
Implementing Functional Logic Languages
Using Multiple Threads and Stores∗

Andrew Tolmach
apt@cs.pdx.edu

Sergio Antoy
antoy@cs.pdx.edu

Marius Nita
marius@cs.pdx.edu

Dept. of Computer Science, Portland State University
P.O.Box 751, Portland, OR 97201

Abstract

Recent functional logic languages such as Curry and Toy combine
lazy functional programming with logic programming features in-
cluding logic variables, non-determinism, unification, narrowing,
fair search, concurrency, and residuation. In this paper, we show
how to extend a conventional interpreter for a lazy functional lan-
guage to handle these features by adding support for reference cells,
process-like and thread-like concurrency mechanisms, and a novel
form of multi-versioned store. Our interpretation scheme is prac-
tical, and can be easily extended to perform compilation. The lan-
guage specified by our interpreter is designed so that programs are
deterministic in a novel and useful sense.

Categories and Subject Descriptors: D.3.2. [Programming
Languages]: Language Classifications—Multiparadigm lan-
guages, Applicative (functional) languages, Constraint and
logic languages; D.3.4. [Programming Languages]: Language
Processors—Interpreters, Run-time environments

General Terms: Languages, Design

Keywords: Functional logic languages, narrowing, residuation,
multi-versioned stores

1 Introduction

Functional logic programming (FLP) integrates the most impor-
tant features of functional and logic programming within a single
programming model (see Hanus [8] for a detailed survey). Thus,
functional logic languages provide pattern matching in the defini-
tion of functions and predicates as well as the use of logical vari-
ables in expressions. The latter feature requires some built-in search
principle in order to guess the appropriate instantiations of logical

∗This work has been supported in part by the National Science
Foundation under grants CCR-0110496 and CCR-0218224.

To appear in the proceedings of the Ninth Internationa Conference on Func-
tional Programming (ICFP 2004), September 19-21, 2005, Snowbird, Utah,
USA, pages 90–102.

variables. There are a number of languages supporting FLP in this
broad sense, including Curry [13], Escher [19], Life [1], Mercury
[30], Oz [29], and Toy [20], among others.

Narrowing is one promising basis for a functional logic language.
It is a combination of term reduction as in functional programming
and (non-deterministic) variable instantiation as in logic program-
ming. It exploits the presence of functions without transforming
them into predicates, which yields a more efficient operational be-
havior [7, 9]. As a simple example, consider this program (in Curry
syntax, as are all the examples in this section).

data Color = Red | Yellow | Blue
| Orange | Violet | Green

mix Red Blue = Violet
mix Yellow Blue = Green
mix Yellow Red = Orange

a1,a2,a3 :: Color
a1 = mix Red Blue
a2 = mix Yellow x where x free
a3 | (mix Yellow x =:= Green) = x

where x free

To compute a1, mix is used as an ordinary function, and returns
Violet. In a2, free declares x as a logic variable, so the call to
mix narrows over the latter two clauses and produces two answers
corresponding to the colors that result when Yellow is mixed with
another primary (namely Green and Orange). In a3, narrowing
produces the same results from mix, but they are then filtered by
the equality constraint (=:=) appearing in the guard, and the return
value is x itself—which here will be Blue, the color that produces
Green when mixed with Yellow.

It is well known that narrowing is an evaluation mechanism that
enjoys soundness and completeness in the sense of functional and
logic programming, i.e., all computed solutions are correct and all
correct solutions are computed. But narrowing is not able to deal
with primitive (or external) functions. Therefore several authors
(e.g., Ait-Kaci [1], Lloyd [19]) have proposed alternative evaluation
strategies based on residuation. The residuation principle delays
a function call until the arguments are sufficiently instantiated so
that the call can be deterministically reduced. To make this useful,
residuation-based languages also support concurrent evaluation in
order to deal with suspended computations.

Hanus [11] proposes a seamless combination of needed narrowing
with residuation-based concurrency. This is the basis of the pro-
gramming language Curry [13], an attempt to provide a standard

90

in the area of FLP languages. To illustrate the interplay between
narrowing and concurrency, suppose we have a primitive function
hue::Color->Float that returns a numeric equivalent for each
color (e.g., its position on the color wheel measured in radians),
and assume that the + operator on Floats is also primitive. The
following expressions both sum hues for two colors:

a4,a5 :: Float
a4 = hue (mix x Blue) + hue x where x free
a5 = hue x + hue (mix x Blue) where x free

Both a4 and a5 should produce two answers, (hue Violet + hue
Red) and (hue Green + hue Yellow), corresponding to the two
narrowing choices for mix. But since hue is primitive, it cannot be
invoked without an instantiated value for x. Thus, a4 requires the
mix call in the left operand to + to be evaluated before the right
operand; similarly, a5 requires the opposite order of evaluation. In
general, primitive operands need to be evaluated concurrently in or-
der to guarantee that we get the same answer set independent of the
order in which we write them. The evaluation strategy for the “par-
allel and” (&) primitive operator in Curry, which is used to connect
simultaneous constraints, is just an instance of this general policy.

Narrowing can easily generate an infinite space of alternatives to
be explored. Faithful implementations of narrowing must employ
a fair search strategy in order to guarantee completeness, i.e., they
should never get stuck indefinitely computing in one narrowing al-
ternative when there are other alternatives still to be tried. Consider
the following function to compute the color-wheel complements:

complement :: Color -> Color
complement Red = Green
complement Yellow = Violet
complement Blue = Orange
complement x | (complement y =:= x) = y

where y free
a6 :: color
a6 = complement Orange

Here we thought to save effort by defining only half the cases ex-
plicitly, and using recursion and narrowing for the other half. This
is simple and elegant, but it is dangerous unless the language uses
a fair strategy. In Curry, when two or more clauses match an ar-
gument, they are both explored, regardless of clause order. Since
the last clause for complement matches any argument, at least one
computation path for a6 will always be infinite. If the language
search strategy is not fair, clause order is likely to matter. For ex-
ample, if conventional backtracking is used, moving the last clause
first is likely to get us stuck on an infinite sequence of recursive
calls. A fair strategy will guarantee that we eventually consider all
possible paths (regardless of clause order), and so get an answer.
(Of course, we would have to wait forever if we wanted to make
sure there were no other answers.)

These examples illustrate that both the semantic formalization and
the implementation of Curry-like languages must deal with ordi-
nary (lazy) functional evaluation, narrowing, and residuation in an
integrated framework. This is a non-trivial task, especially be-
cause functional and logic programming have rather different se-
mantic and implementation traditions. The “official” semantics for
Curry [13], largely based on work by Hanus [11, 10], is an op-
erational semantics based on definitional trees and narrowing steps.
Although fairly low-level, this semantics says nothing about sharing
behavior, which has an important impact on the efficiency of lazy
functional programs, and is actually observable in the presence of

logic variables. Moreover, this semantics is quite different in char-
acter from typical semantic formulations for functional languages,
which are often given denotational or natural (“big step”) opera-
tional semantics. In more recent work [2], Albert, Hanus, Huch,
Oliver, and Vidal propose a natural semantics, incorporating shar-
ing, for the first-order functional and narrowing aspects of Curry,
and a small-step semantics that also covers residuation and concur-
rency. In previous work [31], we extended the large-step semantics
of Albert, et al., to handle concurrency, addressed some problems
with determinism in the presence of residuation, incorporated true
higher-order functions, and cast the entire semantics in the form of
a modular monadic interpreter written in Haskell. However, our
large-step semantics is not suitable for use as an implementation.
The small-step semantics of Albert, et al. is more suitable, but still
not very practical; for example, it treats substitution across an entire
heap as a basic operation.

On the implementation front, there have been a number of practical
systems, include Pakcs [12], and the Münster Curry compiler [21].
These systems are fairly full-featured and deliver adequate per-
formance; their main drawback is that they use backtracking as a
search strategy, and so are not complete. A more experimental,
Java-based system that does use a fair strategy for narrowing was
reported in a previous paper [3]; that work did not address concur-
rency for arguments to primitives (except &).

The major contributions of the present paper are these:

• We describe a simple and parsimonious CCore language for
functional logic programming that supports all the features
mentioned above. Programs in Curry-like source languages
can be desugared into CCore.

• We show how a conventional functional language abstract-
machine interpreter can be extended in easy stages to support
FLP with fair search, by using reference cells, process-like
and thread-like concurrency mechanisms, and variant heaps.
Viewed as a semantics, our interpreter strongly resembles that
of Albert, et al. [2], but our presentation is considerably more
detailed, making it a good basis for a practical interpreter.

• To support narrowing, we define a novel kind of variant heaps
that support a Unix-like fork operation; these may be of in-
dependent interest for applications requiring an analogue to
callcc for stores.

The remainder of the paper is organized as follows. Section 2 gives
a detailed description of our CCore language. Section 3 describes
the translation phases that convert CCore to ACore, the form we
actually interpret. Section 4 describes the definitional interpreter
in detail. Section 5 discusses practical implementation issues, in
particular the efficient implementation of variant heaps. Section 6
discussed ongoing and future work, and concludes. We assume
reading knowledge of Standard ML [24], which is used throughout
to describe the interpreter and its data structures.

2 CCore Language

Our starting point is an expression-based CCore language. This
is essentially a call-by-need, higher-order functional language with
algebraic data types, extended with logic variables, flexible case
expressions, (shallow) unification, and a seq operator to force eval-
uation. We assume (but do not describe) a pre-processing step that
desugars richer source languages such as Curry into CCore. Our
primary motivation in designing CCore has been to keep the basic
facilities of the language as simple as possible, so they will have

91

structure CCore =
struct

type var = string x (variable name)
type dcname = string c (data constructor name)
datatype prim = ... p (primitive operator)
type pattern = dcname * var list (case pattern)
datatype flexibility = FLEXIBLE | RIGID f | r (case flexibility)

datatype exp = e :=
Var of var x (variable)

| Int of int i (integer)
| Abs of var * exp λx.e (abstraction)
| App of exp * exp e1 e2 (application)
| Capp of dcname * exp list c(e1, . . . ,en) (constructor application)
| Primapp of prim * exp list p(e1, . . . ,en) (primitive application)
| Case of flexibility * exp * casef|r e of { c(x1, . . . ,xn) => e }

(pattern * exp) list (case: flexible or rigid)
| Letrec of (var * exp) list * exp letrec { x = e } in e (recursive binding)
| Let of var * exp * exp let x = e1 in e2 (local binding)
| Seq of exp seq e (force evaluation)
| Free free (logic variable)
| Unify of exp * exp unify e1 e2 (shallow unification)

end

Figure 1. CCore Language Abstract and Concrete Syntax. Curly braces delimit zero or more repetitions.

obvious, efficient implementations; more complicated operations
can be encoded as macros or subroutines in CCore itself. Figure 1
defines the abstract syntax for the language, and a corresponding
concrete syntax used in examples.

2.1 Types and Values

CCore is not explicitly typed, but we assume throughout that we
are dealing with typable expressions. In particular, programs are to
be interpreted in the context of a set of algebraic datatype declara-
tions, fixing the names and arities of the data constructors, which
can be specified in the usual Haskell or ML style. At a minimum,
we assume these algebraic types:

data Bool = False | True
data Success = Success
data List a = Nil | Cons (a, List a)

Success is used as the type of constraints, which either succeed
(but without returning any useful value) or fail (without returning a
value at all). For simplicity, the only primitive type used in this pa-
per is Int, which has the usual literals; other primitive types along
the same lines could easily be added. There are also the usual arrow
(function) types.

In addition to the ordinary values, each non-arrow type includes an
endless supply of distinct logic variables. These are initially unin-
stantiated; in the course of execution they may become instantiated
to a value or to another logic variable of the same type. In the pres-
ence of logic variables, it is useful to distinguish between several
different “degrees” of evaluation:

• Head-normal form (HNF) means the top-level constructor is
known (for algebraic types), or the integer value is known (for
the Int type), or the function closure is known (for an arrow
type), or the value is an uninstantiated logic variable.

• Normal form (NF) means in HNF, and all subterms are also in
NF.

• Constructor-head-normal form (CHNF) means in HNF, but
not an uninstantiated logic variable.

• Constructor-normal form (CNF) means in CHNF, and all sub-
components are also in CNF.

The basic evaluation mechanism provided by our interpreter com-
putes HNF values; stronger degrees of normalization can be en-
coded within CCore itself (see Section 2.7).

2.2 Expressions

The CCore expression language is very similar to that of Core
Haskell [26], with the addition of logic variables (free), flexible
case expressions, unify, and seq. Function abstractions and ap-
plications have exactly one argument; multiple-argument functions
can be coded as nested abstractions. Data constructors (c) and prim-
itive operators (p) have fixed arity ar ≥ 0. All primitive and con-
structor applications and patterns (within Case expressions) must
be saturated; unapplied or partially applied constructors can be ex-
pressed by η-expanding them. By default, function and constructor
arguments are evaluated lazily, but eager evaluation can be forced
by wrapping an argument in seq.

Primitive arguments are evaluated eagerly to CHNF. The arguments
to a primitive or constructor are (conceptually) evaluated in parallel;
this is important if evaluation of one or more arguments residuates
(Section 2.5). A minimal set of primitive operators includes:

== :: Int × Int → Bool
+,-,*,etc. :: Int × Int → Int
chnf :: ∀a.a → a
pand :: Success × Success → Success

The last two operators are used only for their side-effects: chnf
is just the identify function, which forces its argument to a CHNF
value; pand forces parallel evaluation of its arguments (which are
typically constraints) to CHNF but then ignores them.

92

Let introduces a local binding; it is evaluated lazily unless the
right-hand-side is wrapped in a seq. Although, as we shall
see, β-reduction is not generally valid for CCore, we do have
(λx.e1) e2 ≡ let x = e2 in e1. Letrec introduces a set of
(potentially) mutually recursive bindings, always evaluated lazily
(seqs are not permitted on the right-hand sides).

Case expressions analyze values of algebraic type. Patterns are
“shallow;” they consist of a data constructor name c and a corre-
sponding list of variables. More complicated pattern matching can
be expressed using nested case expressions. The patterns for a sin-
gle case are assumed to be mutually exclusive, but not necessarily
exhaustive; a computation that attempts to dispatch to a missing
case arm fails. Evaluating a case causes the scrutinee (the expres-
sion being “cased over”) to be evaluated to HNF. Each case is stat-
ically marked by the programmer as either flexible or rigid. This
controls what happens when the scrutinee evaluates to an uninstan-
tiated logic variable: flexible cases narrow (Section 2.4); rigid cases
residuate (Section 2.5).

A free expression evaluates to a fresh, anonymous, uninstantiated
logic variable. Logic variables can be instantiated either by being
used as the scrutinee of a flexible case, or via evaluation of a unify
(described in Section 2.7). Instantiation can occur at most once; the
instantiating value is always in HNF. Once instantiated, any use of
the variable transparently fetches the instantiating value.

2.3 Programs, Answers, and Determinism

A program is just a closed top-level expression. Each program eval-
uates to an unordered multiset of answers, each of which is an HNF
value. (If NF values are desired, the program expression can be
wrapped in a normalizing function; see Section 2.7.) In general,
there may be one answer corresponding to each combination of nar-
rowing choices made during the evaluation of the program; how-
ever, choices that lead to failure don’t contribute an answer. The
only possible sources of failure are a missing case arm, a failed
unification, or floundering (Section 2.5).

Determinism Property. Although we think of individual expres-
sions as being non-deterministic, we would like CCore programs
as a whole to be deterministic, in the specific sense that they al-
ways produce the same multiset of answers (neglecting order), no
matter how the implementation schedules evaluation of narrowing
alternatives and parallel evaluation of arguments, provided that the
schedule is starvation-free.

Maintaining the Determinism Property has been a key goal in our
design of CCore, and has directed a number of important design
decisions. However, we do not give a formal proof that it holds
(indeed, the property would require a more formal statement before
a proof could be attempted).

2.4 Narrowing and Fairness

Narrowing in CCore occurs when evaluating a flexible case, e.g.

casef e of
c1(x1,1, . . . ,x1,ar(c1)) => e1
...
cn(xn,1, . . . ,xn,ar(cn)) => en

if the HNF v of e is an uninstantiated logic variable. At such a point,
evaluation splits into n parallel alternative evaluations, one corre-

sponding to each case arm. In the i-th alternative, v is instantiated
to ci(w1, . . . ,war(ci)), where the w values are fresh uninstantiated
logic variables; evaluation then proceeds by evaluating ei and con-
tinuing with the computation that demanded the value of the case
in the first place. Since the result of the program can depend on the
value of v (and of the case), each of the n alternatives may con-
tribute a value to the overall multiset of program answers, or may
terminate in failure. Note that a simple non-deterministic choice
operator, which we call amb (after McCarthy [22]), can easily be
defined using a flexible case:

amb e1 e2 ≡
casef free of
True => e1
False => e2

Since flexible cases can be nested, each alternative may split into
further sub-alternatives, forming an “or-parallel” tree for the pro-
gram. Each leaf of the tree potentially contributes to the program
answer, so all branches of the tree must be fully explored. The
branches are completely independent, so the strategy used to ex-
plore them is unimportant in principle, provided that it copes with
non-terminating branches. In other words, the strategy must be fair;
it should guarantee that every answer will ultimately be computed.
Note that most implementations of (functional) logic languages
use simple backtracking, i.e., depth-first exploration, but this can
get stuck in a non-terminating branch. To avoid this problem, we
use multiple concurrent or-parallel threads (or simply “or-threads”)
which are scheduled in a breadth-first fashion. Since each or-thread
is logically independent from the others, it must have its own heap;
it thus resembles a process in a conventional operating system.

2.5 Residuation and Concurrency

Sometimes evaluation is blocked because of an uninstantiated logic
variable. For example, the + primitive operation cannot proceed
until both operands have been evaluated to integers. More gener-
ally, all operands to primitives and scrutinees of caser expressions
must evaluate to CHNF. What should happen when evaluation is
blocked? The simplest idea might be to have blocked computations
fail. But this would lead to very unattractive semantics. Recall ex-
pressions a4 and a5 from Section 1. Using left-to-right evaluation
of the + operands, a4 produces answers, but a5 fails; using right-
to-left evaluation, the converse is true. But there is nothing about
the (intuitive) semantics of + that justifies choosing one order over
the other, so surely either both expressions should fail or (more use-
fully) both should succeed.

More generally, it might be the case that neither fixed order for
operand evaluation works, but that an interleaving of the two eval-
uations does. Consider

sum ≡ let y = free in
let z = free in

+ (let dummy = unify y 1 in z,
let dummy = unify z 1 in y)

Here neither operand to + can be fully evaluated until evaluation of
the other has started, but there is an interleaving of read and write
operations on the variables that produces an answer. Thus we are
led naturally to the idea that operands to primitives should be eval-
uated concurrently. The primitive application produces an answer
if any interleaving of the atomic variable read and write operations
of the operand evaluations leads to an answer. Otherwise, the com-
putation fails by floundering.

93

More operationally, we can think of each operand evaluation as
a separate and-parallel thread (or just “and-thread”). Unlike or-
threads, all and-threads must produce an answer, and they all share
a single heap. Thus, they resemble “lightweight” (intra-process)
threads in a conventional operating system. If any and-thread
blocks (residuates) on an uninstantiated variable, evaluation of the
other threads proceeds; with luck, one of these threads will instanti-
ate the required variable, allowing evaluation of the initial thread to
proceed. If all the and-threads residuate simultaneously, the compu-
tation flounders; operationally, this corresponds to thread deadlock.

The “parallel and” operator in Curry, which is ordinarily used to
connect equational constraints, can now be seen as just a special
case of a primitive operator, which (just) requires its operands to
be evaluated successfully (i.e., not to fail). Parallel-and supports
useful programming idioms originally developed in languages like
Concurrent Prolog [28]. But it is interesting to note that even if we
are not interested in using these idioms, the desire to maintain the
Determinism Property drives us to evaluate primitive parameters
concurrently: supporting concurrency seems almost unavoidable in
the presence of primitive operators that cannot narrow.

Parallel evaluations can be nested, e.g., when one primitive oper-
ation consumes the result of another. In such situations, the inner
computation should not flounder as long as there is a possibility
that the outer computation might instantiate the necessary variables.
Operationally, this means that all the and-threads from both inner
and outer computations should be treated as a single pool; flounder-
ing occurs only when the entire pool is deadlocked.

In a general program, or-threads and and-threads coexist; the over-
all state of the computation is always an or-parallel tree whose
leaves are and-parallel sets (perhaps just singleton sets if there is no
concurrency). When a narrowing step occurs in any and-thread, the
complete set of and-threads is replicated in each of the or-threads
generated by the narrowing alternatives. As an example, consider
the expression

let x = free in let y = free in

+ (casef x of True => 0 | False => 1,

casef y of True => 2 | False => 4)

Figure 2 illustrates how the computation state unfolds as this ex-
pression is evaluated. Initially (a), two and-threads are created for
the two arguments to +. Assume that the left argument is evaluated
first. After the left narrowing step (b), there are two or-threads, each
with its own pair of and-threads. After the right narrowing step (c),
there are four or-threads and eight and-threads; at this point, the +
operations can all evaluate, yielding four answers (2,3,4,5).

2.6 Logic Variables and Effects

Creation and instantiation of logic variables are imperative effects.
They may therefore seem to be a poor ingredient to add to a lazy
language. But the resulting language is reasonable to program in
(and has the Determinism Property) because no program answer
can depend on the order in which variable instantiations occur. In-
tuitively, this follows from the facts that no variable can be instan-
tiated more than once, and that it is impossible to test whether a
variable has been instantiated. (This last property is rather delicate;
for example, small changes in the treatment of unification could
break it; see Section 2.7).

(a)

case x case y

case y case y0 1

x =Falsex = True

(b)

0 2 0 4 1 2 1 4

x = True x =False

y = T y = Ty =F y = F

(c)

Figure 2. Threads at various stages of evaluation. Dashed lines
connect groups of and-threads.

However, logic variables do allow us to observe the sharing behav-
ior of the language. For example, given

coin ≡ amb 0 1
coin1 ≡ (λx. +(x,x)) coin
coin2 ≡ +(coin,coin)

coin1 produces the answer multiset {0,2}, whereas coin2 pro-
duces {0,1,1,2}. This example illustrates why β-equivalence is not
generally valid for CCore.

2.7 Full Unification and Normalization

The design of CCore deliberately excludes expression forms that
would require ad-hoc polymorphic implementations. In particular,
unification and full normalization both require traversal of arbitrary
constructed values, so neither is provided as a built-in expression
form. Instead, we “unbundle” these tasks: CCore provides only
“shallow” operations for unification (unify) and forcing evaluation
(seq), but these can be used to build type-indexed families of full
equality and normalization functions in CCore itself.

Unification and equality constraints. The shallow unify opera-
tor evaluates its arguments in parallel to HNF, and then attempts to
unify the heads of the resulting values. If either argument evaluates
to a logic variable, the unification succeeds (instantiating the vari-
able), and the unify expression evaluates to True, indicating that
there is no need to inspect sub-terms of either argument. Otherwise,
the top-level constructors of the two values are compared—but not
the subterms. (In this context, integers are treated like nullary con-
structors.) If the heads are not equal, the entire computation fails
without returning a value; if they are equal, the unify expression
evaluates to False, indicating that shallow unification succeeded
but any sub-terms still need to be compared.

Using unify as a building block, we can implement a “deep” struc-
tural equality constraint operator somewhat similar to Curry’s op-
eration

=:= : ∀a.a -> a -> Success

as a type-indexed family of CCore functions eqsInt, eqsBool,
eqsList, etc. The basic idea is to use the unify expression to
unify integers and head constructors and to construct explicit CCore

94

functions to traverse and unify subterms. For recursive types, the
traversal functions will also be recursive. The functions for param-
eterized types are higher-order; they get additional arguments rep-
resenting the functions corresponding to the type parameters. Some
examples:

eqsInt e1 e2 ≡ if (unify e1 e2) Success Success

eqsList eqsA e1 e2 ≡
letrec eqs =

λx1.λx2.
if (unify x1 x2)

Success
(caser x1 of

Nil => Success
| Cons(h1,t1) =>

caser x2 of
Cons(h2,t2) =>

pand(eqsA h1 h2,
eqs t1 t2))

in eqs e1 e2

eqsIntList = eqsList eqsInt
eqsIntListList = eqsList eqsIntList
...

A Curry-like front end could derive all the equality functions auto-
matically from the algebraic type definitions, and propagate them
dynamically using dictionary passing.

This version of equality differs from Curry’s in that it is non-strict,
i.e., a logic variable always unifies successfully against any other
value (even ⊥). Curry’s =:= only returns Success if both argu-
ments reach (unifiable) NFs, and it also performs an “occurs check.”
We prefer the semantics of our operator, which seems more consis-
tent with ordinary lazy functional programming in that it permits
definition of infinite (circular) data structures via unfication. There
is another, more subtle, difficulty with Curry’s operator: to imple-
ment it in an “unbundled” way seems to require an expression form
that detects when two values are both uninstantiated logic variables.
Including this in CCore would violate the Determinism Property.

Normalization. Similarly, to force evaluation of an expression to
full CNF, we can use (another) type-indexed family of CCore func-
tions. These functions make essential use of the seq operator and
the chnf primitive. Examples:

normInt e ≡ chnf(e)

normList normA e ≡
letrec norm =

λx.caser x of
Nil => x

| Cons(h,t) =>
Cons(seq (normA h),

seq (norm t))
in norm e

normIntList ≡ normList normInt
normIntListList ≡ normList normIntList

Note that the arguments to constructors (e.g., Cons) are evaluated
in parallel, which may be essential to reach a normal form.

3 Translation Phases

Although it would be possible to interpret CCore directly, it would
require fairly heavy machinery within the interpreter to handle lazi-
ness and multithreading. So instead, we pass it through two prelim-
inary translations, first to a call-by-value language SCore, and then
into an A-normal-form variant language ACore. ACore expressions
can be evaluated by an interpreter written in continuation-passing
style, which makes multi-threading straightforward.

3.1 Making Thunks Explicit

We implement call-by-need by converting CCore programs into a
call-by-value language SCore that has explicit support for creating
and resolving thunks. The syntax of Score is just a small extension
of CCore:

structure Score =
datatype exp = ...

...just like CCore...
| Delay of exp
| Force of exp

end

But Score (implicitly) uses eager evaluation semantics. The use
of thunks and the CCore to Score conversion are largely stan-
dard [17], so we omit the details here.

In principle, an advantage of using explicit delay and force is that
we can express the results of various possible optimizations based
on analysis of CCore programs. For example, we could use strict-
ness analysis to remove delays (and the corresponding forces)
on arguments that are guaranteed to be evaluated. We can also re-
move provably redundant forces, omit delays for “cheap” expres-
sions (i.e., expressions whose evaluation guaranteed to terminate
quickly) [5], etc. We have not implemented any such optimiza-
tions. SCore could also be used directly as the desugaring target of
a call-by-value source language.

3.2 A-normal Form

Acore is a variant of A-normal form [6] adapted to our language. It
is essentially a subset of Score, stratified into several kinds of ex-
pressions to support a continuation-passing-style interpreter.A class
of “trivial” expressions that require no evaluation is explicitly called
out as a separate syntactic class (vexp). All arguments to App,
Primapp, Capp, Case etc., must be vexps; hence any non-trivial
arguments in Score programs must be named. Order of evaluation
is made explicit via Let and Letpar (parallel) bindings. Only a
restricted set of expressions (sexp) can be bound in Let expres-
sions, and only vexp’s can be bound in Letrec expressions, which
guarantees that the right-hand sides of recursive bindings can be
evaluated without requiring the values of any left-hand sides.

Acore also has two new expression forms. Letpar performs a set
of two or more bindings in parallel; it is used to evaluate the argu-
ments to Primapp, Capp, and Unify expressions. (Since parallel
evaluation can have substantial overhead, we use sequential eval-
uation instead when a simple analysis shows that at most one of
the expressions instantiates a logic variable.) CheckInstantiated
blocks evaluation if its argument is an uninstantiated logic variable;
it is used to ensure that the arguments to Primapps are in CHNF.
Constructors SofV and EofS serve to inject vexps into sexps and
sexps into exps, respectively.

95

datatype vexp =
Var of var

| Int of int
| Abs of var * exp
| Delay of exp

and sexp =
SofV of vexp

| App of vexp * vexp
| Primapp of prim * vexp list
| Capp of dcname * vexp list
| Unify of vexp * vexp
| Force of vexp
| CheckInstantiated of vexp
| Free

and exp =
EofS of sexp

| Case of flexibility * vexp *
(pattern * exp) list

| Let of var * sexp * exp
| Letrec of (var * vexp) list * exp
| Letpar of (var * exp) list * exp

Figure 3. Acore Abstract Syntax

The translation of Score into Acore is also fairly standard [6], so
again we omit the details. Since Acore.Case expressions can only
appear in tail-position within functions, it is often necessary for the
translation to create new functions representing join points follow-
ing a case.

4 Definitional Interpreter

The interpreter is fairly complex; to ease understanding, we present
it in several stages. Section 4.1 shows the full code for interpreting
just the functional substrate of ACore. Section 4.2 describes how
logic variables, narrowing, and “or-threads” can be added. Sec-
tion 4.3 adds support for concurrent “and-threads” and residuation.
The code relies on several ADTs, whose signatures are given in
Figure 4.

4.1 Functional Substrate

Figure 5 shows the interpreter code for the basic functional sub-
strate. (A few standard features such as letrec are omitted to save
space.) This is not novel; it is essentially a CαEK machine [6], with
support added for thunks, and with explicit attention to heaps. The
basic interpreter function, interp, evaluates a top-level expression
exp. If the evaluation is successful, the result value is stored into
the global list answers. The real work of interpretation is done by
functions evalE and evalS, which evaluate exps and sexps (re-
spectively) to HNF values. These functions are written in a form of
continuation-passing style; they are explicitly parameterized by an
environment (env), which is a mapping from program variables to
values, and by a stack of continuation frames (kont), which tells
what to do with the result value. Evaluation is also implicitly pa-
rameterized by the heap, which is a mutable map from heap point-
ers (hptr) to values. The heap supports functions new, alloc,
fetch, and update, with the obvious semantics, and a further oper-
ator, fork, which is described in Section 4.2. Only mutable values
(e.g., thunks) are allocated in the explicit heap; immutable values
(e.g., records) live in the implicit (ML) heap.

signature E = sig
type ’a env
val empty : ’a env
val extend : ’a env * (string * ’a) list ->

’a env
val lookup : ’a env * string -> ’a

end

signature H = sig
type ’a hptr
type ’a heap
val new : unit -> ’a heap
val alloc : ’a heap -> ’a -> ’a hptr
val fetch : ’a heap -> ’a hptr -> ’a
val update : ’a heap -> ’a hptr * ’a -> unit
val fork : ’a heap -> ’a heap

end

signature Q = sig
type ’a q
val empty : ’a q
val enqueueRear : ’a q * ’a -> ’a q
val enqueueFront : ’a q * ’a -> ’a q
val dequeue : ’a q -> (’a * ’a q) option
val dequeueIf : (’a -> bool) -> ’a q ->

(’a * ’a q) option
end

Figure 4. Signatures for Environment, Heap, and Queue ADTs.

The value type is fundamental. The first three value constructors
correspond roughly to CHNF’s of CCore expressions; in particu-
lar, VClos represents a λ-abstraction as a closure which includes
the (entire) lexical environment. The remaining value constructors
have to do with the mutable heap. A thunk for expression e in
environment env is created by allocating a new heap entry contain-
ing the value VThunk(env,e), say at heap pointer p, and returning
VDelay p as the value of the delay expression. VEmpty is used
to “black-hole” thunks during forcing [18, 27]; this converts some
non-terminating programs into failing ones, removes some possible
space leaks, and prevents certain synchronization problems in the
presence of and-parallelism (see Section 4.3).

The continuation parameter to the evaluation functions tells them
where to deliver the evaluation result. Using continuations allows
us to make these functions completely tail-recursive, so calls to
them are essentially just jumps, and no implicit control stack is
needed. (This will prove to be valuable when we introduce mul-
tiple threads in the next section.)

4.2 Logic Variables and Narrowing

To add support for narrowing and unification to the interpreter, we
introduce several new features: a value form representing logic
variables; a queue of othreads corresponding to narrowing alter-
natives; and a mechanism for representing variant versions of the
heap, one for each othread. The added and altered code is shown
in Figure 6.

A free expression evaluates to VLogic p, where p is the heap
pointer of a newly allocated entry in the (current) heap. To instanti-
ate this logic variable, the interpreter updates the heap at p. Narrow-
ing (casef) always causes instantiation to a CHNF, but unification

96

datatype value = and evalE (env:env,kont:kont,e:exp) : unit =
VRecord of dcname * value list case e of

| VClos of env * var * exp EofS s => evalS (env,kont,s)
| VInt of int | Case(RIGID,v,pes) =>
| VDelay of hptr let val VRecord(c,ws) = evalV env v
| VThunk of env * exp in case matchPattern pes c of
| VEmpty SOME(xs’,e’) =>
withtype evalE (E.extend (env,zip (xs’,ws)),
env = value E.env kont, e’)
hptr = value H.hptr | NONE => fail()

end
data kontframe = | Let(x,s,e) =>

KBind of var * env * exp evalS (env,KBind(x,env,e)::kont,s)
| KUpdate of hptr | Letrec(xvs,e) => ...

type kont = kontframe list
and evalS (env:env,kont:kont,s:sexp) : unit =

val answers : value list ref = ref [] let val return = continue kont
in case s of

fun noteAnswer (w:value) : unit = SofV v => return (evalV env v)
answers := w::(!answers) | App(vop,v) =>

fun fail () : unit = () let val VClos(env’,x’,e’) = evalV env vop
val w = evalV(env,v)

val heap : value H.heap ref = ref H.empty val env’’ = E.extend (env’,[(x’,w)])
fun fetch h = H.fetch (!heap) h in evalE (env’’,kont,e’)
fun update (h,a) = H.update (!heap) (h,a) end
fun alloc a = H.alloc (!heap) a | Force v =>

(case evalV env v of
fun evalV (env:env) (v:vexp) : value = VDelay h =>

case v of (case fetch h of
Var x => E.lookup (env,x) VThunk(env’,e’) =>

| Int i => VInt i (update (h,VEmpty); (* set BH *)
| Abs(x,e) => VClos(env,x,e) evalE (env’, KUpdate h::kont,e’))
| Delay e => VDelay(alloc (VThunk(env,e))) | VEmpty => enterBH (env,kont,EofS s)

| w => return w)
fun matchPattern (pes:(pattern * exp) list) | w => return w)

(c0:dcname) | Primapp(p,vs) =>
: (var list * exp) option = ... return (doPrimapp (p,map (evalV env) vs))

| Capp (_,c,vs) =>
fun doPrimapp (p:prim,ws:value list) : value = ... return (VRecord(c,map (evalV env) vs))

end
fun enterBH _ : unit = fail ()

and continue (kont:kont) (w:value) : unit =
fun interp (e:exp) : unit = case kont of

(heap := H.new (); [] => noteAnswer w
answers := []; | KBind(x,env’,e’)::kont’ =>
evalE (E.empty,[],e)) evalE (E.extend (env’,[(x,w)]), kont’,e’)

| KUpdate h’::kont’ =>
(update (h’,w); continue kont’ w)

Figure 5. Interpreting Functional Subset of ACore.

may cause instantiation to another VLogic value; auxiliary function
chaseLogic (not shown) chases down chains of unified variables
until a CHNF or uninstantiated logic variable is found.

Variant Heaps. Each narrowing variant requires an independent
heap to store values that depend on the narrowing choice. The key
idea behind our narrowing implementation is that different threads
“see” different instantiations for a narrowed logic variable, even
though they all use the same heap pointer to refer to that variable.
Similarly, different threads may “see” different values for updated
thunks, since the value of the thunk may depend on a narrowed logic
variable. Because logic variables are “first-class” entities that can
be used interchangeably with ordinary values, it is not possible (in

general) to determine statically which thunks depend on variables
in this way, so the interpreter assumes that every thunk might.

To support this per-thread state, the interpreter implements variant
heaps, which differ from each other on some, but usually not many,
entries. A new variant heap is created by applying the fork opera-
tion to an existing heap. (fork h) produces an independent copy
of h that can subsequently be changed (by update or alloc op-
erations) without affecting h; its action on heaps is similar to the
action of Unix fork on address spaces. Within the interpreter, all
heap operations are interpreted with respect to the current variant
stored in the global reference heap. Efficient implementation of
fork is discussed in Section 5.1.

97

datatype value = ... fun interp (e:exp) : unit =
| VLogic of hptr (othreads := Q.empty;

remainingSlice := initialSlice;
fun mkLogic _ = VLogic (alloc VEmpty) ...)

fun chaseLogic (w:value) : value = ... and evalE (env:env,kont:kont,e:exp) : unit =
case e of

val initialSlice : int =
val remainingSlice : int ref = ref initialSlice | Case(flx,v,pes) =>

(case chaseLogic (evalV (env,v)) of
type computation = env * kont * exp VRecord(c,ws) => ...
type othread = value H.heap * computation | VLogic h0 =>

(case flx of
val othreads : othread Q.q ref = ref Q.empty FLEXIBLE =>

(app (narrow (!heap,env,kont,h0))
fun onext () : unit = pes;

case (Q.dequeue (!othreads)) of onext ())
SOME((heap’,comp’),rest) => | RIGID => fail ()))
(othreads := rest;
remainingSlice := initialSlice; and evalS (env:env,kont:kont,s:sexp) : unit =
heap := heap’; (remainingSlice := !remainingSlice - 1;
evalE comp’) if !remainingSlice = 0 then

| NONE => () (* done! *) oyield (env,kont,EofS s)
else

fun ospawn (comp:computation) : unit = let val return = ...
othreads := Q.enqueueFront (!othreads, in case e of

(!heap,comp)) ...
| Free => return (mkLogic ())

fun oyield (comp:computation): unit = | Unify(v1,v2) =>
(othreads := Q.enqueueRear (!othreads, let val w1 = chaseLogic(evalV(env,v1))

(!heap,comp)); val w2 = chaseLogic(evalV(env,v2))
onext ()) in case (w1,w2) of

(VLogic h1, _) =>
fun fail () : unit = onext () (update (h1,w2); return trueV)
fun noteAnswer (w:value) : unit = | (_, VLogic h2) =>

(answers := w::(!answers); onext ()) (update (h2,w1); return trueV)
| (VInt i1, VInt i2) =>

fun narrow (heap0:heap,env:env,kont:kont,h0:hptr) if i1 = i2 then return falseV
((c,xs):pattern,e:exp) : unit = else fail()

(heap := H.fork heap0; | (VRecord(c1,_),VRecord(c2,_)) =>
let val ws = map mkLogic xs if c1 = c2 then return falseV

val env’ = E.extend (env,zip (xs,ws)) else fail ()
in update (h0,VRecord(c,ws)); end

ospawn (env’,kont,e) end)
end)

Figure 6. Interpreter changes for logic features. New and altered definitions are marked in the margin.

Or-thread queue. The execution state of the interpreter includes
a double-ended queue othreads of “or-threads” that are waiting
to execute. Each othread is represented by a pair containing a
computation (environment, continuation, and expression) and a
heap in which the computation should be run. Evaluation of a
top-level expression begins with an empty queue. New othreads
generated by narrowing are enqueued at the front of the queue
(ospawn). When an othread completes (by delivering an answer
or failing) or yields (oyield), the next othread to execute is taken
from the front of the queue (onext). Execution terminates when no
othreads remain on the queue.

To implement fair search, we arrange to bound the amount of com-
putation any othread can do at any one time. This bound is imple-
mented using a time-slice counter decremented on each sexp eval-

uation1 and a polling mechanism whereby a thread calls oyield
when its time slice is exhausted. Othreads thus behave essentially
like engines [15]. The Determinism Property requires that pro-
gram behavior is completely independent of the choice of value for
initialSlice (except possibly for the order in which answers are
produced). In general, performance will be enhanced by choosing
a very large value for initialSlice, so that most computations
complete before they exhaust their first slice. This minimizes the
cost of switching between computations; more importantly, it min-
imizes the amount of live data held onto by computations pending
on the queue. Choosing a large value for initialSlice essentially
means that the interpreter will perform depth-first exploration of the
narrowing options, except when it hits a very lengthy computation.

1It would actually suffice to decrement and check the counter
only for App and Force expressions, because any non-terminating
loop must involve one of these expressions.

98

Narrowing. Narrowing itself is implemented by extending the
evaluation code for casef expressions to cover the possibility that
the scrutinee is a logic variable. Auxiliary function narrow is in-
voked for each case arm: it spawns a new othread with a forked
copy of the current heap in which the scrutinized logic variable has
been appropriately updated.

4.3 Concurrency and Residuation

We next describe how to support ACore’s concurrency and residu-
ation features:

• The expression (letpar {xi = ei} in e) specifies that the
expressions ei should be evaluated in parallel, sharing the
same heap. The resulting values are bound to the xi; all the
values must be produced before evaluation of e can proceed.

• Evaluation of a caser or checkInstantiated expression
residuates if the scrutinee is an uninstantiated logic variable
(i.e., the scrutinee must evaluate to CHNF, not merely to
HNF). The residuated computation blocks until the logic vari-
able is instantiated by another parallel computation. If all par-
allel evaluations are blocked, the entire computation fails by
floundering.

• The implementation of enterBH is changed to cause resid-
uation rather than failure. The use of black-holing prevents
two or more computations from attempting to update the same
thunk simultaneously.

Figure 7 shows the added and altered interpreter code. Concur-
rency is implemented straightforwardly using a round-robin queue
of “and-threads” (athreads), each corresponding to an expres-
sion being evaluated in parallel. Each athread consists of a
computation and an integer update count (explained below). The
result of each athread is stored in the heap, where it can be ac-
cessed by the common continuation of the athreads. An othread
is redefined to be a set of athreads, all sharing a common heap.

A group of parallel athreads is spawned when a letpar expres-
sion is evaluated. Evaluation begins by creating a synchroniza-
tion counter hc in the heap to track the number of uncompleted
athreads, and a list of heap locations (all initialized to VEmpty)
in which the athread results are to be stored. An athread is then
spawned for each parallel expression. Each athread is given a
KUpdate continuation frame that stores its answer in the heap. It
then encounters a special KSynch frame, which implements a bar-
rier synchronization with the other athreads in its spawn group;
the last athread to complete continues by executing the body of
the letpar in a suitably extended environment.

An athread that has residuated onto the queue (by calling ayield)
should be restarted when the variable on which it is waiting has
been instantiated. As a simple approximation to this, we ar-
range that the interpreter restarts an athread whenever any vari-
able update has been performed since it residuated. The global
updateCount tracks the number of updates so far, and the current
value of this counter is recorded in the integer field of each athread
when it yields. The anext routine selects the first runnable, i.e., po-
tentially unblocked, athread from the queue. ((Q.dequeueIf p
q) returns the first element a of queue q for which p(a) is true.)

Note that the routines for managing the othread queue are rede-
fined to save the entire current set of athreads when an othread
is spawned or yields. Because the state of athread completion

is recorded in the variant heap, behavior of a concurrent group is
completely independent in each othread after an ospawn.

5 Implementation issues

5.1 Variant Heaps

There are several possible approaches to implementing the variant
Heap ADT. The most naive would be to represent heaps by (ex-
tensible) arrays, and heap pointers by array indices, and implement
fork by simply copying the array. However, this approach is likely
to be quite space-inefficient, since much of the heap contents will be
unchanged from variant to variant. A better tactic is to use a kind of
copy-on-write. For example, if we represent heaps by immutable
search trees, and heap pointers by integer keys, updating a vari-
ant will typically require copying only O(logn) nodes. However,
this approach has a garbage collection problem when implemented
within ML: a heap entry becomes dead only when (all) the heap(s)
containing it do. In particular, in purely functional programs with
no narrowing, nothing ever becomes garbage! We could avoid this
problem if we were generating compiled code to run under our
own garbage collector (rather than ML’s), but removing dead en-
tries from tree structures is still likely to be complicated and time-
consuming.

An alternative approach, which we currently favor, represents each
heap pointer by an ML reference cell, containing a list of possible
values, each tagged with an integer heap number; the list is main-
tained in reverse sorted order by tag. Each time a heap is created
by new or fork, it is assigned a new heap number from a global
counter. A heap itself is represented by a list of heap numbers,
whose head is the heap’s unique number and whose tail is the rep-
resentation of the heap’s parent (hence empty for a heap created
by new). To perform (alloc h v), a new reference cell is created
and initialized to the singleton list containing v tagged with the heap
number of h. To do (update h (p,v)), v is tagged with the heap
number of h and inserted into the existing list stored in the reference
cell for p. To perform (fetch h p), the list stored in the reference
cell for p is searched for an entry tagged with some heap number
that appears in the representation of h. If the requested pointer is re-
ally defined for heap h, its value must have been set either in h itself
or in one of its ancestors, so the search is guaranteed to succeed.

To illustrate how this heap representation works, consider interpre-
tation of the following program:

let x = free in let y = free in

casef x of
True => x

| False => casef y of True => x | False => x

Evaluating the let bindings causes two heap pointers p0 and p1
to be allocated for x and y, respectively, in the initial heap h0,
whose heap number list is [0]. The resulting heap state is shown
in Figure 8(a). Since x is uninstantiated, evaluating (casef x)
causes narrowing. Two othreads are created and two correspond-
ing heaps, h1 and h2, are obtained by invoking (fork h0) twice.
x is bound to True in h1 and False in h2, bringing the system to
the state illustrated in Figure 8(b). Evaluation of the first othread
causes a lookup of x in the corresponding heap, h1, whose heap
number list is [1,0]. Searching the list pointed to by p0 for a value
tagged with 1 successfully produces True. Evaluating (casef y)
in the second othread causes a lookup of y in heap h2, whose
heap number list is [2,0]. Searching the list pointed to by p1 fails

99

val updateCount : int ref := ref 0 fun interp (e:exp) : unit =
(athreads := Q.empty;

fun update (h,a) = updateCount := 0;
(updateCount := !updateCount + 1; ...)
H.update (!heap) (h,a))

and evalE (env:env,kont:kont,e:exp) : unit =
datatype kontframe = ... case e of

| KSynch of hptr * env * exp ...
| Case(flx,v,pes) =>

type athread = computation * int (case chaseLogic (evalV (env,v)) of
val athreads : athread Q.q ref = ref Q.empty ...

| VLogic h0 =>
type othread = heap * athread Q.q (case flx of

FLEXIBLE => ...
fun onext () : unit = | RIGID => ayield (env,kont,e)))
case (Q.dequeue (!othreads)) of | Letpar(xes,e) =>
SOME((heap’,athreads’),rest) => let val hc = alloc (VInt(length xes))

(...; val (xs,es) = unzip xes
athreads := athreads’; val hs = map(fn _=>alloc VEmpty) xs
anext ()) val env’ = E.extend (env,

| NONE => () (* done! *) map (fn (x,h) => (x,VLogic h))
(zip (xs,hs)))

fun ospawn (comp:computation) : unit = val kont’ = KSynch(hc,env’,e)::kont
othreads := fun f (e,h) =

Q.enqueueFront (!othreads, aspawn (env,KUpdate h::kont’,e)
(!heap,Q.enqueueFront (!athreads,(comp,~1)))) in app f (zip (es,hs));

anext ()
fun oyield (comp:computation): unit = end

(othreads :=
Q.enqueueRear (!othreads, and evalS (env:env,kont:kont,s:sexp) : unit =
(!heap,Q.enqueueRear (!athreads,(comp,~1)))); ...

onext ()) case s of
...

fun anext () : unit = | CheckInstantiated v =>
let fun runnable (_,uc) = !updateCount > uc let val w = evalV (env,v)
in case (Q.dequeueIf runnable (!athreads) of in case chaseLogic w of

SOME((comp,_),rest) => VLogic _ => ayield (env,kont,EofS s)
(athreads := rest; | w => return w
evalE comp) end

| NONE => fail ()
end and continue (kont:kont) (w:value) : unit =

case kont of
fun aspawn (comp:computation) : unit = ...
athreads := Q.enqueueFront (!athreads,(comp,~1)) | KSynch(hc,env’,e’)::kont’ =>

let val VInt c = fetch hc
in if c = 1 then

fun ayield (comp:computation) : unit = evalE (env’,kont’,e’)
(athreads := Q.enqueueRear (!athreads, else

(comp,!updateCount)); (update (hc,VInt(c-1));
anext ()) anext ())

end
fun enterBH (comp:computation) : unit = ayield comp

Figure 7. Interpreter changes to support concurrency. New and altered definitions are marked in the margin.

to find a value tagged with 2, but does find a value tagged with
0, namely VEmpty. In other words, y is still uninstantiated, so a
further narrowing step occurs. This produces two new othreads
and corresponding heaps h3 and h4, forked from h2; y is bound
to True in h3 and False in h4. The resulting state is illustrated
in Figure 8(c). Now evaluating the othread corresponding to the
left case arm causes of a lookup of x in heap h3, whose heap num-
ber list is [3,2,0]; a value tagged with 2 is found, namely False.
Evaluating the right arm in heap h4 is similar.

In this implementation, update and fetch take O(m) time in the
worst case, where m is the number of distinct heaps containing the
given pointer. They take only O(1) time in the frequent case when
the operation is being performed on the most-recently-created heap.
Functions alloc and fork are O(1).

When implemented inside Standard ML, this scheme still has a
garbage collection problem: the values associated with a given
hptr becomes garbage as soon as that hptr is no longer live, but

100

p0x

p1y

p1y

0

1 2

h1 h2

p1y

p0x

p0x

(a)

h0

case y

0case x

0

(b)

(c)

F T4 3

x

VEmpty

x=Fx=T

0

1 2

h1 3 4

h3 h4

T

FF

 x=T x=F

y=Fy=T

VEmpty0

2 F 1 T VEmpty0

2 F 1 T VEmpty0

VEmpty0

VEmpty0

Figure 8. Heap states, showing othread tree, heaps, and heap
pointers.

until then, all the values for that hptr stay live, even if the corre-
sponding heaps are no longer live. Because heaps are closely as-
sociated with othreads, the interpreter knows when they become
garbage, so it is possible to implement a form of manual garbage
collection within a version of ML extended with weak pointers.
The overheads of this scheme are fierce, but it does permit some
examples that would otherwise exhaust memory to run to comple-
tion. However, in a compiled implementation where we can control
memory management, this heap representation should be straight-
forward to garbage collect.

The problem of maintaining multiple variant stores has received
occasional attention in the past, but there does not appear to have
been any systematic treatment of the efficiency and garbage collec-
tion issues. Johnson and Duggan [16] and Morrisett [25] proposed
first-class stores as an analogue to first-class continuations. Tol-
mach and Appel’s ML debugger [32] implemented them to support
roll-back. Most of these systems have a notion of a current store,
which can be checkpointed and subsequently restored. A common
mechanism for doing this is to record all updates in a script that can
be undone or redone on demand; as Haynes [14] noted, this effec-
tively generalizes the trail mechanism used in many backtracking-
based systems. The use of copy-on-write for Unix fork apparently
dates back to System V [23].

5.2 Fast Interpretation

The definitional interpreter as describe in Section 4 is too inefficient
to be practical, but we can apply several well-known techniques to
make it much more efficient.

DeBruijn indices. Two of the most obvious inefficiencies are per-
forming string-based lookups in environments and in pattern lists at
runtime. It is trivial to fix these problems by changing to DeBruijn
indices for variables, and converting constructor names to numeric
indices.

Trimming and closures Both VClos and VThunk values contain
captured environments, which are used to resolve references to free
variables in the abstraction or thunk body. Currently, the interpreter
always captures the entire lexical environment at the point of def-
inition, even though this may contain many entries in addition to
the needed free variables. This policy makes environment capture
cheap, and probably doesn’t have much impact on lookup time but
it can cause serious space leaks. Most functional language imple-
mentations therefore “trim” the environment to contain just the free
variables [27]. If the free variable sets are put into closure records,
variable lookup time can be reduced still further over the DeBruijn
model, although there is a considerable cost in building the records.

6 Conclusions and Ongoing Work

The main goal of this work was to develop a practical FLP imple-
mentation that provides fair search based on multi-threading. We
believe this goal has been achieved, although more work needs to be
done to improve performance of variant heaps. We are also working
on an alternative interpreter (implemented in Java) which provides
fair search, but uses substitution rather than variant heaps; it should
prove interesting to compare the performance of these approaches.

The design of CCore and ACore also sheds light on several dark
corners of FLP semantics, and suggests some areas for improve-
ment in the definition of Curry, currently the most visible FLP lan-
guage. We expect to continue work on this front as well; in particu-
lar, we would like to formalize the Determinism Property and prove
that it holds for CCore.

One important feature of Curry, which we have not discussed here
for lack of space, is a facility for evaluating nested sub-programs
and capturing their answer sets in a (lazy) list that can be inspected
by the enclosing program. A distinctive characteristic of this mech-
anism is that sub-programs may read, but not write, heap entries
created by the enclosing program. We have built an extended in-
terpreter that faithfully implements this behavior, using an array of
variant heaps. However, as currently specified in Curry, this feature
clearly violates the Determinism Property, because the enclosing
program’s behavior can depend on the order in which answers to
the sub-program are computed. We are therefore exploring alter-
native mechanisms that provide some of the same power without
abandoning determinism.

We are also in the process of developing a compiler for CCore
based on translation into a full continuation-passing style represen-
tation similar to that used in Standard ML of New Jersey [4]. This
representation refines ACore by performing closure conversion (re-
moving the need for environments) and introducing continuations
(removing the need for a runtime stack and thus simplifying multi-
threading). Queue and heap services are provided as part of the
runtime system, using the same algorithms as in the interpreter. We
plan to build a garbage collector tailored for both lazy evaluation
and variant heap traversal. Our goal is to reach performance parity
with the best current (non-fair) FLP compilers (such as the Münster
Curry Compiler [21]).

101

Acknowledgements

We thanks the anonymous referees for several helpful suggestions.

7 References

[1] H. Aı̈t-Kaci. An overview of LIFE. In J. Schmidt and
A. Stogny, editors, Proc. Workshop on Next Generation In-
formation System Technology, pages 42–58. Springer LNCS
504, 1990.

[2] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Oper-
ational semantics for functional logic languages. In M. Co-
mini and M. Falaschi, editors, Proc. Int’l Workshop on Func-
tional and (Constraint) Logic Programming, volume 76 of
Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, 2002.

[3] S. Antoy, M. Hanus, B. Massey, and F. Steiner. An implemen-
tation of narrowing strategies. In PPDP01, pages 207–217.
ACM Press, 2001.

[4] A. W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[5] K.-F. Faxén. Analysing, Transforming and Compiling Lazy
Functional Programs. PhD thesis, Department of Teleinfor-
matics, Royal Institute of Technology, June 1997.

[6] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In PLDI’93, pages
237–247, 1993.

[7] M. Hanus. Improving control of logic programs by using
functional logic languages. In Proc. of the 4th Int. Symp. on
Programming Language Implementation and Logic Program-
ming, pages 1–23. Springer LNCS 631, 1992.

[8] M. Hanus. The integration of functions into logic program-
ming: From theory to practice. Journal of Logic Program-
ming, 19&20:583–628, 1994.

[9] M. Hanus. Efficient translation of lazy functional logic pro-
grams into Prolog. In Proc. Fifth Int. Workshop on Logic Pro-
gram Synthesis and Transformation, pages 252–266. Springer
LNCS 1048, 1995.

[10] M. Hanus. A unified computation model for declarative pro-
gramming. In Proc. 1997 Joint Conference on Declara-
tive Programming (APPIA-GULP-PRODE’97), pages 9–24,
1997.

[11] M. Hanus. A unified computation model for functional and
logic programming. In Proc. POPL’97, 24st ACM Symp. on
Principles of Programming Languages, pages 80–93, 1997.

[12] M. Hanus, S. Antoy, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen
Kiel Curry System. Available at http://www.informatik.
uni-kiel.de/~pakcs/, 2002.

[13] M. Hanus, editor. Curry: An integrated functional logic lan-
guage (version 0.8). Available at http://www.informatik.
uni-kiel.de/~curry, Apr. 2004.

[14] C. T. Haynes. Logic Continuations. Journal of Logic Pro-
gramming, 4(2):157–176, June 1987.

[15] C. T. Haynes and D. P. Friedman. Engines build process ab-

stractions. In Proc. 1984 ACM Conference on Lisp and Func-
tional Programming, pages 18–24, Aug. 1984.

[16] G. F. Johnson and D. Duggan. First-class stores and partial
continuations in a programming language and environment.
Computer Languages, 20(1):53–68, Mar. 1994.

[17] T. Johnsson. Compiling lazy functional languages. Ph.D. the-
sis, Chalmers University, 1987.

[18] R. E. Jones. Tail recursion without space leaks. Journal of
Functional Programming, 2(1):73–79, January 1992.

[19] J. Lloyd. Programming in an integrated functional and logic
language. Journal of Functional and Logic Programming,
1999(3):1–49, 1999.

[20] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Mul-
tiparadigm Declarative System. In Proc. of RTA’99, pages
244–247. Springer LNCS 1631, 1999.

[21] W. Lux. The Münster Curry compiler. Available at http:
//danae.uni-muenster.de/~lux/curry/, 2004.

[22] J. McCarthy. A basis for a mathematical theory of computa-
tions. In P. Braffort and D. Hirschberg, editors, Computer Pro-
gramming and Formal Systems, pages 33–70. North-Holland,
1963.

[23] R. Miller. A Demand Paging Virtual Memory Manager for
System V. In USENIX Association Conference Proceedings,
pages 178–182, June 1984.

[24] R. Milner, M. Tofte, R. Harper, and D. B. MacQueen. The
Standard ML Programming Language (Revised). MIT Press,
1997.

[25] J. G. Morrisett. Refining first-class stores. In Proc. Workshop
on State in Programming Languages, pages 73–87, Copen-
hagen, Denmark, June 1993.

[26] S. Peyton Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler inliner. Journal of Functional Program-
ming, 12(4):393–434, July 2002.

[27] P. Sestoft. Deriving a lazy abstract machine. Journal of Func-
tional Programming, 7(3):231–264, May 1997.

[28] E. Shapiro, editor. Concurrent Prolog, Collected Papers, Vol-
umes 1 and 2. MIT Press, Cambridge, Massachusetts, 1987.

[29] G. Smolka. The Oz programming model. In J. van Leeuwen,
editor, Computer Science Today: Recent Trends and Develop-
ments, pages 324–343. Springer LNCS 1000, 1995.

[30] Z. Somogyi, F. Henderson, and T. Conway. The execution al-
gorithm of Mercury, an efficient purely declarative logic pro-
gramming language. Journal of Logic Programming, 29(1-
3):17–64, 1996.

[31] A. Tolmach and S. Antoy. A monadic semantics for core
Curry. In G. Vidal, editor, Electronic Notes in Theoretical
Computer Science, volume 86. Elsevier, 2003.

[32] A. P. Tolmach and A. W. Appel. A debugger for Standard
ML. Journal of Functional Programming, 5(2):155–200,
April 1995.

102

