ does not replace any subexpressiorhofind
h' = h. We define the first step of asg —n,c; h. The rest of the proof is substantially
equal to that of Claim (1). We completewith the same steps of’ pasth’ and obtain an
expressiore in R,. We show in exactly the same way that, modulo a renaming oésiod
h = I’ and consequently = ¢’. O

Lemma 4 (Invariance by non-choice)If ¢ — ¢’ is a rewrite non-choice step, th¢h) for

any expressior € R, there exists an expressieh € R, such thate % ¢/ (modulo a
renaming of nodgsand(2) for any expressior’ € R, there exists an expressiere R,

such thate = ¢’ (modulo a renaming of nodps

Proof Claim (1):letA : g = go — g1 — ...g, = e be a computation withessing that
e € Ry, i.e., a consistent computation making all and only the @hsteps of;. From 4,
we construct a computatioA’ of ¢’ that produces an expressiehsatisfying the claim.
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Consider the following diagram, where the top rowdieind the bottom row is!’:

9=90 =091 —--- gn = €
g =0—=¢ =" g, e

By induction oni, for i = 1,...n, we both defing,_, — ¢; and prove that the diagram
commutes. To support the induction, we strengthen themstaieto include the definition
of the stepy; — ¢; and the condition that this step is not a choice step. Basg cas1:
The stepsgy, <+ go — g1 are given by the assumptions. Since the first is not a choée st
and the second is a choice step, they are at distinct nodeseHeemma 2 gives the steps
96 — g1 * g1 and the commutativity of the diagram. The stap— ¢ is not a choice
step because eithgk = g1 or it is at the same node @ — g. Ind. case; > 1: The
stepsg;_, < gi—1 — g¢; are given by the induction hypothesis and assumption, cespe
tively. Since one is a choice step and the other is not, theyaadistinct nodes. Hence,
Lemma 2 gives the stepé_, — g, ¥ ¢; and the commutativity of the diagram. The step
g; — g, is nota choice step because eithgr= g/or itis at the same node gs 1 — ¢}_;.
Since A is consistentA’ up tog,, is consistent as well. We reduce any remaining choice
of ¢/, consistently with the preceding steps4f, sayg/, = ¢/, to produce an expression
¢’ € R, . Thus, by the commutativity of the diagram= g, — ¢/, — ¢’ witnesses the
claim.

Claim (2): letB : ¢’ = ¢’ be a computation witnessing théte R, i.e., aconsistent com-
putation making all and only the choice stepgjbfFrom this computation we construct a
computation ofy that produces an expressienatisfying the claim. Lef) = NV,NN,, i.e.,

be the set of nodes both g andg. Suppose that the cardinality €fis n, for somen > 0.

We reorder the steps @f, which is possible by Lemma 2, so that any step at some node of
Q occurs before any step at some node n@itet A’ : ¢’ = g}, — g} — ... g, — ¢ be

one such computation. From, we construct a computatias that produces an expres-
sion e satisfying the claim. Consider the following diagram, wéhémne top row isA’ and

the bottom row is4:

g =909  gp—>¢
g=9g0—>9g1—--- gn —>¢

By induction oni, fori = 1,...n, we both defing;;_; — ¢; and prove that the diagram
commutes. To support the induction, we strengthen themstateto include the definition
of the stepy; — ¢, and the condition that this step is not a choice step. Base cas1:
Let go be the root of the redex af, —, .., ¢;. By assumptiong, € Q. Henceq € N, .
We letgy —¢,.», 91- Thus we have the step§ < go — g1 where by assumption the
first is not a choice step and by construction the second i@@elstep. Since these steps
are at distinct nodes, by Lemma 2 there exists sgtheuch thatg, —, .., 9" % g1.
Therefore,g” = ¢} and the diagram commutes. The sigp— ¢ is not a choice step
because eitheg; = ¢} or itis at the same node gs — ¢(. Ind. casej > 1: Letq,_,
be the root of the redex aof,_; —,, ., gi. By assumptiong,_; € @, hence ing.
Thus, nodey;_; in ¢g;_, is not created by the step_, — g;_,. Consequentlyy;_ is a
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node ofg;_; too. We letg;_1 —,, , »._, 91- Thus we have the step$_; + g;—1 — ¢
where by assumption the first is not a choice step and by eati&in the second is a
choice step. Since these steps are at distinct nodes, by aéhthere exists somg’ such
thatg; | —,. .., 9" % gi- Thereforeg” = g; and the diagram commutes. The step
g; — ¢, is nota choice step because eithee ¢. oritis atthe samenodegs 1 — ¢,_;.
Since A’ is consistentA up tog, is consistent as well, since corresponding steps use the
same rule. We reduce any remaining choicg,ptonsistently with the preceding steps of
A, sayg, — e, to produce an expressienc R,. We show that = g¢,. If e # g, then
there exists a choice step — g,+1 in A. By construction, this step is at some nagle
which is not inQ and hence is not ig,. This means that the step — ¢/, erases node,.
Thus, we have the step§ = g, —,..» gn+1., fOr some ruler, where by construction the
first is not a choice step and by assumption the second is aecktgp. Since these steps
are at distinct nodes, by Lemma 2 there exists sgfhsuch thaty;, —, . 9" % gnt1-
Sinceq,, ¢ Ny, g" = g, andg,1 — g;,. The same above reasoning proves that for
any expressiom of g, — ein A, h = ¢/. In particulare = ¢/,. Thus,e = ¢/, = ¢’
witnesses the claim. ]

We combine the previous lemmas into computations of anytheng

Corollary 1 If ¢ 2> ¢’ with no choice steps, thefl) for any expressior < R, there
exists an expressiaft € R, such that % ¢’ (modulo a renaming of nodgsand(2) for
any expressior’ € R/, there exists an expressienc R, such thate % ¢ (modulo a
renaming of nodes

Proof Both claims are proved by a trivial induction on the numbestalps ofg = ¢’
using Lemmas 3 and 4.0J

Theorem 1 (Correctness)If g <> ¢’ with no choice steps, theit) for any valuev such
that ¢ = v is a consistent computation, there exists a valusuch thaty’ = v’ is a
consistent computation, and= v’ (modulo a renaming of nodgsand (2) for any value
v’ such thaty’ = v’ is a consistent computation, there exists a valseich thaty = v is
a consistent computation, and= v (modulo a renaming of nodgs

Proof Claim (1): letA : ¢ = v a consistent computation gfinto a valuev. By Lemma 2,
without loss of generality we assume that: ¢ — e = v, where the segment = e
consists of all the choice steps @fSinceA is consistente € R,. By Corollary 1, there
exists a consistent computatigh— ¢’ such that = ¢’ (modulo a renaming of nodes).
Sincee = ¢/ (modulo a renaming of nodes) and™ v, there exists a computatief = v’
such that = v’ (modulo a renaming of nodes).

Clam (2): the proof is analogous to that of claim (1)

Theorem 1 suggests to apply both non-choice and pull-tgs $tean expression. Choices
pulled up to the root are reduced consistently and withouted cloning. Of course, by the
time a choice is reduced, all its spines have been cloned-asitnibubbling and copying.
A better option, available to pull-tabbing only, is discedsn the next section.
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6 Application

The pull-tab transformation is meant to be used in conjonclvith some evaluation strat-
egy. We showed that pull-tabbing is not tied to any particeteategy. However, the strat-
egy should be pull-tab-aware in that: (1) a choice shouldvaduated (to a head normal
form) only when it isneededAntoy 1997), (2) a choice in a root position is reduced (con-
sistently), whereas in a non-root position is pulled, ando@fore pulling a choice, one
of the choice’s alternatives should be a head-normal forhe fbrmalization of such a
strategy would take us well beyond the scope of this paper.

In well-designed, non-deterministic programs, either athbalternatives of most (but
not all) choices should fail (Antoy 2010). Under the assuampthat a choice is evaluated
to a head normal form only when it ieeded Antoy 1997), if an alternative of the choice
fails, the choice is no longer non-deterministic—the fajlalternative cannot produce a
value. Thus, the choice can be reduced to the other alteensihout loss of completeness
and without context cloning. This is where pull-tabbing dvantageous over copying and
bubbling—any portion of a choice’s context not yet cloned wlaa alternative fails no
longer needs to be cloned. Of course, the implementationt stilisidentify the choice,
and choice’s single remaining strand as either left or righénsure consistency.

7 Related Work

We investigated pull-tabbing, an approach to non-detestiicrcomputations in functional
logic programming. Section 3 recalls copying and bubblihg.competitors of pull-tabbing.
Here, we briefly highlight the key differences between treggeroaches. Pull-tabbing en-
sures the completeness of computations in the sense th#tenwasive of a choice is left
behind until all the results of some other alternative hasernbproduced. Similar to every
approach with this property, it must clone portions of thateat of a choice. In contrast
to copying and bubbling, it clones the context of a choice inimal increments with the
intent and the possibility of stopping cloning the contextsaon as an alternative of the
choice fails.

The idea of identifying choices to avoid combining in sompression the left and right
alternatives of the same choice appears in (Brassel and 20&R. The idea is developed
in the framework of a natural semantics for the translatib(flat) Curry programs into
Haskell. A proof of the correctness of this idea will appea(Brassel 2011) which also
addresses the similarities between the natural semamtitgraph rewriting. This discus-
sion, although informal, is enlightening.

8 Conclusion

We formally defined the pull-tab transformation, chardeest the class of programs for
which the transformation is intended, extended the contiputsin these programs to in-
clude the transformation, proved the correctness of theem@ed computations, and de-
scribed the condition that reduces context cloning. In r@mttto its competitors, in pull-

tabbing any step is a simple and localized graph transfaomarhis fact should ease exe-
cuting the steps in parallel. Future work, aims at defininglatab-aware parallel strategy
and implementing it to measure the effectiveness of pblbitag.
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