
Compositional Graphs?

Sergio Antoy1 Michael Hanus2

1 Computer Science Department, Portland State University,
P.O. Box 751, Portland, OR 97207, U.S.A.

antoy@cs.pdx.edu

2 Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstr. 40, D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract. In many applications, graphs are a natural representation
for the structure of a problem domain. Since functional languages sup-
ports only (tree-structured) algebraic datatypes, there are various ways
to represent graphs in declarative languages. In this paper we describe a
representation of graphs in a functional logic language. Our representa-
tion is compositional as lists or tree structures are. This property makes
our representation useful for many application domains, like graphical
user interfaces or web programming.

1 Introduction

Lists and trees are ubiquitous datatypes in functional and logic programming
because of their simplicity. These datatypes are compositional, i.e., one can eas-
ily define operations to concatenate lists or join trees into a new tree without
changing the structure of the arguments (which might not be the case for im-
perative languages where such data structures are implemented with pointers).
This property often simplifies the reasoning on programs.

In many application areas, the use of these simple datatypes leads to un-
natural models of a problem resulting in error-prone programs that are difficult
to maintain. For instance, graphical user interfaces can be considered tree-like
structures since widgets can be grouped in containers that are used as widgets
themselves. However, these structures may include dependencies among each
other, e.g., a button widget may manipulate another widget in a different hier-
archy. Thus, a graph structure is a more appropriate model in this situation.

In order to make our ideas more concrete, consider a standard representation
of simple graphs as an algebraic type. For instance, in Haskell [17] a graph can
be defined as a pair consisting of nodes and edges as follows:

data Graph = Graph [Node] [Edge]

? This research has been partially supported by the DAAD/NSF grant INT-9981317,
the German Research Council (DFG) grant Ha 2457/1-2 and the NSF grant CCR-
0110496.

http://www.cs.pdx.edu/~antoy/index.html
http://www.informatik.uni-kiel.de/~mh/
http://www.cs.pdx.edu/
http://www.pdx.edu/
mailto:antoy@cs.pdx.edu
http://www.informatik.uni-kiel.de/
http://www.uni-kiel.de/
mailto:mh@informatik.uni-kiel.de
https://www.fastlane.nsf.gov/servlet/showaward?award=9981317
http://www.nsf.gov/
https://www.fastlane.nsf.gov/servlet/showaward?award=0110496
https://www.fastlane.nsf.gov/servlet/showaward?award=0110496


Edges consist (at a minimum) of a source and a target node, i.e., we need a
unique identification of nodes in order to specify the edges between them. If we
identify nodes by unique integers, we obtain:

data Node = Node Int

data Edge = Edge Int Int

Depending on the application, additional information items are included into
both nodes and edges, e.g., lengths of edges, names of nodes, etc., that we omit
for the sake of clarity. Now we can define a simple graph instance as follows:

g1 = Graph [Node 1, Node 2, Node 3]
[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

A problem of this representation is that graph instances of this kind cannot be
composed and lack desirable properties like functional abstraction. For instance,
if joinGraphs is a function that composes two graphs by joining their nodes
and edges, respectively, the expression (joinGraphs g1 g1) produces a non-
intended graph containing supposedly different nodes with identical numbers.
Renaming the node identifiers in one argument graph is not possible since these
nodes might be referred from other parts of the program.

This problem could be avoided by passing a counter through all the nodes
when all the graphs are defined. However, this solution leads to code that is non-
reusable and difficult to both understand and maintain because two separate
tasks are interleaved.

In this paper we present a solution to this problem in the functional logic
language Curry. A key feature of this solution is the use of logical variables
(i.e., unknown values) when defining graphs. This enables the composition of
graphs similar to other data structures and, thus, supports useful abstractions,
e.g., functions that computes graph structures from their input arguments. Our
representation becomes handy in situations where the construction of graphs is
clearly separated from the processing of the constructed graph structures. For
instance, graphical user interfaces requires the definition of the structure of the
interface (structure of widgets, dependencies caused by event handlers) followed
by the activation of the interface. A similar situation arises in dynamic web
pages where the definition of the page structure is usually separated from the
processing of the web page.

This paper is structured as follows. Section 2 briefly recalls some principles
of functional logic programming and the programming language Curry which we
use to present concrete examples. Section 3 discusses our approach to represent
graphs and its implementation in Curry. Section 4 concludes the paper with a
discussion of some related work.

2 Functional Logic Programming and Curry

This section introduces both the basic ideas of functional logic programming
and the elements of the programming language Curry that are necessary to
understand the subsequent examples.

2

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry


Functional logic programming integrates in a single programming model the
most important features of functional and logic programming (see [7] for a de-
tailed survey). Thus, functional logic languages declare algebraic datatypes, de-
fine functions by pattern matching and evaluate expressions containing logical
variables. Supporting the latter requires some built-in search principle to guess
the appropriate instantiations of logical variables. There exist many languages
that are functional logic in this broad sense, e.g., Curry [12], Escher [13], Le
Fun [2], Life [1], Mercury [20], NUE-Prolog [16], Oz [19], Toy [14], among oth-
ers. However, note that only logical variables but no search is necessary for our
representation of graphs.

Curry has a Haskell-like syntax [17], i.e., (type) variables and function names
usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”). In addition to Haskell, Curry supports logic programming by
means of free (logical) variables in both conditions and right-hand sides of defin-
ing rules. Thus, a Curry program consists of the definition of functions and the
declaration of data types on which the functions operate. Functions are evalu-
ated lazily and can be called with partially instantiated arguments. In general,
functions are defined by conditional equations, or rules, of the form:

f t1 . . . tn | c = e where vs free

where t1, . . . , tn are data terms (i.e., terms without defined function symbols),
the condition c is either a Boolean function or constraint, e is an expression and
the where clause introduces a set of free variables. The condition c and the where
clause are optional. Curry predefines equational constraints of the form e1 =:= e2

which are satisfiable if both sides e1 and e2 can be evaluated to unifiable data
terms. success denotes the predefined constraint that is always satisfied.

The where clause introduces the free variables vs occurring in c and/or e but
not in the left-hand side. Similarly to Haskell, the where clause can also contain
other local function or pattern definitions. For instance, consider the following
function last that computes the last element of a list:

last l | xs ++ [e] =:= l
= e
where xs,e free

The predefined function ++ denotes the concatenation of two lists. Thus, if the
condition “xs ++ [e] =:= l” is satisfied, e is the last element of the list l.

The operational semantics of Curry, precisely described in [8,12], is a conser-
vative extension of both lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic programming. Since
computations are based on an optimal evaluation strategy [3,4], Curry can be
considered a generalization of concurrent constraint programming [18] with a
lazy (optimal) evaluation strategy. Furthermore, Curry also offers features for
application programming like modules, monadic I/O, ports for distributed pro-
gramming, and specialized libraries (e.g., [9,10]). We do not discuss these aspects
since they are unnecessary to understand our ideas.

3

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry


There exist several implementations of Curry. The examples presented in this
paper were all compiled and executed by Pakcs [11], a compiler/interpreter for
a large subset of Curry.

3 Functional Logic Representation of Graphs

We have seen in Section 1 that the definition of graphs with fixed node identifiers
(e.g., numbers) causes problems when combining two graphs with accidentally
identical node identifiers. Thus, this representation can also cause problems when
defining functions to compute new graphs from a given input. For instance, con-
sider Thompson’s construction of non-deterministic finite automata (NFA) from
regular expressions. If we represent an NFA as a graph, the translation can be
defined as a function that takes a regular expression and yields a graph with a
start and a final node. In the case of alternative or concatenated regular expres-
sions, we have to combine the graphs corresponding to the argument expressions
in a specific way. In this application it is essential that each translation of an
expression yields a graph with “new” node identifiers to avoid the construction
of non-intended graphs during the combination.

Such problems can be avoided by leaving unspecified the concrete node iden-
tifiers when defining a graph. In a functional logic language, this is easily ob-
tained using unbound local variables as node identifiers when defining or creating
graphs. Following this idea, we define the graph g1 of Section 1 as follows:

g1 = Graph [Node n1, Node n2, Node n3]
[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3]

where n1,n2,n3 free

Since n1, n2 and n3 are local variables, g1 becomes compositional as a list or a
tree would be. For example, (joinGraphs g1 g1) is a graph with six different
nodes.

To connect two graphs of this kind with an additional edge, one “exposes”
the nodes intended for the connection:

g2 = (Graph [Node n1, Node n2, Node n3]
[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3],

n1)
where n1,n2,n3 free

The following function connects graph/node pairs with an edge provided that
addEdge is a function that adds a new edge between two nodes of a graph:

connectGraphs (g,m) (h,n) = addEdge m n (joinGraphs g h)

Now, (connectGraphs g2 g2) defines a graph consisting of six nodes and nine
edges. The locally defined node identifiers n1, n2 and n3 act as global identifiers
in the composition.

Since unbound variables are not expressive, one may wish to instantiate them
in some applications, e.g., visualization. To visualize graphs, one instantiates the
node identifiers to pairwise distinct numbers or strings as usually required by

4

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry


visualization tools. This can be obtained by applying the following constraint on
a graph:

isFinalizedGraph (Graph nodes _) = numberNodes 1 nodes
where

numberNodes _ [] = success
numberNodes n (Node ni : ns)

| ni =:= n -- assign unique identifier
= numberNodes (n+1) ns

The above representation of graphs allows us a further improvement which is use-
ful in some situations. The use of logical variables instead of concrete numbers
as node identifiers in the definition of graphs is only a guideline for the program-
mer, i.e., it is possible to use numbers with the disadvantages mentioned at the
beginning. The use of logical variables can be enforced by replacing node num-
bers with another type which has only “hidden” values so that the programmer
cannot write down any concrete value.

The values of a datatype can be hidden by “wrapping” them with a private
constructor of the datatype. This means that literal values are replaced by values
of an abstract datatype that has no public constructors. The values of this
datatype can only be denoted by unbound variables. For instance, consider the
graph representation presented above. To hide the use of integers to identify
nodes, we define in the graph library a datatype for node identifiers:

data NodeId = NodeId Int

where the constructor NodeId is not exported—a standard feature of module
systems. Furthermore, we change the definition of nodes and edges so that we
use the type NodeId wherever nodes are required:

data Node = Node NodeId

data Edge = Edge NodeId NodeId

These definitions are in the same module that declares NodeId. Consequently,
NodeId can be accessed even though it is private. Finally, we adapt all the func-
tions in the graph library where node identifiers are involved. These functions
may access NodeId as well. In our example we slightly change the definition
of isFinalizedGraph by replacing “ ni =:= n ” with “ ni =:= NodeId n .” This
change is completely invisible to the user of the library. The coding of graphs
remain identical, but this change ensures that the arguments of Node are exclu-
sively unbound variables.

A further advantage of this modification is the fact that the implementor of
a graph library is free to change the datatype of node identifiers, e.g., from Int
to String whenever it is convenient, without affecting a client of the library.

The complete implementation of this graph representation together with a
few examples is available on-line3.

In order to discuss a concrete example where our technique is applied, con-
sider Thompson’s construction of NFAs from regular expressions mentioned

3 http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/

5

http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/index.html
http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/


above. We assume that regular expressions are specified by the following datatype
where the type parameter a specifies the set of base symbols:

data RegExp a = Empty -- empty word
| Symbol a -- a single symbol
| Alt (RegExp a) (RegExp a) -- alternative
| Conc (RegExp a) (RegExp a) -- concatenation
| Star (RegExp a) -- repetition

The transition relation of the associated NFA will be represented as a graph.
The edges are marked by Nothing (i.e., epsilon transition) or (Just c) for some
character c (for the sake of simplicity, we assume in the following that the base
symbols are characters). Thus, we change the definition of edges shown above
into

data Edge = Edge NodeId (Maybe Char) NodeId

The translation of a regular expression into an NFA is specified by a function
regExp2graph of the following type:

regExp2graph :: RegExp Char -> (NodeId,Graph,NodeId)

Thus, we associate to each regular expression a graph with a start and final node
for this graph. For instance, the empty word is translated into a graph with a
single epsilon edge:

regExp2graph Empty =
(s, Graph [Node s, Node e] [Edge s Nothing e], e)

where s,e free

Similar, a regular expression representing an atomic symbol is translated into a
graph with a single edge marked with this symbol:

regExp2graph (Symbol c) =
(s, Graph [Node s, Node e] [Edge s (Just c) e], e)

where s,e free

The most interesting cases are the translation of the remaining types of regular
expressions since in these cases our graph representation becomes handy. For
instance, the concatenation is translated by combining the graphs of the com-
ponents sequentially, i.e., we put an epsilon transition between the component
graphs (the function addEdges adds a list of edges to a graph):

regExp2graph (Conc re1 re2) =
(s1, addEdges [Edge e1 Nothing s2] (joinGraphs g1 g2), e2)

where (s1,g1,e1) = regExp2graph re1
(s2,g2,e2) = regExp2graph re2

The remaining types of regular expressions are translated in a similar way. After
translating a regular expression into an NFA represented as a graph, one can
use this graph to solve the word problem by computing epsilon closures of states
etc. The complete implementation of this example is available on-line4.

4 http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/

6

http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/index.html
http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/


4 Conclusion and Related Work

We have presented a representation of graphs in a functional logic languages. The
main property of this representation is the compositionality of graphs similar to
other standard data structures like lists or trees. This is achieved by defining node
identifiers as locally defined free variables. Our representation is mainly intended
for applications where the construction and the processing of the constructed
graph structures are clearly separated. For instance, the translation of regular
expressions into NFAs is an example of this kind.

Our representation of graphs is not only useful in graph-based applications,
but also in applications where hierarchical (tree-like) data structures are appro-
priate but additional references inside such structures are needed. As mentioned
earlier, graphical user interfaces are one class of such applications. [9] contains
an application of our technique in this area. Another application area is dynamic
web page generation with form-based input. HTML documents are structured
as trees, but the input forms and their “submit” buttons contain dependencies
between subtrees that can be appropriately described with our technique [10].

This representation of graphs is not directly available in purely functional lan-
guages since they lack free variables. As a consequence, functional approaches
to GUI or HTML programming use a more imperative style and/or lack com-
positionality [5,15]. Erwig [6] proposes an inductive definition of graphs that
supports coding graph algorithms in a functional style. His approach is specific
to graphs and does not lead to appropriate descriptions of the GUI and HTML
applications that we mentioned.

A remaining problem not addressed by this representation is ensuring that
the variables used in different nodes are distinct. This situation occurs in other
environments as well, e.g., Tcl/Tk or Perl/CGI programs. It can be improved by
the use of particular program analysis techniques (e.g., sharing analysis) which
is an interesting topic for future work.

References

1. H. Aı̈t-Kaci. An overview of LIFE. In J. Schmidt and A. Stogny, editors,
Proc. Workshop on Next Generation Information System Technology, pages 42–
58. Springer LNCS 504, 1990.

2. H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and functions.
In Proc. 4th IEEE Internat. Symposium on Logic Programming, pages 17–23, San
Francisco, 1987.

3. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Inter-
national Conference on Algebraic and Logic Programming (ALP’97), pages 16–30.
Springer LNCS 1298, 1997.

4. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

5. K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphical paradigms in
TkGofer. In Proc. of the International Conference on Functional Programming
(ICFP’97), pages 251–262. ACM SIGPLAN Notices Vol. 32, No. 8, 1997.

7



6. M. Erwig. Functional programming with graphs. In 2nd ACM SIGPLAN Int.
Conf. on Functional Programming (ICFP’97), pages 52–65, 1997.

7. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

8. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

9. M. Hanus. A functional logic programming approach to graphical user interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pages 47–62. Springer LNCS 1753, 2000.

10. M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

11. M. Hanus, S. Antoy, K. Höppner, J. Koj, P. Niederau, R. Sadre, and F. Steiner.
PAKCS: The Portland Aachen Kiel Curry System. Available at http://www.

informatik.uni-kiel.de/~pakcs/, 2002.
12. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.7). Avail-

able at http://www.informatik.uni-kiel.de/~curry, 2000.
13. J. Lloyd. Programming in an integrated functional and logic language. Journal of

Functional and Logic Programming, (3):1–49, 1999.
14. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative

System. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.
15. E. Meijer. Server side web scripting in Haskell. Journal of Functional Programming,

10(1):1–18, 2000.
16. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium

on Programming Language Implementation and Logic Programming, pages 15–26.
Springer LNCS 528, 1991.

17. S. Peyton Jones and J. Hughes. Haskell 98: A non-strict, purely functional lan-
guage. http://www.haskell.org, 1999.

18. V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
19. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer

Science Today: Recent Trends and Developments, pages 324–343. Springer LNCS
1000, 1995.

20. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, 1996.

8

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.haskell.org

	Compositional Graphs
	Introduction
	Functional Logic Programming and Curry
	Functional Logic Representation of Graphs
	Conclusion and Related Work
	References


