
Architecture of a Virtual Machine
for Functional Logic Computations?

Sergio Antoy1, Michael Hanus2, Jimeng Liu1, and Andrew Tolmach1

1 Portland State University, Computer Science Dept.
P.O. Box 751, Portland, OR 97207, U.S.A.

2 Christian-Albrechts-Universität Kiel, Institut für Informatik
Olshausenstr. 40, D-24098 Kiel, Germany.

Abstract. We describe the architecture of a virtual machine for executing func-
tional logic programming languages. A distinguishing feature of our machine is that
it preserves the operational completeness of non-deterministic programs by concur-
rently executing a pool of independent computations. Each computation executes
only root-needed sequential narrowing steps. We describe the machine’s architecture
and instruction set; and show how to compile overlapping inductively sequential pro-
grams, represented as definitional trees, to sequences of machine instructions. The
machine has been implemented in Java and in Standard ML.

1 Introduction

Functional logic programming aims at integrating into a single paradigm the characteristic
features of functional and logic programming. In the last decade, the theory of functional
logic computations has made substantial progress. Significant milestones include a model
that integrates narrowing and residuation [12], narrowing strategies for several classes of pro-
grams suitable for functional logic languages [5], a functional-like model for non-deterministic
computations [3], and well-defined semantics for programming languages of this kind [1, 10].

These results have been influential in the design and implementations of functional logic
programming languages, e.g., Curry [16] and T OY [17]. Most existing implementations of
these languages are based on a translation of source code to Prolog code (e.g. as described
in [7]), which can be executed by existing standard Prolog engines. This approach simplifies
the task of implementing functional logic language features: e.g., source language variables
can be implemented by Prolog variables and narrowing can be simulated by resolution. But
some problems arise; most notably, the depth-first evaluation strategy of the Prolog system
causes the loss of the operational completeness of functional logic computations and inhibits
the implementation of encapsulated search strategies [15].

This paper describes a fundamentally different approach to the implementation of a func-
tional logic language, namely a virtual machine for functional logic computations. Section 2
describes the key features of functional logic languages. Section 3 describes the architecture
of the virtual machine. In particular, we describe how functional logic features influence sev-
eral key decisions, e.g., non-determinism and the desire for operational completeness suggest
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an architecture that executes a pool of independent computations concurrently. We describe
the kind of steps executed by each computation in the pool. By choosing a specific class of
source programs, we can arrange that the machine only needs to execute root-needed steps
sequentially, a characteristic that promotes both simplicity and efficiency. We describe the
registers of the machine, the information they contain, and how the machine instructions
control the flow of information between these registers. Finally, we sketch how a program,
represented as a definitional tree, can be compiled into machine instructions. Examples are
provided throughout the discussion. Section 4 describes on-going efforts at implementing
the virtual machine in both Java and Standard ML. The Java implementation, which is the
more highly developed, is mainly intended as a compiler/interpreter for Curry, but it could
be used to interpret compiled functional logic programs coded in other languages. Section 5
contains the conclusion and a brief discussion of related work.

2 Functional Logic Computations

Functional logic computations generalize functional computations by adding three specific
features: non-determinism, narrowing and residuation (see [11] for a survey). Our machine
is not designed for a specific programming language. The examples in this paper are in
Curry, but the details of the source language are largely irrelevant. Our only assumption is
that source program can be converted to a particular variety of first-order term rewriting
systems. The requirements on these rewriting systems are described in more detail below.

2.1 Functional Logic Features

Non-determinism is the feature that allows an expression to have distinct values. For ex-
ample, a program that solves a cryptarithm must compute a mapping from letters to digits.
This can be expressed as:

mapping letter = digit

digit = 0
digit = 1
...
digit = 9

(1)

The rules of digit are not mutually exclusive, i.e., the expression digit has 10 distinct val-
ues. The value eventually chosen for a given letter is constrained, according to a cryptarithm,
by some other portion of the program. Non-determinism broadens the class of programs that
can be coded using functional composition [3]. All the rewrite rules of function digit have
the same left-hand side. In Sections 3.6 and 3.7, we will consider these 10 rules as a sin-
gle rule where the right-hand side is non-deterministically chosen among 10 possibilities. A
justification of this viewpoint and the opportunity to exploit it for an efficient evaluation
strategy are in [3].

Narrowing is the glue between functional and logic computations. The execution of a func-
tional logic program may lead to the evaluation of an expression containing an uninstantiated
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variable. Narrowing guesses a value for the variable when this is necessary to keep the com-
putation going. For example, the function that returns the last element of a list can be coded
as follows (“++” is the list concatenation function):

last list | list =:= x++[e] = e where x,e free (2)

The evaluation of (last [1,2,3]) attempts to verify that the instantiated condition [1,2,3]
=:= x++[e] holds. The variables x and e are uninstantiated. Narrowing finds values for these
variables that satisfy the condition; this is all it takes to compute the last element of the
input list. Although in this example the computation is deterministic, i.e., (last list) has
at most one value for any list list, typical narrowing computations are non-deterministic
since they involve some guessing.

Residuation, similar in intent to narrowing, handles the evaluation of an expression con-
taining an uninstantiated variable. In this case, though, the evaluation of the expression
suspends. Control is transferred to the evaluation of another expression in hopes that the
latter will instantiate the variable so that the former can resume execution. (Evidently this
only makes sense when more than one subexpression is available to be evaluated, e.g., the
conjuncts of a “parallel and” operation.) The decision of whether to narrow or residuate is
made at compile time on a per-function basis. Generally, primitive arithmetic operations and
I/O functions residuate, since it seems impractical to guess values in these cases, whereas
most other functions narrow.

2.2 Overlapping Inductively Sequential Rewrite Systems

Our abstract machine is intended to evaluate programs that can be expressed as overlapping
inductively sequential term rewriting systems [3]. Roughly speaking, this means that pattern
matching can be represented by (nested) case expressions with multiple right-hand sides for
a single pattern. More precisely, every function of an overlapping inductively sequential
system can be represented by a particular variety of definitional tree [2, 3], which we specify
in Section 3.7.

It is shown in [4] that every functional logic program defined by constructor-based rewrite
rules, including programs in the functional logic languages Curry and T OY, can be trans-
formed into an overlapping inductively sequential system. Also, this class properly includes
the first-order programs of the functional languages ML and Haskell. Also, higher-order fea-
tures, i.e., applications of a functional expression to an argument, can be represented as an
application of a specific first-order function apply (where partial applications are considered
as data terms)—a standard technique to extend first-order languages with higher-order fea-
tures [20]. (Additional preliminary compiler transformations, e.g., name resolution, lambda
lifting, etc., are typically needed to turn source programs into rewrite system form; we do
not discuss these further here.)

3 Virtual Machine

In this section we describe how the the features of functional logic computations shape the
architecture of our virtual machine.
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3.1 Pool of Computations

A fundamental aspect of functional logic computations is (don’t know) non-determinism—
both in its ordinary form, as in example (1), and through narrowing, as in example (2). The
execution of a non-deterministic step involves one of several choices in the replacement of a
redex—or, to use a more appropriate term in our environment, a narrex. (In the remainder of
the paper, we use “narrowing” to refer to either strict narrowing or rewriting.) For example,
in the cryptarithm solver mentioned earlier, the evaluation of mapping ’S’, assuming that
’S’ is a letter of the cryptarithm, leads to 10 possible replacements.

One of our main goals is to ensure the operational completeness of computations. The
simplest policy to ensure this completeness is to execute any non-deterministic choice fairly,
independently of the other choices. In our virtual machine, this is achieved by concurrently
computing the outcome of each replacement. In our machine, a computation is explicitly
represented by a data structure, which holds the term being evaluated, a substitution, and
a state indicator with values such as active, complete, residuating, etc.,

The machine maintains a pool of computations. Initially, there is only one active compu-
tation in the pool, containing the initial base term. Computations change state depending
on events or conditions resulting from the execution of machine instructions. For example,
when a computation makes a non-deterministic step, the computation is abandoned ; new
computations, one for each choice, are created, added to the pool, and become active. When
a computation obtains a normal form or a head normal form (we have a different kind of
computation for each task), the computation state is set to complete.

The core of the machine is an engine to execute head normal form computations, by
executing sequences of machine instructions. There is one such sequence associated with
each function of the source program, which we call the code of the function. The purpose
of a function’s code is to perform a narrowing step of an application of the function to
a set of arguments, or to create the conditions that lead to a narrowing step (details are
given in Section 3.3). The instructions operate on an internal context consisting of several
internal registers and stacks (described in Section 3.5). The instruction sequence is always
statically bounded in length, and contains no loops. For the simplest functions, it is just a
few instructions long. For more complicated functions, the number of instructions goes up
to one or two dozen, but seldom more than that. When the virtual machine completes the
execution of a function’s code, most of the context information become irrelevant.

To manage the pool of computations fairly, the machine must allocate resources to active
computations so that they make some “progress” toward a result over time. We considered
several strategies to ensure a fair sharing of resources. For example, a fixed amount of time
could be allocated to each computation. If a computation C ends before the expiration of its
time, a different computation is executed. Otherwise, C is interrupted. When all the other
computations existing in the pool at the time of the interruption of C have received their
fair share of time, the execution of C resumes. An analogous strategy could allocate a fixed
number of virtual machine instructions, instead.

A drawback of the above strategies is that when a computation is interrupted, the in-
struction execution context must be saved, and subsequently restored when the computation
resumes. In order to minimize the overhead of switching contexts, we have adopted a simpler
strategy that never interrupts instruction sequences. This remains fair because the length
of each instruction sequence is bounded. When the machine selects a computation from the
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(variable) v
(constructor) c

(function) f
(symbol) s = c | f

(term) t = v | s(t1, . . . , tn)
(data term) d = v | c(d1, . . . , dn)

(pattern) p = f(d1, . . . , dn)

Fig. 1. Notation for terms and patterns.

pool, it executes the entire code of some function for that computation, and then returns
the computation to the pool. It then repeats this process fairly for every other computation
of the pool.

3.2 Terms and Computations

In the model for functional logic programming described in [12], a computation is the process
of evaluating an expression by narrowing. The expression is a term of the rewrite system
modeling the program. A term is a variable or a symbol of fixed arity n > 0 applied to n
terms; symbols are partitioned into data constructors and functions. Figure 1 summarizes
our notation for terms. In examples, we often write terms using infix notation for symbols. A
position pos in a term is represented by a sequence of natural numbers representing subterm
choices, beginning at the root. For example, the position of x in f(y,b(x,z)) is the sequence
[1,0]. We write t|pos for the subterm at position pos in t.

Evaluating a term results in both a computed value, as in functional programming, and a
computed answer, as in logic programming. The computed value is a data term, i.e., a term
without defined functions. The computed answer is a substitution, possibly the identity, from
some free variables of the term being evaluated to data terms. For example, the evaluation
of [1,2,3] =:= x++[e], in example (2), returns the computed value Success, a predefined
constant for constraints, and the computed answer {x 7→ [1,2], e 7→ 3}.

Thus, the state of a computation includes both a term and a substitution. Initially, the
computation data structure for a term t holds t itself and the identity substitution. As
narrowing steps are executed, both the term and the substitution fields of the computation
structure are updated. A computation is complete when the machine cannot find a step in
the term being evaluated.

The machine supports three kinds of computations. Normal form computations at-
tempt to narrow terms all the way to data terms. The virtual machine is intended to be used
within a hosting program that provides the read-eval-print loop typical of many functional
and logic interpreters. The host program provides the initial base term for the machine
to evaluate, and waits for the computed values and answers to be returned (if the pro-
gram narrows variables or executes non-deterministic steps, multiple value/answer results
are possible).

Head normal form computations try to evaluate terms to constructor-rooted terms.
Executing these computations is the core activity of the machine, during which the defini-
tions of functions are applied. A single normal form computation typically spawns multiple
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head normal form computations over its sub-terms, as described in Section 3.3. Head normal
form computations are described in more detail in Section 3.4.

Parallel-and computations handle the evaluation of a conjunction of two terms.
Residuation is only meaningful in the presence of these computations. Each conjunct is eval-
uated by a different computation. For each conjunction, the computation of one and only
one of the two conjuncts is active at any one time (implementing an interleaving semantics
for concurrency [12]). If the computation of the first conjunct residuates, the computation
of the second one becomes active. The second computation may “unblock” the first one,
thus becoming waiting itself, or may residuate as well. In this case, the entire computation
blocks. If all the parallel-and computations derived from a given base term are blocked, the
base term computation flounders.

The computations in the machine’s pool are independent of each other. In our imple-
mentation, the evaluation of some subterm common to two computations may be shared,
but this is only for the sake of efficiency. Both practically and conceptually, the two com-
putations could be completely separated. Thus, we describe the execution of a computation
disregarding the fact that other computations may be present in the pool.

3.3 Needed Sequential Steps

We chose overlapping inductively sequential programs as the source language for our machine
because they have useful properties that allow efficient implementation. Loosely speaking,
in any term, it is easy either to find a step that “must” be executed or to determine that the
computation is complete—either successfully or unsuccessfully. The step, possibly modulo a
non-deterministic choice, cannot be avoided to obtain a result of the computation, a desirable
property referred to as need, and it is computed by looking only at the term, a desirable
property referred to as sequentiality.

This need-based strategy applies to terms whose leading symbol is a function. Within
the virtual machine, it is implemented by the execution mechanism for head normal form
computations (see next section). If the leading symbols of a term is a data constructor,
this top portion of the term will not change during the rest of the computation and, in
principle, it could be output. In this case the strategy is applied to each maximal subterm
led by a function. If several such subterms exist, all must be evaluated and the results
are independent of the evaluation order. Responsibility for managing these sub-evaluations
belongs to the execution mechanism for normal form computations.

3.4 Head Normal Form Computations

The execution of a head normal form computation attempts to rewrite a function-rooted
term into a constructor -rooted term. The evaluation strategy executed by our machine
is root-needed reduction [19] with the addition of narrowing and non-deterministic steps.
Simply put, the strategy attempts to repeatedly apply rewrite rules at the top of a function-
rooted term until a constructor-rooted term is obtained.

This strategy can be applied independently for each function defined in the source pro-
gram. The implementation of the strategy for a given function depends only on the forms
of the left-hand sides of that function’s defining rules. In fact, the definitional trees that our
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system uses to represent programs already implicitly encode the strategy. The next needed
step in the evaluation of a term f(t1, . . . , tn) can be obtained by comparing the symbols at
certain positions in the arguments of f with corresponding symbols in f ’s definitional tree.
A sequence of comparisons determines which rule to apply, or which subterm to evaluate.
To implement these tree-based operations, we compile the definitional tree for each func-
tion f to a code sequence of virtual machine instructions, as described in Section 3.7. The
instructions themselves are described in Section 3.6.

The code for a function effectively chooses which rule to apply to a term. But it is also
possible that no rule can be applied at the top of a function-rooted term. This can occur for
one of only two reasons: (1) a function-rooted argument of a function application must be
evaluated to a constructor-rooted term before any rule can be applied, or (2) the function
is incompletely defined. An example of each condition follows. Consider the definitions of
the usual functions that compute the head of a list and the concatenation of lists, denoted
by the infix operator “++”.

head (x:_) = x

[] ++ y = y
(x:xs) ++ y = x : xs ++ y

(3)

The term t = head (u ++ v), for any u and v, is an example of the first condition. To evaluate
t, it is necessary to evaluate (u ++ v) which is a recursive instance of the original problem,
i.e., to evaluate a function-rooted term to a constructor-rooted term. The virtual machine
deals with possibility within the implementation of the Branch instruction, which tests
and dispatches on the form of a term.

The term t = head [] is an example of the second condition. In a deterministic language,
where the execution of a program consists of a single computation, this condition is usually
treated as an error. In a non-deterministic language, where the execution of a program may
consist of several independent computations, this condition is often benign. The machine
uses a distinguished symbol, which we denote by fail, to replace terms that have no value.
Since for every computation of the pool the machine executes exclusively needed steps, the
reduction of any subterm to fail implies that the entire computation should fail.

3.5 Data Representation and Storage Areas

Each term manipulated by the virtual machine is represented as an immutable heap-
allocated record. These records are referenced indirectly via term handles, which contain
mutable pointers to terms. The representation record for an application term contains the
applied symbol together with pointers to the handles of the argument subterms. During
computation, the machine holds a pointer to the handle of the current narrex (as described
in more detail below). When the narrowed result term has been computed, the contents
of the narrex handle are overwritten with a pointer to that result. This has the effect of
updating the original narrex wherever it appears as a subterm anywhere in the heap.

Substitutions are stored as finite maps from variables names to term handles. They are
applied to terms by creating a clone (deep copy) of the term in which each variable in the
domain of the substitution is replaced by the corresponding image term. Substitutions are
never applied destructively to change a term in-place.
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As discussed in the previous sections, our machine fairly executes a pool of independent
computations. The context of each computation includes four separate storage areas, a
generic name for stacks and registers. Stacks and registers hold pointers to handles for
terms; more loosely, we just say they hold terms.

Suppose that t is the term to evaluate in a head-normal form computation. We recall that
initially t is function-rooted; the computation completes successfully when t is evaluated to
a constructor-rooted term. The computation begins by executing the code associated with
the function at the root of t. In the course of executing this code, it may become necessary
to recursively evaluate function-rooted subterms of t. The pre-narrex stack keeps track
of these recursive computations. It is a stack containing (pointers to handles for) terms
t1, t2, . . . , tn, with t1 the bottom, having the following properties.

1. At the beginning of the computation, n = 1 and t1 = t.
2. Every term, with the possible exception of tn, the top of the stack, is function-rooted

and it is not a narrex.
3. For all i, ti+1 is a subterm of ti with the property that ti+1 must be evaluated to a

constructor-rooted term before ti can be evaluated.

The top of the pre-narrex stack contains the term currently being evaluated. Referring to
example (3), if head (u ++ v) is on the pre-narrex stack, then u ++ v will be pushed on the
stack, too, because the former cannot be evaluated to a constructor-rooted term unless the
latter is evaluated to a constructor-rooted term. The machine allocates a separate pre-narrex
stack to each head normal form computation.

The other three storage areas are local to the execution of a single function code sequence.

– Current register. This is a simple register containing a term. Many of the machine’s
instructions implicitly reference this register. For example, to apply a rewrite rule of the
function “++” defined in (3) to the term u ++ v, one must check whether the term u is
rooted by [] or “:” or some function symbol. The Branch instruction that performs
the test expects to find the term to be tested in the current register.

– Pre-term stack. This is a stack for constructing narrex replacements. These are always
terms instantiating a right-hand side of a rule. The arguments of a symbol application are
first pushed on the stack in reverse order. The MakeTerm instruction, which is parame-
terized by the symbol being applied, replaces these arguments with the application term.
For example, the term [1,2]++[3,4], which is a narrex, is replaced by 1:([2]++[3,4])
which is constructed as follows. First, the terms [3,4] and [2] are pushed on the pre-
term stack. Executing MakeTerm ++ replaces them with [2]++[3,4]. Then, the term
1 is pushed on the stack as well and executing MakeTerm : replaces the two topmost
elements with 1:([2]++[3,4]).

– Free variable registers. The rewrite rules that define the functions of the program
can contain free (extra) variables. Several occurrences of a same free variable may be
needed to construct the narrex replacement. Therefore, if a free variable has multiple
occurrences in an term, when the variable is created, a reference to it is stored in a
register to be later retrieved for each occurrence. For example, consider the following
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rule that tells whether a string of odd length is a palindrome:

palind s = s =:= x ++ (y : reverse x) where x, y free (4)

The construction of an instance of the right-side of this rule begins with pushing x,
for the right-most occurrence of the right-hand side, on the pre-term stack. Later on,
another occurrence of x is to be pushed again on the stack. Thus, a reference to x must
be kept around so that it can be retrieved later and pushed again. The machine has an
(arbitrarily large) set of registers exclusively for storing free variables that must be used
several times.

The content of these local storage areas can be discarded at the end of the execution of
the function code. Since computations are never interrupted in the middle of an instruc-
tion sequence, there need only be one instance of these areas, which can be shared by all
computations.

3.6 Machine Instructions

The virtual machine evaluates terms by executing sequences of instructions. There are a
dozen or so different instructions. Some instructions move information between the various
storage areas. Others build or take apart terms.

A computation starts with a single term in the pre-narrex stack. The information in
all the other storage areas is irrelevant. The machine repeats the following cycle. If the
pre-narrex stack is empty, the computation is completed. If the top of the pre-narrex stack
is a constructor-rooted term, the stack is popped. If the top of the pre-narrex stack is a
function-rooted term, and f is the root symbol, the machine retrieves the code of f and
executes it.

Some instructions are parameterized by (references to) symbols. In the examples, we
represent these symbols with their symbolic names, but internally symbols are represented
by integers that index an array. Each entry of the array contains run-time information about
a symbol, such as its printable name and (for functions) its code.

Figure 2 gives transition rules for the instructions that act only on the storage areas.
The remaining important instructions, which only appear at the end of a code sequence, act
on the computation pool:

Replace: Update the handle on the top of the pre-narrex stack to point to the term in the
current register; put this computation back into the computation pool.

Narrow: Execute a narrowing step. When this instruction is executed, the current register
holds a variable and the pre-term stack holds one or more instantiations of this variable.
Each instantiation implicitly defines a substitution, which is applied to the base term.
A new normal form computation is added to the pool for each resulting version of the
base term. The current computation is abandoned.

Choice: Execute non-deterministic step. When this instruction is executed, the current
register holds a narrex and the pre-term stack holds one or more replacements of this
narrex. For each replacement, a new version of the base term is created, and a corre-
sponding new normal form computation is added to the pool. The current computation
is abandoned.
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(Load p0, . . . , pn : I, [t1, . . . , tm], R, T, F ) =⇒ (I, [t1, . . . , tm], tm|p0,...,pn , T, F )

(Branch I0, . . . , In : [], N,R, T, F ) =⇒ ([], N++[R], R, T, F ) if R = f(· · ·)
(Branch I0, . . . , In : [], N, fail, T, F ) =⇒ abandon computation

Branch I0, . . . , In : [], N, v, T, F ) =⇒ (I0, N,R, T, F )

(Branch I0, . . . , In : [], N, c(· · ·), T, F ) =⇒ (Ij , N, c(· · ·), T, F ) if c has index j

(Push : I,N,R, T, F ) =⇒ (I,N,R, T++[R], F )

(Pop : I,N,R, [t1, . . . , tm], F ) =⇒ (I,N, tm, [t1, . . . , tm−1], F )

(MakeAnon : I,N,R, T, F ) =⇒ (I,N,R, T++[v], F ) where v fresh

(StoreVar n : I,N,R, T, F ) =⇒ (I,N,R, T, F [n← v]) where v fresh

(MakeVar n : I,N,R, T, F ) =⇒ (I,N,R, T++[F (n)], F )

(MakeTerm s : I,N,R, [t1, . . . , tm], F ) =⇒
(I,N,R, [t1, . . . , tm−n, s(tm . . . , tm−n+1)], F ) where arity(s) = n

Fig. 2. Machine instruction set. Tuples are of the form (I,N,R, T, F ), where I is an instruction
sequence, N is the pre-narrex stack, T is the pre-term stack, R is the current register, and F is the
free variable registers. Standard Haskell-style notation is used for lists.

Residuate: The computation state is changed to residuating, and it is returned to the pool.

In addition to these instructions, some activities of the machine are performed by built-
in functions. Generally, these are library functions that could not be defined by ordinary
rewrite rules. An example of a built-in function is apply, which takes two terms as arguments
and applies the first to the second. For correctly-typed programs, the first argument of apply
evaluates to a term of the form f x1 . . . xn where the arity of f is greater than n, i.e., f is a
partial application. The function apply performs a simple manipulation of the representation
of terms. It would be easy to replace the built-in function apply with a machine instruction.
However, built-in functions are preferable to machine instructions because they keep the
machine simpler and they are loaded only when needed.

Figure 3 shows the code of the polymorphic function “++” which concatenates two lists.
This code is executed when the top of the pre-narrex stack contains a term of the form
u++v. Note that some sequences of instructions tend to occur frequently in compiled code.
It would be easy to improve the performance of the machine by introducing new combined
instructions to replace such sequences, but we do not describe this here.

3.7 Compilation

Every function of an overlapping inductively sequential program has a definitional tree [2,
3], which is a hierarchical representation of the rewrite rules of a function that has become
the standard device for the implementation of narrowing computations. We compile each
definitional tree into a sequence of virtual machine instructions. Because a definitional tree
is a high-level abstraction for the definition of a sound, complete and theoretically efficient
narrowing strategy [6], mapping this strategy into virtual machine instructions increases our
confidence in both the correctness and the efficiency of the execution.
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1 Load 0 load u in the current register
2 Branch

[ u is an uninstantiated variable
3 MakeTerm [] pre-term stack contains []

4 MakeAnon push _

5 MakeAnon

6 MakeTerm : pre-term stack contains [] and _:_

7 Narrow

]

[ u is []

8 Load 1 load v
9 Replace

]

[ u is u0:us
10 Load 1 load v
11 Push

12 Load 0,1 load us
13 Push

14 MakeTerm ++ pre-term stack contains us++v
15 Load 0,0 load u0

16 Push

17 MakeTerm : pre-term stack contains u0:us++v
18 Pop

19 Replace

]

Fig. 3. Compilation of the definition of the function “++”. This code is executed to evaluate a term
of the form u++v. The instruction numbers at the left and the comments at the right are not part
of the code itself.

The notation for the variant of definitional trees we use is summarized in Figure 4.
Branch nodes contain a flag indicating whether or not the branch is flexible or rigid, i.e.,
whether to narrow or residuate if the corresponding position of a term being processed is a
variable. In the node Rule(p,rs), rs is a list of non-deterministic alternative right-hand sides
for the rule. Each right-hand-side (vs, t) consists of a term t and a list of free variables vs
that appear in t but not in p.

(definitional tree) T = Branch(p, pos,flex?, [T1, . . . , Tn])
| Rule(p, [r1, . . . , rn])

(right-hand-side) r = ([v1, . . . , vn], t)

Fig. 4. Notation for definitional trees.

As examples, the definitional tree for the function (++) defined in (3) is:
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Branch(x++y,[0],True,
[Rule([]++y, [([], y)]),
Rule((x:xs)++y, [([], x:(xs++y))])],

the tree for palind (4) is:

Rule(palind s, [([x, y], s =:= x++(y:reverse x))]),

and the tree for digit (1) is:

Rule(digit, [([], 0), ([], 1), . . . , ([], 9)]),

where, for readability, we write terms and patterns using infix notation.
Figure 5 gives an algorithm for compiling definitional trees to sequences of abstract

machine instructions. For simplicity, we assume all definitional trees are canonical, in the
sense that every Branch node corresponding to a position of type τ has a child for each of
data constructor of τ , and the children are in the canonical order for data constructors. (In
reality, the compiler would tolerate missing children and generate code to produce fail for
them; it would use auxiliary type information to determine the full set of possible children.)
We assume the existence of a function posOf v p that returns the position (if any) of variable
v in pattern p (assuming v appears at most once in p). Various optimizations on the resulting
code are possible; for example, the sequence of instructions [Push,Pop] can be omitted, as
is illustrated by the code in Figure 3, or the instructions StoreVar n and MakeVar n can
be replaced by a single MakeAnon instruction for free variables with only one occurrence
in the right-hand side.

Some practical adjustments to the pseudo-code of Figure 5 are necessary to accommo-
date built-in types, such as integers and characters. There are a few additional machine
instructions, e.g., MakeInt and MakeChar, for this purpose.

4 Implementation

We have two prototype implementations of the virtual machine described in this paper. One
implementation, in Java, is currently our main development avenue. A second implemen-
tation, in Standard ML, is being used mostly as a proof of concept. Since the code is not
optimized because it is still evolving, we do not present a detailed benchmark suite here.
Nevertheless, the initial performance results appear to be promising. A computationally in-
tensive test computes Fibonacci numbers with an intentionally inefficient program. This test
shows that the machine executes approximately 0.5 million reductions (i.e., function calls)
per second on a 2.0 Ghz Linux-PC (with AMD Athlon XP 2600). On the same benchmark,
the PAKCS [13] implementation of Curry, which compiles Curry programs into Prolog us-
ing the scheme in [7], runs about twice as fast. PAKCS is one of the most efficient Curry
implementations, apart from [18], which produces native code. However, note that our im-
plementation is operationally complete, i.e., there are programs where our implementation
computes a result in contrast to [7].

We have used Java and ML due to their built-in support for automatic memory manage-
ment and appropriate programming abstractions which simplified the development of our
prototypes. The same approach has been taken in [14], which describes an abstract machine
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compileTree (Branch(p, pos,flex?, [T1, . . . , Tn])) =

[Load pos,
Branch [handleVariable,

compileTree T1,

...,

compileTree Tn]]
where handleVariable =

if flex? then
buildChoice1 ++ · · · ++ buildChoicen ++ [Narrow]

where buildChoicei = [MakeAnon1,. . .,MakeAnonni,

MakeTerm ci]
where ci(d1, . . . , dni) = (patternOf Ti) |pos

else [Residuate]

compileTree (Rule(p, [rhs1, . . . , rhsn]) =

if n == 1 then
(compileRhs rhs1) ++ [Pop,Replace]

else (compileRhs rhs1) ++ ... ++ (compileRhs rhsn) ++ [Choice]

where compileRhs ([v0, . . . , vn], t) =

[StoreVar 0,...,StoreVar n] ++ (compileTerm t)
where compileTerm (v) = if ∃j s.t. v = vj then

[MakeVar j]
else [Load (posOf v p),Push]

compileTerm (s(t1, . . . , tn)) =

(compileTerm tn) ++ · · · ++ (compileTerm t1) ++

[MakeTerm s]

Fig. 5. Pseudo-code for compilation of definitional trees to sequences of virtual machine instruc-
tions. Standard Haskell-style notation is used for lists and list concatenation (++).

for Curry and its implementation in Java. On the negative side, the use of Java limits the
speed of the execution—the Java implementation [14] is more than an order of magnitude
slower than PAKCS [7]. On the positive side, our machine can be also implemented in C/C++

from which we can expect a considerable efficiency improvement.3 A possible strategy is to
integrate a C-based execution engine into the Java support framework.

Non-deterministic computations are executed independently. However, because of the use
of term handles, a common deterministic term of two independent computations is evaluated
only once. For example, consider the term digit+t, where digit is defined in (1). A distinct
computation is executed for each replacement of digit, but t is evaluated only once for all
these computations. In situations of this kind, our machine is faster than PAKCS.

In our implementations, a narrex is replaced in place (with a destructive update) when-
ever possible. Non-deterministic steps prevent replacement in place, since several replace-
ments should update a single term. Currently, the machine constructs not only the replace-
ment of a narrex, but also the spine of the entire term in which the narrex occurs. This is
3 [14] compares the speed of the same virtual machine for Curry coded in Java vs. in C/C++. The

latter is more than one order of magnitude faster.

13



unnecessarily inefficient and we plan to improve the situation in the future together with
other optimizations of the machine architecture and code.

Our virtual machine is intended for the execution of functional logic programs in a va-
riety of source languages. Our immediate choice of source language is Curry [16]. For this
application, we have a complete compiler (written in Curry) into our virtual machine but
several other non-trivial software components, such as a command line parser, a loader, a
debugger and a run-time library, are necessary as well. At the time of writing (Sept. 2003),
our Java implementation provides both a loader and a command line interpreter. The vir-
tual machine has good built-in capabilities for tracing and debugging, but a suitable user
interface is needed. A specific problem of an operationally complete implementation of non-
deterministic computations is that steps of different computations are interleaved. Presenting
steps in the order in which they are executed produces traces which are hard to read. A
suitable graphical user interface would make these traces easier to read. Finally, we have
implemented only a handful of modules for built-in types, such as the integers, that cannot
be compiled from source programs.

To conclude, we have a solid, though prototypical, implementation of the virtual machine.
Several key software components of an interactive development environment need further
work. The Java implementation of the machine is available for download from http://
redstar.cs.pdx.edu/~antoy/flp/vm. The distribution also links a tutorial description of
the machine including an animation of the behavior of the instructions.

5 Conclusion and Related Work

We have described the architecture of a virtual machine for the execution of functional
logic computations. The machine’s design is based on solid theoretical results. In particular,
the machine is intended for overlapping inductively sequential programs and computes only
root-needed steps (modulo non-deterministic choices). Larger classes of programs, up to
those modeled by the whole class of constructor-based conditional rewrite systems, can be
executed after initial transformation.

A small set of machine instructions performs pattern matching and narrex replacement,
two key activities of the machine. Both narrowing and non-deterministic steps are executed
by a single instructions since the machine is specifically designed for functional logic com-
putations. The machine is also designed to execute several computations concurrently to
ensure the operational completeness. Implementations of the machine in Java and ML are
complete and fairly efficient, through not yet optimized.

The implementation of functional logic languages is an active area of research. A common
approach is the translation of functional logic source programs into source Prolog programs,
where Prolog has the role of a portable, specialized machine language, e.g., [7]. Another
approach relies on an abstract machine. A detailed comparison of several recent related
attempts [8, 9, 14, 18] would go well beyond the space constraints of this paper. A minimal
comparison of efficiency was addressed earlier. Our effort is characterized by the simplicity
of both the instruction set and the storage areas and by the rigorous theoretical results on
which the machine is founded.
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Artalejo. An approach to declarative programming based on a rewriting logic. The Journal of
Logic Programming, 40:47–87, 1999.

11. M. Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994.

12. M. Hanus. A unified computation model for functional and logic programming. In Proc. 24st
ACM Symposium on Principles of Programming Languages (POPL’97), pages 80–93, 1997.

13. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner. Pakcs: The Portland Aachen
Kiel Curry System. Available at http://www.informatik.uni-kiel.de/~pakcs/, 2000.

14. M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation in
Java. Journal of Functional and Logic Programming, 1999(6), 1999.

15. M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

16. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.
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