
The Pull-Tab Transformation

Abdulla Alqaddoumi1 Sergio Antoy2 Sebastian Fischer3 Fabian Reck3

1 Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, U.S.A.

2 Computer Science Department
Portland State University

Portland, OR 97207, U.S.A.

3 Institut für Informatik
Christian-Albrechts-Universität Kiel

D-24098 Kiel, Germany

Abstract. We present a new approach to the execution of functional
logic programs. Our approach relies on definitional trees for the deter-
ministic portions of a computation and on a graph transformation, called
pull-tab, for the non-deterministic portions. This transformation moves,
one level at a time, non-deterministic choices towards the root of the
graph representing the state of a computation. With respect to need-
based strategies for functional logic computations, our approach exe-
cutes only localized graph replacements, a property that characterizes it
as “pay as you go” and makes it suitable for parallel execution.

1 Introduction & Motivation

Non-deterministic programs are simpler to design and easier to reason about
than their deterministic counterparts [4]. These advantages do not come for
free. The burden unloaded from the programmer is placed on the execution
mechanism. Loosely speaking, all the alternatives of a non-deterministic choice
must be explored to some degree to ensure that no result of a computation is
lost. Doing this efficiently is a long-standing problem.

There are three main approaches to the execution of non-deterministic steps
in functional logic programs. This paper proposes a fourth approach with some
interesting characteristics missing from the other approaches. We begin by propos-
ing a simple example to present the existing approaches, to understand their
limitations, and to compare their differences. Below, is a short program that we
use as a running example. The syntax is Curry [10].

flip 0 = 1

flip 1 = 0

coin = 0 ? 1

(1)

We want to evaluate the expression

(flip x, flip x) where x = coin (2)

We recall that ‘?’ is a library function, called choice, that returns either of its
arguments, i.e., it is defined by the rules:

x ? _ = x

_ ? y = y
(3)

and that the where clause introduces a shared expression. Every occurrence of
x in (2) has the same value throughout the entire computation according to the
call-time choice semantics [13]. By contrast in (flip coin, flip coin) each
occurrence of coin is evaluated independently of the other. Fig. 1 highlights the
difference between these two expressions when they are represented as graphs.

(,)

��
��

�
>>

>>
>

flip

>>
>>

> flip

��
��

�

coin

(,)

��
��

�
;;

;;
;

flip flip

coin coin

Fig. 1. Graph representations of (2) and (flip coin, flip coin).

We recall that a context is an expression with a distinguished symbol called
hole denoted ‘[]’. If C is a context, C[x] is the expression obtained by replacing
the hole in C with x. E.g., the expression in (2) can be written as t[coin], where
t is the context of coin. An expression rooted by a node labeled by the choice
symbol is referred to as a choice.

1.1 Previous approaches

Backtracking is the most traditional approach to non-deterministic computa-
tions in functional logic programming. Evaluating a choice in some context, say
C[u?v], consists in selecting either argument of the choice, e.g., u (the crite-
rion for selecting the argument is not relevant to our discussion), replacing the
choice with the selected argument, which gives C[u], and continuing the compu-
tation. In typical interpreters, if and when the computation of C[u] completes,
the result is consumed, e.g., printed, and the user is given the option to either
terminate the execution or compute C[v]. Referring to our running example,
t[0?1] results in the evaluation of t[0] followed by the evaluation of t[1]. Back-
tracking is well-understood and relatively simple to implement. It is employed in
successful languages such as Prolog [14] and in language implementations such
as PAKCS [11] and T OY [8]. The major objection to backtracking is its incom-
pleteness. If the computation of C[u] does not terminate, no result of C[v] is
ever obtained.

Copying (or cloning) fixes the inherent incompleteness of backtracking. Eval-
uating a choice in some context, say C[u?v], consists in evaluating simultaneously

(e.g., by interleaving steps) and independently C[u] and C[v]. In typical inter-
preters, if and when the computation of either completes, the result is consumed,
e.g., printed, and the user is given the option to either terminate the execution
or continue with the computation of the other. Referring to our running exam-
ple, t[0?1] results in the simultaneous and independent evaluations of t[0] and
t[1]. Copying is simpler than backtracking and it is used in some experimental
implementations of functional logic languages [5, 18]. A significant optimization
of copying consists in sharing (and thus computing only once) subexpressions of
the context that are not on the spine of the choice (the path from the root to
the choice). The major objection to copying is the significant investment of time
and memory made when a non-deterministic step is executed. In well-designed
programs, most alternatives of a choice fail to produce any result, hence portions
of the copied context may never be used. For a contrived example, notice that
in 1+(2+(. . .+(n ‘div‘ coin). . .)) an arbitrarily large context is copied when
the choice is evaluated, but this context is almost immediately discarded.

Bubbling is an approach proposed to avoid the drawbacks of backtracking and
copying [2, 15]. Bubbling is similar to copying, in that it copies a portion of the
context of a choice to concurrently compute all its alternatives, but this portion
of copied context is typically smaller than the entire context. We recall that in
a rooted graph g, a node d is a dominator of a node n, proper when d 6= n, iff
every path from the root of g to n contains d. An expression C[u?v] can always
be seen as C1[C2[u?v]] in which the root of C2[] is a dominator of the choice. A
trivial case arises when C1[] = [] and C2[] = C[]. Evaluating a choice in some
context, say C[u?v], distinguishes whether or not C is empty. If C is the empty
context, u and v are evaluated simultaneously and independently, as in copying,
but there is no context to copy. Otherwise, the evaluation consists in finding C1

and C2 such that C[u?v] = C1[C2[u?v]] and the root of C2 is a proper dominator
of the choice, and evaluating C1[C2[u]?C2[v]]. If C1 is the empty context, then
bubbling is exactly as copying. Otherwise a smaller context, i.e., C2 instead of C,
is copied. Bubbling intends to reduce copying in the hope that some alternative
of a choice will quickly fail. Referring to our running example, t[0?1] bubbles to
the expression represented in the left-hand side of Fig. 2. Observe that the node
labeled (,) is the immediate proper dominator of the choice.

?

ssssssss

KKKKKKKK

(,)

��
��

�
;;

;;
; (,)

��
��

�
;;

;;
;

flip

;;
;;

; flip

��
��

�
flip

;;
;;

; flip

��
��

�

0 1

(,)

ssssssss
CC

CC
C

?

		
		
	

55
55

5 flip

flip

QQQQQQQQQQQ flip

OOOOOOOOOO ?

{{
{{

{{
{

0 1

Fig. 2. Graph representation of the state of the computation of (2) after a bubbling
(left side) and a pull-tab (right side) step.

Bubbling is more recent than the other approaches, it is not yet as well-
understood, and it still is the subject of active investigation [7]. An objection
to bubbling is the cost of finding a choice’s immediate dominator and the risk
of paying this cost repeatedly if no alternative of the choice fails. This cost en-
tails traversing a possibly-large portion of the choice’s context. Traversing the
context is more efficient than copying it, since copying requires node construc-
tion in addition to the traversal, but it is still unappealing, since the cost of a
non-deterministic step is not predictable and it may grow with the size of an
expression.

2 Pulling the Tab

A program is a graph rewriting system [9, 16]. An expression is a rooted graph
over the signature of the program. A computation is the repeated transfor-
mation of an expression by either a rewrite or a pull-tab step defined below.
Rewrite steps are computed with standard techniques [1]. Informally, a pull-
tab step moves a choice toward the root of an expression one level at a time.
As in a rewrite, a (sub)expression of an expression is replaced. Textually, a
(sub)expression of the form f(t1, . . . , a1?a2, . . . , tk), where f is not a choice, is
replaced by f(t1, . . . , a1, . . . , tk)?f(t1, . . . , a2, . . . , tk). For example, ((0+2) ? (1+
2)) ∗ 3 is the pull-tab of (0 ? 1) + 2 ∗ 3. If and when a choice reaches the root of
an expression, its alternatives have no context and are evaluated independently
of each other. The metaphor behind the name is to look at a path from the root
of an expression down to a choice as a zipper in which the choice is a pull tab.
As a choice is pulled up, the path opens into two strands, like a zipper, below
the pull tab. Pulling a choice above a predecessor copies the smallest amount of
context, i.e., the predecessor node only.

Unfortunately, the pull-tab transformation as sketched above may be un-
sound. Fig. 3 shows a state of the computation of (2) after some rewrite and
pull-tab steps. The superscript of some symbols may be ignored for the time
being. Without a corrective action, four results would be produced. In partic-
ular, the right argument of the left choice, i.e., (1,0), is not intended by the
semantics of current functional logic languages such as Curry [10] and T OY [8].

Unsoundness occurs when some choice has two predecessors, as in our running
example. The choice will be pulled up along two paths creating four strands that
eventually must be combined together. Some combinations will contain mutually
exclusive alternatives, or in other words subexpressions impossible to obtain with
the call-time choice semantics. In our running example, one such combination
mixes a 1 originating from the left alternative of the initial choice with a 0 from
the right alternative of the same choice. Avoiding expressions with mutually
exclusive alternatives suffices to recover the soundness of the pull-tab strategy.

To avoid impossible combinations of subexpressions, we track the history of
the non-deterministic steps of each expression. This history has been used in
other aspects of functional logic computations [3, 6] under the name of “finger-
print.” A node in a graph is decorated with information such as labeling and

?

��
��

��
CC

CC
CC

?

��
�� ==

==
== (,)α2

44
44

4

(,)α1

SSSSSSSSSSSSSS (,)α2α1

tttttttt

QQQQQQQQQQQQ 0α2 ?

		
		
	

//
//

1α1 1α1 0α2

Fig. 3. States of the computation of (2) after both rewrite and pull-tab steps. Super-
scripts are fingerprints. α is the choice identifier of every node labeled by ?. A node
labeled by (,), the pair constructor, has fingerprint α1α2. The subgraph at this node
mixes the left and right arguments of a choice and consequently does not produce a
result.

successor functions. For defining the pull-tab strategy, we extend the decorations
of nodes. Let Ω be a denumerable set whose elements we call choice identifiers

and denote by Greek letters. A fingerprint is a finite subset of Ω × {1, 2} whose
pairs we denote by juxtaposition. A node of each graph of a computation is
decorated by a fingerprint and, if the node is labeled by the choice symbol, it is
also decorated by a choice identifier.

A rewrite step preserves these decorations and assigns an empty fingerprint
to any node introduced by the replacement and a fresh choice identifier if the
node is a choice. A pull-tab step involves two nodes, a choice c and one of its
predecessors p not labeled by a choice. Let α be the choice identifier of c and
f the fingerprint of p. Informally, the step “moves up” c creating a new node
c′ and “splits” the predecessor p creating two new nodes, say p1 and p2. In the
resulting expression, the choice identifier of c′ is again α and the fingerprints of
p1 and p2 are f ∪ {α1} and f ∪ {α2}, respectively.

If the fingerprint of a node n contains α1 and α2, for some choice identifier
α, the graph rooted by n is semantically impossible and should be eliminated.
Fig. 3 shows an example of such a node, where superscripts denote fingerprints.

3 Current Work

We are developing a virtual machine based on the pull-tab strategy. The machine,
about 1000 lines of commented Ruby [17] code, includes a rudimentary parser
for the command line interpreter and a sophisticated printer for development
purposes and the presentation of results. The machine executes multisteps [12]
that, depending on the functional logic program being executed, may contain
dozens or hundreds of elementary steps. Since both rewrite and pull-tab steps
are localized graph replacements, we expect to be able to execute the elementary
steps of a multistep in parallel with only a modest synchronization overhead.

References

1. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

2. S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic
graph rewriting. In Proc. of the 3rd International Workshop on Term Graph
Rewriting, Termgraph’06, pages 61–70, Vienna, Austria, April 2006.

3. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pages 73–82, Lisbon, Portugal,
September 2009.

4. S. Antoy and M. Hanus. Functional logic programming. Comm. of the ACM,
53(4):74–85, April 2010.

5. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic
computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108–125, Lubeck, Germany,
September 2005. Springer LNCS 3474.

6. Bernd Brassel and Frank Huch. On a tighter integration of functional and logic pro-
gramming. In APLAS’07: Proceedings of the 5th Asian conference on Programming
languages and systems, pages 122–138, Berlin, Heidelberg, 2007. Springer-Verlag.

7. D. Brown. Ph.D. dissertation, 2010. In progress.
8. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language

(version 2.3.1), 2007. Available at http://toy.sourceforge.net.
9. R. Echahed. Inductively sequential term-graph rewrite systems. In Graph Trans-

formations, 4th International Conference (ICGT 2008), pages 84–98, Leicester,
UK, 2008. Springer, LNCS 5214.

10. M. Hanus, editor. Curry: An Integrated Functional Logic Language (Vers. 0.8.2),
2006. Available at http://www.informatik.uni-kiel.de/~curry.

11. M. Hanus, editor. PAKCS 1.9.1: The Portland Aachen Kiel Curry System, 2008.
Available at http://www.informatik.uni-kiel.de/~pakcs.

12. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

13. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming, 12:237–255, 1992.

14. ISO. Information technology - Programming languages - Prolog - Part 1, 1995.
General Core. ISO/IEC 13211-1, 1995.

15. F. J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. Rewriting
and call-time choice: The HO case. In Proc. of the 9th International Symposium
on Functional and Logic Programming (FLOPS 2008), pages 147–162. Springer
LNCS 4989, 2008.

16. D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig, G. Engels and
G. Rozenberg, editors, Handbook of Graph Grammars, volume 2, pages 3–61. World
Scientific, 1999.

17. D. Thomas and A. Hunt. Programming Ruby: The Pragmatic Programmer’s Guide.
Addison Wesley Longman, Inc., 2001.

18. A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages using
multiple threads and stores. In Proc. of the 2004 International Conference on
Functional Programming (ICFP), pages 90–102, Snowbird, Utah, USA, September
2004. ACM.

