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Abstract

We report our experience extending a logic programming language with a first-order functional
component. Functional expressions are evaluated by narrowing and can contain logic variables
for a seamless integration with the logic component of the language. Our experiment shows
that our extension is achievable with a modest effort. It also suggests some changes to the
syntax and semantics of the initial logic component of the language that would ease the use and
implementation of the functional component.

1 Introduction

Logic languages may benefit from allowing the definition of functions in addition to predicates
and performing functional computations in addition to logic computations. A significant problem
presented by the presence of functions in a logic language is this: what shall we do when a function is
applied to arguments that are (or contain) logic variables. A solution to this problem is narrowing.

The focus of this note is on narrowing as the means for the integration of functional and logic
computations. Our specific goals are the application of needed narrowing and the implementation
of narrowing in Prolog. According to a recent survey [8], narrowing is the most common opera-
tional principle for the integration of the functional and logic programming paradigms. Needed
narrowing [2] is a narrowing strategy that computes only independent substitutions and minimizes
the number of steps of a derivation when the common subterms of a term are shared.

Many interesting functional logic languages which adopt narrowing as their operational principle
have been designed in the last decade, e.g., ALF' [7|, BABEL (13|, K-LEAF [6], and LPG [4]. These
neither make use of needed narrowing, due to its novelty, nor use Prolog as underlying run-time
environment.
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Since the design and implementation of a new language is a major undertaking, our approach has
been to contain the effort of producing a functional logic language by extending with a functional
component an already implemented logic language. Our approach, despite having some drawbacks,
not only simplifies the implementation, but also gives some insight into the design of logic languages.
In particular, we explore the cost of building a functional component on top of a logic one, and
explore some changes in design and semantics suggested by the presence of functions.

The logic language that we chose for our extension is Godel [10]. Our choice was motivated by
the fact that Godel has a mostly pure declarative logic, it is strongly typed, and it has a module
system and a rich set of logic expressions. An implementation of Goédel is publicly available for
many common platforms. The source code of the compiler comes with the distribution and the
compiler translates Gédel programs into source Prolog for the popular SICStus compiler.

The remainder of this paper is organized as follows. In Section 2 we recall narrowing, which is at
the core of our extension. In Section 3 we present the syntax of our extension. In Section 4 we
describe the operational semantics of our extension. In Section 5 we outline the major changes
and additions that were required by our implementation. In Section 6 we show, with reference to
examples, some advantages resulting from the addition of a functional component to Goédel. In
Section 7 we draw some conclusions from our experience.

2 Narrowing

Most proposals for the integration of functional and logic programming languages having a sound
and complete operational semantics are based on narrowing [8]. In this section we give a very
informal account of this concept.

A rewrite system, see [5, 11] for excellent tutorials, is a set of rewrite rules that tell us how to
compute. For example, the following rules describe how to perform additions on natural numbers,
which are represented by terms built with 0 and S:

O+xz — x Ry
Sx)+y — Sx+y) Ro
Computations are applications of equational reasoning. The symbol “—” is intended as an oriented
equality relation. A computation, referred to as rewriting, is a sequence of steps in which an
instance of a rule’s left hand side is replaced by the instance of the corresponding right hand side.
For example, to rewrite S(0) + S(0) we apply rule R to the whole term by instantiating 2 to 0
and y to S(0). This step yields S(0+ S(0)). Now we apply rule R; to the subterm 0+ S(0) by
instantiating x to S(0). This step yields S(S(0)). Since no rule is applicable to this term, we regard
it as the result of the computation.

Narrowing generalizes rewriting by computing with partial information! A narrowing step can be
seen as a two-phase process. During the first phase a non-variable subterm s of the term ¢ which
is the object of the computation is unified with the left hand side of a rewrite rule R =1 — r. The
result is a unifier o such that o(l) = o(s). During the second phase o is applied to ¢ and the rewrite
rule R is fired to replace, in o(t), o(s) with o(r). For example, to narrow z + S(0) we first unify
the whole term with the left hand side of Ra, which yields the unifier {z — S(z),y — S(0)} and

!The missing information is “created by an educated guess” that makes it possible to continue a computation that
otherwise would stop.



then fire Ry on S(x) + S(0), which yields S(z + S(0)). Here, we instantiated not only the variables
of the rules, but also the variables of the term which is the object of the computation, e.g., z.

Narrowing is a non-deterministic operation. Every step entails the choice of both a position and
a unifier (for the systems we are interested in, the choice of a rule is implied by the choices of a
position and a unifier). These choices are the responsibility of a strategy whose main goal is the
elimination of useless choices. Needed narrowing [2] is a strategy that performs only steps that
are, in a precise technical sense, needed to compute a solution of an equation. On ground terms it
performs what is referred to as lazy evaluation in functional programming. This strategy is sound,
complete, and optimal for inductively sequential rewrite systems [1], a class that encompasses the
first-order programs of functional programming languages such as ML and Haskell.

3 Syntax

In this section, we discuss the syntax of our language. We assume some familiarity with the
Godel programming language and we describe only the syntax of our extensions. We use the word
“syntax” in a broad sense to indicate what is or is not legal in our extension. For example, the
correct typing or the left linearity of rewrite rules are not described formally by a grammar, but
are included in this section.

A design goal of our extension is maximum compatibility with Goédel. Thus, a syntactically correct
program of our extension that does not make use of user-defined evaluable functions is also a syn-
tactically correct Gédel program. The converse is also true, with a small exception. A syntactically
correct Godel program is syntactically correct for our extension, too, as long as it does not declare
two symbols that are predefined in our extension, but not in Godel. In the following discussion, a
term is either the right hand side of a rewrite rule or an argument of a predicate.

Next we present the changes that our extension makes to Godel. Later we motivate our design
decisions.

1. The symbol => is a reserved, binary, infix, overloaded operator used for the definition of
evaluable functions. Its left and right operands are interpreted as the left and right hand
sides of a rewrite rule. A rewrite rule has the form [ => r <- ¢. The condition c¢ is a possibly
empty conjunction of equations such as those that can be found in the body of a clause.

2. Rewrite rules must satisfy all the conditions imposed on a left-linear, polymorphic, many-
sorted, constructor-based term rewriting system [5, 11]. Extra variables in the right side
and/or condition of a rule are allowed if they satisfy the confluence criteria established in [15].
A convention, which we will discuss in the next section, on the order of presentation of the
rules makes our rewrite systems confluent and suitable for needed narrowing.

3. A function is evaluable when there exists in a program a rewrite rule defining it, otherwise
it is a data constructor. A data constructor may be declared only in the same module that
declares the type of its range. By contrast, an evaluable function may be declared in any
module and may have any type as its range, including types defined in the system modules.
A rewrite rule defining an evaluable function may occur only in the module declaring that
function.

4. Our extension predefines the type Boolean and changes the category of the symbols True
and False from proposition to constant data constructor of this type. Boolean functions can



be defined by the user and do not differ from any other user-defined evaluable function. In
particular, predefined Boolean operators, such as & and \/, can appear in Boolean terms.
Likewise, Boolean terms, including the values True and False, can appear as atoms in the
body of a clause.

5. A conditional expression has the form IF ¢ THEN ey ELSE eg, where ¢ is a Boolean expression
and e; and ey are expressions of the same type. A conditional expression can be a subterm
of a term. The ELSE branch of the conditional expression is mandatory. The value of the
conditional expression is the value of either e or ey according to the truth of the condition c.

Godel programs are accepted by our extension if they do not declare the operator => or the identifier
Boolean. Gddel programs executed by our extension give the same results as Godel.

Point number 3 preserves condition M4 of the Godel’s module system for non-evaluable functions,
but refines it for evaluable functions. A violation of the condition on data constructors would allow
a module to extend a type defined by another module. A violation of the condition on evaluable
functions would allow a module to change a data constructor declared by another module into an
evaluable function. In both cases, the possibly inaccessible definitions of existing predicates and/or
functions would be invalidated. It is interesting to observe that point 3 of our syntax is the union
of condition M4 of the Godel and condition M4 of the Escher programming languages [12].

Boolean functions are predicates. The convenience of having both Boolean functions and predicates
will be addressed in the next section.

As in Godel, there is no DELAY declaration for functions. We will address in our conclusions pros
and cons of this choice.

4 Operational Semantics

The operational semantics of our extension is almost identical to that of Godel. Some Godel system
modules already provide some evaluable functions, such as arithmetic operations on numbers, con-
catenation of strings, etc. Users, however, cannot define evaluable functions. Our extension simply
gives users this possibility. A function defined in a system module instantiates any uninstanti-
ated arguments to which it is applied; thus Goédel evaluates functional expressions by narrowing.
The only difference between functions defined in the system modules and functions defined via
our extension is in the evaluation strategy. We perform needed narrowing, whereas Godel adopts
innermost narrowing.

If an expression e containing evaluable functions is the argument of a predicate P, then before the
invocation of P, e is non-deterministically narrowed until an expression not containing evaluable
functions is computed. This approach implies that equations are valid if and only if their operands
can be narrowed to the same constructor term. This kind of equality, known as strict, is commonly
adopted for non-terminating rewrite systems.

In most functional languages based on pattern matching, such as ML and Haskell, the first rule
that matches an expression is applied to it. This implies that some patterns in some rules following
the first one are more specialized than they appear. For example, referring to the rewrite system
of Section 2, consider the definition of the function IsZero.

IsZero(0) — True
IsZero( ) — False



The pattern ¢ ’ of the second rule only matches terms of the form S( ). In a narrowing computation
both rules of IsZero may be applied to the same term. A literal interpretation of the patterns would
create an obvious inconsistency as, e.g., IsZero(t), where ¢ is an uninstantiated variable, would be
narrowed to both True and Fualse with non-independent unifiers. Since the familiar functional
interpretation of patterns in the rules defining a function simplifies definitions, as shown by our
example, we preserve it in our extension. Thus, the pattern ¢ ’ of the second rule is interpreted
as S( ), i.e., the complement of 0. This convention has the advantage of producing only rewrite
systems that are confluent and are in the domain of application of needed narrowing.

The usefulness of having both predicates and functions in the same language stems from the oppor-
tunity to perform less general, but more efficient, computations. Function definitions interpreted
with our convention on patterns make rewrite systems inductively sequential [1]. Inductive sequen-
tiality implies that in any term ¢ that is not fully evaluated there is a position that must eventually
be narrowed to evaluate ¢. This position is called needed. A needed position of a term can be easily
computed by unification and is the key for the implementation of needed narrowing, which is more
efficient than other lazy narrowing strategies. Predicates can be used to define computations in
which needed positions may not exists. An example of such a predicate is the so-called parallel-or
shown next by both rewrite rules and Gdédel code.

Or(True, ) — True Or(True,.).
Or( ,True) — True 0r(_,True).

Godel makes no convention on the order of presentation of the clauses of a predicate. As a conse-
quence, there may be no needed position in a term of the form 0r (¢1,t2). This expression evaluates
to True as long as one argument evaluates to True, even if the other argument is undefined. Al-
though the above predicate is more general than an inductively sequential function computing
Boolean disjunction, its generality is computationally much more expensive to achieve.

Narrowing could allow the execution of some programs that are not legal for Godel. We will propose
in our conclusions a semantic change to Godel that yields a conservative extension of the class of
programs that may be executed.

5 Implementation

Our implementation can be described as a set of changes to the Godel parser and a set of additions
to the Godel code generator.

We take advantage of the fact that narrowing is a binary relation on terms and thus narrowing
can be described naturally by a predicate. We predefine the operator => as a predicate. Very few
additional changes are required to make the parser accept and process rewrite rules. Some effort
is necessary for point 3, since the declaration of a function F' gives no indication of whether F' is
evaluable. Hence we must either use some kind of look-ahead approach or do two passes over the
code to determine the presence or absence of rewrite rules defining F. A declaration that does not
discriminate between data constructors and evaluable functions creates other problems discussed
next. We will propose in our conclusion a syntactic change to Godel for the solution of this problem.

The clauses defining =>, i.e., the rewrite rules, are passed to an extension of the code generator
whose purpose is the generation of Prolog code that implements narrowing. The compilation process
in Godel makes use of auxiliary files for recording and retrieving internal objects. Our extension



needs one extra file to distinguish data constructors from evaluable functions. This file is loaded in
the run-time environment, since this information is necessary for processing goals.

The current implementation of our extension provides a large subset of the language described in
the previous sections. The features currently omitted from the system, with the exception of the
narrowing strategy, can easily be implemented at the user level. The narrowing strategy imple-
mented at the time of this writing is leftmost innermost rather than needed. Leftmost innermost
narrowing is much simpler than needed narrowing and we are currently assessing the efficiency of
various alternatives for the implementation of needed narrowing in Prolog [3]. The implementation
of needed narrowing is in progress.

6 Examples

We compare the logic and the functional-logic versions of a same program. Following a well-
established tradition in logic programming, our first example deals with family relations. We
present only a fragment of the program. In Goédel the program fragment is

PREDICATE Father, Mother, Parent, PaternalGrandfather : People * People.

Father (Joe,Tom) .

PaternalGrandfather(x,y) <- SOME [z] (Father(x,z) & Father(z,y)).
Parent (x,y) <- Father(x,y) \/ Mother(x,y).

where the type People and the predicate Mother are suitably defined. In our extension, the same
program fragment could be coded as

FUNCTION Father, Mother, PaternalGrandfather : People -> People.
PREDICATE Parent : People * People.

Father (Joe) => Tom.

PaternalGrandfather(x) => Father(Father(x)).
Parent (x,Father(x)).
Parent (x,Mother(x)).

In the functional-logic version, the definition of Father makes clear that Tom is the father of Joe
rather than the reverse. During the execution of the program no choice points need to be created for
the computations of Father and PaternalGrandfather on ground arguments, since these relations
are functional. An implementation taking advantage of this fact could run faster. The relation
Parent is still expressed by a predicate, since there are no functional dependencies between its
arguments. The definitions of PaternalGrandfather and Parent avoid extraneous variables, a
quantifier and an operator, and trade a clause with a relatively complicated body for two simpler
unit clauses. In this small example, the advantage of the availability of functions is a more natural,
terser, and more easily understood program.

This example also shows advantages with respect to functional programming. In a purely functional
version of the program, Parent would have to be a function that returns a pair or a set of People.
Furthermore, the functional program could also require an inverse function of Father, which would



have to return a set or a list of People. In both cases, the programmer has to write additional
code and use more complex types.

A substantial advantage of having functions stems from the ability of needed narrowing to perform
only needed computations. For example, logic programming is an ideal paradigm for the class of
algorithms known as generate-and-test. A naive implementation of these algorithms in logic is very
easy though inefficient. A standard technique to achieve efficiency is “...to ‘push’ the tester inside
the generator as deeply as possible.” [14, p. 252], which complicates coding, limits code reusability,
and obfuscates algorithms. Needed narrowing joins all the simplicity, reusability, and clarity of the
naive implementation with the efficiency of a tester which is completely inside the generator. We
discuss these issues in detail in our next example.

The example originates from the program for the wolf, goat, and cabbage puzzle proposed in [10,
p. 131]. Our computation is in two steps: first we potentially generate the search space for the
whole puzzle and then we look for a goal in the search space. In general, the search space of a
generate-and-test problem can be huge or infinite, however, only the portions of the space that
are needed by the tester end up being computed by the generator. The following code fragment
abstractly defines a structure for the representation of the search space and a function for the
computation of the portion of search space reachable from a state.

CONSTRUCTOR SpaceRep / 2.
FUNCTION SpaceRep : a * b * Set(SpaceRep(a,b)) -> SpaceRep(a,b).

FUNCTION Space : State * List(Move) * List(State)
-> Set(SpaceRep(State,List(Move))).

Space(state, moves, history) =>
{ SpaceRep(new, [move|moves],Space(new, [move |moves], [new|history]))
: Move(state, history, move, new) }.

The right hand side of the rule of Space is slightly more complex in the actual code, due to Godel’s
scoping rules for intensional sets.

The type representing the search space, introduced by the Gédel category CONSTRUCTOR, has only
one data constructor, introduced by the Goédel category FUNCTION. Following a common practice in
functional programming we overload the symbol SpaceRep to identify both the type and its data
constructor.

A point of the search space consists of a state s of the problem, the sequence m of moves performed
to compute s, and the search space r below s. For efficiency, r does not represents states that are
ancestors of s, i.e., it avoids loops in its paths. The function Space takes three arguments: a state
s, the sequence m of moves to compute s, and the sequence h of ancestors of s. When applied to
s, m, and h, Space computes r and thus easily constructs the whole search space of a problem as
shown later. The argument h of Space is used only to avoid loops in the paths of the search space
and is unnecessary for terminating problems. For the wolf, goat, and cabbage puzzle we define

Move (current_state, history, move, new_state)
<- Applicable(move, current_state)
& ApplyMove(move, current_state, new_state)
& Legal(new_state)
& NoLoops(new_state, history).



where the predicates Applicable, ApplyMove, Legal, and NoLoops as well as the types State and
Move are already defined in [10, p. 133-134].

An advantage of this formulation is that the generator is logically independent and textually sep-
arated from the tester. One can use different testers with the same generator for implementing
different search strategies. For example, instead of the tester presented in [10, p. 131], which imple-
ments depth-first search, we show a function that may look for a goal using a variety of strategies
including, but not limited to, depth-first.

PREDICATE FindGoal : List(SpaceRep(State,List(Move))) -> List(Move).

FindGoal ([SpaceRep(state,moves,children) |open]) =>
IF Final(state) THEN moves
ELSE IF children=Null THEN FindGoal (open)
ELSE FindGoal(Join(children,open)).

The predicate Final is defined in [10, p. 133]. The function Join, whose type is Set(a) * List(a)
-> List(a), builds a list containing the elements of both its arguments. The order of the elements
in the result establishes the search strategy. For example, placing the elements of children at the
end of the list of points of the open space yields the breadth-first strategy, whereas placing the
elements at the front yields the depth-first strategy. The moves to find a goal from an initial state
s are computed by

FindGoal ([SpaceRep(s, [],Space(s, [1,[s1))1)

We reiterate that the generator computes only the points of the search space visited by the tester.
A predicate to compute the search space could be obtained from the function Space with trivial
syntactic transformations. Its semantics, though, would be quite different—upon being called, the
predicate would compute, or attempt to, the whole search space regardless of the points that would
be later visited by the tester.

7 Conclusions

Godel is a successor to Prolog as the extensive comparison of the two languages in [10] indicates.
We believe that allowing user-defined evaluable functions (even when this feature is limited to first-
order) is advantageous in terms of expressiveness and performance. Our work shows that adding
a functional component to Godel requires a modest effort, does not require major changes to the
syntax and semantics of the language, and highlights a few interesting issues that we discuss next.

The syntax of a language should make it apparent whether or not a function is evaluable at the time
of its declaration, rather than by presence or absence of rewrite rules defining it, which may reside
in a file different from that of the function declaration. This would also ease modular programming
in Godel by allowing the compilation of a module M from the EXPORT part of each module N
on which M depends regardless of the content or even the existence of N’s LOCAL part. This is
impossible with the current syntax, since the rewrite rules defining a function may reside in the
LOCAL part of a module.

Declaring the data constructors of a type contextually with the type itself, as is done in some
functional programming languages, would solve the problem. For example, a polymorphic type



Tree and its data constructors Leaf and Branch could be more compactly declared as follows

TYPE Tree (a) = Leaf | Branch (a, Tree (a), Tree (a)).

Using the full potential of narrowing would allow some non-trivial extensions to the semantics of
Godel. For example, suppose that a predicate P is defined by

P(x,y,z) <= IF x=y THEN Peq(z) ELSE Pne(z).

for some suitable predicates Peq and Pne. If when P is called its first and/or second arguments are
non-ground, the execution of the call, according to the semantics of Goédel, flounders. However,
this need not be the case with narrowing. During the execution of the body of P, the expression
x = y could be narrowed to either True or False, even when it contains variables. Any variable of x
and/or y would be instantiated, if necessary for the evaluation of the condition, before the execution
of either branches of the conditional. We conjecture that this behavior would conservatively extend
the set of executable programs. Similarly, the computation of an intensional set may flounder, due
to the presence of variables in the elements of the set. Narrowing has the potential to eliminate this
problem too, but its impact on the soundness of the resulting inference system and the declarative
and procedural semantics of the resulting language need further investigation.

In Godel there is no DELAY specification for functions. Narrowing is used to solve equations. A
DELAY statement for functions would improve the efficiency of a computation in some cases, but
would restrict the set of equations that can be solved and consequently destroy the completeness
of narrowing in some other cases.

Godel with user-defined evaluable functions is an effective workbench for narrowing strategies.
Despite its lack of advanced features, such as declarative I/O and higher-order functions, it is
adequate for studying in a practical setting the potential and the limitations of needed narrowing.
We believe that needed narrowing will be a crucial step for the development of a general-purpose,
modern, functional logic language. Some features of our proposal, their implementation techniques,
and even the absence of other features may contribute to refine more ambitious proposals, such as
the language Curry [9], aiming at the definition of a successor to Prolog.
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