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Abstract. We present the design of a compiler for a functional logic program-
ming language and discuss the compiler’s implementation. Thesourceprogram
is abstracted by a constructor based graph rewriting system obtained from a func-
tional logic program after syntax desugaring, lambda lifting and similar trans-
formations provided by a compiler’s front-end. This system is non-deterministic
and requires a specialized normalization strategy. Thetargetprogram consists of
3 procedures that execute graph replacements originating from either rewrite or
pull-tab steps. These procedures are deterministic and easy to encode inan or-
dinary programming language. We describe the generation of the 3 procedures,
discuss the correctness of our approach, highlight some key elementsof an im-
plementation, and benchmark the performance of a proof-of-concept. Our com-
pilation scheme is elegant and simple enough to be presented in one page.
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Our goal is the efficient execution of functional logic computations for the implemen-
tation of programming languages such as Curry [25] andT OY [16]. A functional logic
language offers functional application, as found in Haskell, ML and Scheme, and logic
(also called free or unbound) variables, as found in Prolog.The logic variables intro-
duce non-determinism. Functional logic languages also offer a second, more function-
oriented, form of non-determinism, “non-deterministic functions”. A non-deterministic
function (some people prefer to call it “operation”) is a function-like symbol that when
applied to some argument returns one among several results.Logic variables and non-
deterministic functions, although apparently very different, are equivalent [7,33] in the
sense that one is easily replaceable by the other without changing a program’s meaning.
Current functional logic languages provide syntax for bothforms of non-determinism
for the convenience of the programmer.

Non-determinism is frequently and conveniently used in programming when the
information to make “the right choice” is missing or incomplete. For example, consider
a program for solving then-queens puzzle. The program places one queen after another
on the board, but the information for appropriately choosing rows and columns of a
placement is incomplete. Thus, rows and columns are non-deterministically chosen and
each choice is constrained to ensure the solution of the puzzle. In many situations,
constraining a value that solves a problem is much simpler than computing that value
[5]—even when the information for computing that value is available.
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While non-determinism in a functional setting is very expressive and convenient
for the programmer [5], its implementation, particularly in combination with laziness
and sharing, is difficult. This paper presents a relatively simple, complete and compact
solution to this problem.

2 The Basic Scheme

In this section we formalize the programs to which our designis applicable and the
compilation scheme, which we call thebasic scheme, for these programs. We assume
some familiarity with the concepts of functional logic programming [9,21,22,24,26]
and graph rewriting [17,18,36] as a formal model of functional logic computations.

2.1 Symbols and Expressions

A program is a pair(Σ ∪ X ,R) in which Σ = C ⊎ D is a signaturepartitioned into
constructorsandoperations(or functions),X is a denumerable set of (bound)variables,
andR is a set ofrewrite ruleswith the characteristics discussed below. Without further
mention, we assume that the signature is many sorted and thatany expression, to be
defined shortly, over the signature is well typed. Each rule’s left-hand side is apattern,
i.e., anoperationsymbol applied to zero or more expressions consisting ofconstructor
symbols and/or variables only. Each operation inD is inductively sequential[1], i.e.,
its rewrite rules are organized in a hierarchical structurecalled adefinitional treewhose
definition is given in the next section.

Non-determinism is abstracted by a binary, infix, polymorphic operation, denoted
“?” and called thechoiceoperator, and defined by the rules:

x ? _ = x
_ ? y = y

(1)

We will never apply the choice’s rules in a computation for reasons that will be pre-
sented shortly.

Each occurrence of the choice symbol is tagged with an identifier [6] which is not a
part of the source program. This identifier is used duringpull-tab steps which are exe-
cuted by our compilation scheme and will be defined shortly. The identifier of a choice
is denoted as a subscript of the choice symbol. We make the convention that every time
a noden labeled by the choice symbol is created either for a top-level expression or by
a rewrite, the choice identifier ofn is fresh.

A term graph, also called anexpression, is defined in the customary way [17, Def.
2], but we extend the decorations of some nodes with a choice identifier [6, Def. 1].
An expressione is avalueiff every node ofe is labeled by a constructor symbol. Val-
ues are normal forms, but there are normal forms that are not values, e.g.,1/0 and
head[]. In a constructor-based system, such expressions are regarded asfailures or
exceptionsrather than results of computations. The following definition is motivated by
our decision of not applying the rules of “?”.

Definition 1 (Non-deterministic value).We call an expressione a non-deterministic
value iff either e is a value ore = u? v for some non-deterministic valuesu and v.
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We may say “deterministic value” to emphasize that some non-deterministic value is a
value.

2.2 Definitional Trees

A definitional tree is a structure derived from the rewrite rules defining an operation in a
program. Our presentation is identical to [1] except for a slightly updated terminology.
In particular, the expressions of the definition are graphs [17]. A simple algorithm for
constructing definitional trees from the rules defining an operation is in [4]. We use
standard notations, in particular, ift andu are expressions andp is a node oft, thent|p
is thesubexpressionof t rooted atp [17, Def. 5] andt[p ← u] is thereplacementby u

of the subexpression oft rooted byp [17, Def. 9].

Definition 2. T is a partial definitional tree, or pdt, if and only if one of the following
cases holds:

T = branch(π, o, T̄ ), whereπ is a pattern,o is a node, calledinductive, labeled by
a variable ofπ, the sort ofπ|o has constructorsc1, . . . , ck in some arbitrary, but
fixed, ordering,T̄ is a sequenceT1, . . . , Tk of pdts such that for alli in 1, . . . , k
the pattern in the root ofTi is π[o← ci(x1, . . . , xn)], wheren is the arity ofci and
x1, . . . , xn are fresh variables.

T = rule(π, l→ r), whereπ is a pattern andl → r is a rewrite rule such thatl = π

modulo a renaming of variables and nodes.
T = exempt(π), whereπ is a pattern.

Definition 3. T is a definitional treeof an operationf if and only ifT is a pdt with
f(x1, . . . , xn) as the pattern argument, wheren is the arity off andx1, . . . , xn are
fresh variables.

Definition 4. We call an operationf of a rewrite systemR inductively sequentialif
and only if there exists a definitional treeT of f such that the rules contained inT are
all and only the rules definingf inR. We call a rewrite systemR inductively sequential
if and only if all operations ofR are inductively sequential.

Exemptnodes are present in a tree of an incompletely defined operation only. Patterns
do not need explicit representation in a definitional tree. However, we will keep them
around when their presence simplifies the presentation of our ideas.

2.3 Programs

The programs that we intend to compile are abstracted by a well-studied class of sys-
tems, thelimited overlapping, inductively sequential, graphs rewriting systems(LOIS).
A general treatment of graph rewriting suitable for our purposes is in [17].LOIS sys-
tems are discussed in [4]. In particular, inLOIS systems, there is a single operation
whose rules’ left-hand sides overlap. This is thechoiceoperation defined in (1). Source
programs are coded in a functional logic language such as Curry or T OY. After desug-
aring, lambda lifting, firstification, deconditionalization, etc., we obtainLOISsystems.
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A LOISsystem can be seen as a set of definitional trees. In the next section, we show
how to compile these trees into an executable program.

LOISsystems are an ideal core language for functional logic programs.LOISsys-
tems are general enough to perform any functional logic computation [3] and powerful
enough to compute by simple rewriting [7] without wasting steps [2]. Also for every
LOISsystem containingfree(unbound) variables there is an equivalent system that re-
places thefree variables with non-deterministic operations [7,33]. Hence, as in other
similar approaches [15], we exclude free variables from ourcore language. Section 5
will address this point in practice.

2.4 Computations

A computation(or derivation) of an expressione is a finite or infinite sequencee =
e0 Ξ→ e1 Ξ→ . . . such thatei Ξ→ ei+1 is a step. Astep is a pair of expressionst Ξ→u,
such thatu is obtained fromt by either of two transformations, arewrite [17], denoted
“→”, or a pull-tab [6], denoted “Ξ”. The initial expression of a computation is called the
top-levelexpression and each element is called astate of the computation.

In a Curry orT OY program, some computations of an expression are “substantially
different”, i.e., they differ in more than the order of the steps. The outcomes of these
computations may include distinct values, exceptions, and/or non-termination. These
differences originate from non-deterministic choices, inparticular from the application
of the choice’s rules defined in (1).

Pull-tabbing keeps all the outcomes of an expression in a single structure, the state
of the computation. Informally, an application of a symbols to a choicex?i y is rewrit-
ten to(s x)?i (s y) without committing to either alternative. Pull-tabbing has the useful
property that computations of subexpression are automatically shared between alter-
natives and still evaluated lazily. Any deterministic value of the computation can be
“extracted” from the state of the computation. This is in contrast with other approaches
to non-deterministic steps, which either selectonly onealternative, e.g.,backtracking,
or managemultiplecomputations, e.g.,cloning.

2.5 Strategy

An evaluation strategy determines the steps of a computation. Interestingrewriting
strategies are well understood for several practical classes of functional logic programs
[4]. Strategies for non-deterministic computations are typically non-deterministic as
well. While this simplifies the formulation of a difficult problem, it leaves to the im-
plementation the burden of selecting which step to execute when the strategy computes
many non-deterministic steps. There are cases [28,34] in which this selection sacrifices
the strategy’s operational completeness. A major contribution of our work is adeter-
ministicstrategy for non-deterministic computations.

Strategies for computations that include pull-tab steps are scarce and their properties
are only partially known. In particular, we are not aware of any result concerning the
theoretical performance of any such strategy. Braßel [11] considers a language withlet
andcaseexpressions which serves the same purpose as ourLOISprograms. He proves
the soundness and completeness of computations within thislanguage with respect to a
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natural semanticsbased on small steps overheapsandconfigurations. Our results are
comparable.

2.6 Compilation

We describe the compilation of functional logic programs abstractly. The input of the
compilation is aLOISsystemS, and called thesourceprogram. We construct the def-
initional tree of every operation ofS’s signature except the choice operation, since its
rules are not applied. We compile both the signature and the set of these trees ofS into
3 targetprocedures denotedN (Normalize),H (Head-normalize) andA (Adjust). At the
conceptual level, these procedures are thetargetprogram, the executable code resulting
from the compilation ofS.

To present thetarget program, we introduce the notion of trace of a node. This
notion allows us to keep track of a subexpression in a graph after the graph undergoes
a sequence of replacements.

Definition 5 (Trace). Let g0, g1, . . . be a sequence of expressions such that, for all
i > 0, gi is obtained fromgi−1 by a replacement, i.e., there exist an expressionri−1

compatible[17, Def. 6]with gi−1 and a nodepi−1 such thatgi = gi−1[pi−1 ← ri−1].
A nodem of gi is called atraceof a noden of gj , for j 6 i, according to the following
definition by induction oni > 0. Base case,i = 0: m is a trace ofn iff n = m. Ind. case,
i > 0: by assumptiongi = gi−1[pi−1 ← ri−1] and by the induction hypothesis it is
defined whether a nodeq of gi−1 is a trace ofn. A nodem of gi is a trace of a noden
of gj iff there exists a traceq of n in gi−1 such thatm = q or m is the root ofri−1 and
q = pi−1.

Definition 6 (Target procedures).Eachprocedureof thetargetsystem takes a graph
as argument. Each procedure is defined by cases on its argument. Each case, called
a rule, is selected by pattern matching and is defined by a possibly empty sequence
of semicolon-terminated actions, where anaction is either a recursive call to atarget
procedure, or a graph replacement[17, Def. 9] resulting from either a rewrite[17,
Def. 23], or a pull-tab step[6, Def. 2]. The rules are presented in Fig. 1. The rules
have a priority as in common functional languages. Rules with higher priority come
first in textual order. The application of a rule is allowed only if no rule of higher
priority is applicable. Any reference to a node in the actions of any rule is thetraceof
the node being referenced, i.e., tracing is consistently and systematically used by every
rule without explicit notation. The notationnull is a visible representation of the empty
sequence of actions. The notationPg(d, s) is the pull-tab transformation with source
s and destinationd in g. The notationg[h ← e] is the replacement ing of h with e.
Graphs are written inlinear notation [17, Def. 4], e.g., ing : e, g is the root node of
expressione, with the convention that nodes are explicitly written onlywhen they need
to be referenced.

ProcedureN computes the values, if any, of an expression of thesourceprogram.
A representationin the sense of [6, Def. 5] of these values is obtained by applying N
to a top-level expressione. Typically, N will make recursive calls and/or invoke the
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N(?i (nx : , ny : )) = N(nx);N(ny); N.1
N(g : c(nx1

: , . . . nxk
: )) = N(nx1

); . . .N(nxk
);A(g); N.2

N(g : f( , . . . )) = H(g);N(g); N.3

A(g : c(p : ?i ( , ), , . . . )) = Pg(g, p);A(L(g));A(R(g)); A.1
A(g : c( , p : ?i ( , ), . . . )) = Pg(g, p);A(L(g));A(R(g)); A.1
...
A(g : c( , , . . . p : ?i ( , ))) = Pg(g, p);A(L(g));A(R(g)); A.1
A(c( , , . . . )) = null A.2

compile T
case T of
when branch(π, o, T̄ ) then
∀Ti ∈ T̄ compile Ti
output H(g : π[o← p : ?i ( , )]) = Pg(g, p); H.1
output H(g : π) = H(π|o); H.2

when rule(π, l→ r) then
output H(g : l) = g[g ← r]; H.3

H(c( , . . . )) = null H.4

Fig. 1: Compilation of asourceprogram with signatureΣ into a target program con-
sisting of 3 procedures:N, H andA. The rules ofN andA depend only onΣ. The rules
of H are obtained from the definitional tree of each operation ofΣ with the help of the
procedurecompile. The structure of the rules and the meaning of symbols and nota-
tion are presented in Def. 6. The symbolsc andf stand for a generic constructor and
operation of thesourceprogram andi is a choice identifier. A symbol of arityk is al-
ways applied tok arguments.L andR denote the left and right successors, respectively,
of a choice node. The call to atargetprocedure with some argumentg consistently and
systematically operates on thetraceof g. Hence, tracing is not explicitly denoted.

proceduresH andA. If N(e) derivese to a non-deterministic valuev, then some further
processing is necessary to obtain the deterministic valuesrepresented byv.

ProcedureA extracts the deterministic values, if any, produced by a call to N. This is
obtained by pulling choices higher in an expression until they either reach the root or are
just below choices only. In rules labeledA.1, any expression that applies a constructor
symbol to a choice results in a new choice of two expressions,one for each alternative
of the original choice (all the rules except the last one). This transformation brings
choices at the top of an expression and obtains alternativesthat are choice free. In the
rule labeledA.2 (the last one), the argument has no choice to pull up, and no action is
performed.

ProcedureH executes rewrite and pulltab steps. A redex of either kind ofsteps is
always operation-rooted. Each operationf of thesourceprogram contributes a handful
of rules definingH. We call themHf–rules. The pattern (in thetargetprogram) of all
these rules is rooted byf . Consequently, the order in which the operations of thesource
program are translated is irrelevant. However, the order among theHf–rules is relevant.
More specific rules are generated first and hence have higher priority. All the Hf–rules
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are generated by an abstract procedure,compile, that traverses a definitional tree,T ,
of f in post-order. Upon visiting a node ofT , compile generates some rules depend-
ing on the node’s kind, i.e.,branch, rule or exempt. Since there can be severalbranch
andrule nodes in a definitional tree of operationf , there can be several distinct rules
of the same type among theHf–rules. The last rule, labeledH.4, handles situations in
which H is applied to an expression which is already constructor-rooted. This applica-
tion will occur only to nodes that are reachable along multiple distinct paths.

Definition 7 (Target computation). Let S be aLOIS program andT the targetpro-
gram obtained fromS with the basic scheme. IfA is an action, the computation of
A, denoted∆(A) is inductively defined as follows. IfA is a graph replacement, then
∆(A) = A. Otherwise,A = Y (e) for some target procedureY of T and some expres-
sione of S. If some rulel = a1, a2, . . . , an, for n > 0, (of highest priority) is appli-
cable toY (e), i.e.,Y (e) = σ(l) for some matchσ, then∆(Y (e)) = (Y (e), B), where
B = ∆(σ(a1)), ∆(σ(a2)), . . . , ∆(σ(an)). Otherwise∆(Y (e)) = Y (e). If ∆(Y (e)) is
finite, then a left-to-right traversal of its rewrite and pull-tab steps is called thesimu-
latedcomputation ofe and denotedω(Y (e)).

A computation in thetarget program is a possibly infinite, finitely branching, ordered
tree in which a branch is an application of atargetprocedure that has a matching rule,
whereas a leaf is an application that has no matching rule or either a rewrite or a pull-
tab step in thesourceprogram. Under appropriate conditions, a left-to-right traversal
of the computation ofN(e), wheree is an expression of thesourceprogram, visits the
sequence of steps of a computation ofe in thesourceprogram.

2.7 Optimization

A rewrite step computed by functionH is applied to an operation-rooted redex, say
t. If this step ist → s and s is again operation-rooted, then the basic scheme will
again apply functionH to s in an attempt to derives to a constructor-rooted expression.
This property suggests an optimization which is nearly always very effective. Instead of
executing a single step att, execute an entire derivation starting witht and ending with a
non-operation-rooted expression. The implementation whose benchmarks are presented
later includes this optimization.

3 Pull-tabbing

The basic scheme implements computations that execute rewrite and pull-tab steps, but
never reduce a choice. The idea behind pull-tabbing was originally presented in [15]
and further refined in [11]. A detailed description of pull-tabbing and a proof of its
correctness in the framework of graph rewriting are in [6]. Below we give an informal
account of the intended use of pull-tabbing within the context of our work. During the
computation of an expressione, choices are pulled toward the root of the state of the
computation. A choice with several predecessors is pulled up toward the root along
several paths, and hence the choice is cloned. Each clone of the choice has the same
identifier as the original. A choice is never pulled above another choice. The result is a
non-deterministic value(see Def. 1).
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The deterministic values ofe are found by traversing the choices at the top of a
state of the computation ofe. If the left alternative of a choice identified by somei
is traversed, then the left alternative of any other choice identified byi must be tra-
versed as well, and likewise for the right alternative. A traversal violating this condition
combines together subexpressions originating from mutually exclusive alternatives of
the same choice. Nodes and paths on such traversals are called inconsistentand must
be discarded, since the values that they produce may be unsound. Fig. 2 demonstrates
pull-tabbing.

3.1 An example

Let t = (notx,notx) wherex=True?False. We evaluatet with the basic
scheme. Thesourceprogram defines only the Boolean negation,not. TheHnot-rules
are shown below:

H(g : not True) = g[g ← False];
H(g : not False) = g[g ← True];
H(g :not(?i (hx :_,hy :_))) = g[g ← ?i (not hx, not hy)];
H(g : not h :_) = H(h);

(3)

Informally, the first rule replacesnotTrue with False. The second rule is sim-
ilar. Both rules execute a rewrite. The third rule replacesnot(x ?i y) with
(not x) ?i (not y). This rule executes a pull-tab which “distributes” the ap-
plication ofnot to the choice’s alternatives for further evaluation. The fourth rule is
fired only when the argument ofnot is operation-rooted. The argument must be head-
normalized in order to head-normalizeg.

A compact representation of the evaluation oft by the target program is shown
in Fig. 2. Each snapshots depicts a state of the computation with applications oftarget
procedures to some of its nodes. The third snapshot shows thenecessity of tracing. First,
procedureH is applied a node, sayn, labeled bynot. Then, procedureN is applied to
thetraceof n, i.e., the result of the previous application ofH.

In the last graph of Fig. 2, the applications ofA do not result in any replacement.
As discussed at the beginning of this section, the values ofe are found by traversing the
choices at the top of the state of the computation. In this example, all the choices have
the same identifier and thus are intended as the same choice. There are four traversals,
but two of them are discarded because they combine mutually exclusive alternatives
of choices with the same identifier. The discarded traversals yield (True,False)
and (False,True) that are not values oft. Thus, the computed values oft are
(True,True) and(False,False).

4 Correctness

We compile asourceprogramS into a target programT . The intent is to useT for
the computations ofS. The advantage is thatT defines both which redex to reduce and
when to reduce it, whileS does neither. Informally speaking,T isS with both astrategy
and explicitpull-tabsteps. The latter is quite convenient because neither do we have to
irrevocably choose one alternative of a choice over the other alternative nor do we have
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Fig. 2: Annotated states of the computation of(not x,not x) where
x=True?False. The symbolsT and F are shorthands forTrue and False
respectively. A superscript of a symbol denotes the application of a targetprocedure
to the node labeled by that symbol. The states are in chronological order, but zero or
more replacements may be executed between adjacent states.

to manage multiple computations. Obviously, we expectT to produce the same results
that would be produced byS. While at the conceptual level this is true, the statement
of correctness is not so direct becauseT is deterministic whereasS is not. In particular,
thesinglecomputation ofN(e) in T , for somee in S, simulatesall the computations of
e in S and consequently ife has both terminating and non-terminating computations,
the computation ofN(e) is non-terminating.

In the statements of this section, the equality of graphs is implicitly modulo a re-
naming of nodes, a standard practice in graph rewriting [17,Def. 15], since every node
introduced by a replacement is “fresh”, see also [6, Princ. 1]. The word “simulation”
stems from some similarity of our work with transformationsof rewrite systems for
compilation purposes [20,31].

Lemma 1 (Simulation).LetS be aLOIS program,T the program obtained fromS ac-
cording to the basic scheme,e an expression ofS, andY a procedure ofT . If ∆(Y (e))
is finite, thenω(Y (e)) is a pull-tabbing derivation ofe in S, i.e.,e = t0 Ξ→ t1 Ξ→ . . . tn,
for somen > 0.

Informally speaking, Lemma 1 shows that a computation in thetargetprogram can be
seen as a pull-tabbing computation in thesourceprogram. This is instrumental for the
correctness of the basic scheme. Aconsistent computation[6, Def. 4] is a derivation
that for each choice identifier consistently selects eitherthe left or the right alternative
of any choice with that identifier.

Proposition 1 (Correctness).Let S be aLOIS program,e an expression ofS, T the
targetprogram obtained fromS by the basic scheme,N theNormalizeprocedure ofT ,
andω(N(e)) = t0 Ξ→ t1 Ξ→ . . . Modulo a renaming of nodes:(1) if tk is an element of
ω(N(e)), for somek > 0, andtk

∗

→ v is a consistent computation inS, for some value
v of S, thene

∗

→ v in S; and (2) if e
∗

→ v in S, for some valuev of S, and tk is an
element ofω(N(e)), for somek > 0, thentk

∗

→ v, for some consistent computation in
S.
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Given an expressione of thesourceprogram, we evaluateN(e) in the targetprogram.
From any statet of this computation ofe, through consistent computations, we find all
and only the values ofe in S. Point (1) ensures thesoundnessof the basic scheme—the
targetprogram does not derive any value ofe that is not derivable in thesourceprogram.
Point (2) ensures a weak form ofcompleteness—from any state of a computation in
targetprogram it is possible to derive any value ofe. The latter is a weak result since,
e.g., any hypotheticaltarget program that rewritese to itself ad infinitum satisfies the
same completeness claim.

We believe that the basic scheme satisfies a stronger completeness result. Ife is an
expression of asourceprogramS, andT is the target program obtained fromS with
the basic scheme, then every step of the simulated computation of e is needed modulo
two appropriate conditions discussed below.

The first condition concerns the fact that pull-tab computations may create subex-
pressions that are inconsistent in the sense defined earlier. The basic scheme as pre-
sented in Fig. 1 ignores this possibility when computing a step. Our implementation
passes afingerprint [8,14] to thetargetproceduresN andA and therefore avoids com-
puting steps on subexpressions that are known to be inconsistent.

The second condition concerns the fact—well-know from [2]—that a step computed
using definitional trees inLOISsystems is neededmodulo a non-deterministic choice.
This condition is perfectly natural when non-determinism is used to abstract lack of
information for making “the right choice”.

The basic scheme of Fig. 1 suffers from the “left bias”. For example, the first rule,
N.1, attempts to normalize the left alternative of a choice first. If this computation does
not terminate, the right alternative will never be considered. Several other rules exhibit
the same behavior. The left bias can be avoided by interleaving the evaluation, e.g., one
or a few steps at the time, of the left and the right alternative of a choice.

5 Implementation

We implemented the basic scheme in a prototype codenamedViaLOIS consisting of
a translator fromsourceprograms totarget programs and a small run-time environ-
ment. The translator takes as inputFlatCurry [27], a representation of Curry pro-
grams generated by a module of the PAKCS [28] distribution of Curry, and produces
as output the 3target procedures encoded in OCaml [35]. The run-time environ-
ment provides both support for the execution of the 3target procedures and a few
extensions of the basic scheme described below. Our implementation is available at
http://web.cecs.pdx.edu/̃ amp4/vialois.

5.1 Representation and replacement

An expression of thesourceprogram is represented by an OCaml mutable record con-
taining a symbol and the sequence of its arguments. This record abstracts a graph’s
node, in particular its labeling and successor functions. Symbols come in a handful of
variants the most important of which areconstructor, operationand choice. Choice
symbols carry an argument, the choice identifier.
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Beside the 3targetprocedures, the run-time environment provides some function-
ality for the manipulation of the records representing expressions: accessor functions,
printing functions, and most noticeably a procedure for subexpression replacement. Re-
placements, which originate only from rewrite and pull-tabsteps, are “in-place”, i.e.,
through assignments to records representing expressions.This design eliminates the
need for pointer redirection [17, Def. 8], which is an expensive operation, but requires
that all records have the same structure and that anindirection node[32, Sec. 8.1] be
used for the replacement of a collapsing rule.

5.2 Extensions

To make the basic scheme practical, the implementation provides the following exten-
sions.

Built-in Types: Built-in types, such as the integers, are allowed insourceprograms.
A value of a built-in type is represented by a record whose “symbol” carries a literal,
such as an integer. A built-in operationf , such as “+” on the integers, is simply the
operation’sHf–rules hand-coded in OCaml. Adding new built-in types and built-in
operations is straightforward.

Variables: Curry allows free variables in source programs’ operations’ rules. Our for-
malization excluded these variables. Our implementation represents free variables by
a generator, a zero-arity function symbol of some typet, which lazily derives to any
value oft according to [7]. Variables of large built-in types, such asthe integers, are
impractical and therefore are not allowed, although [12] shows that variables of type
integer can be narrowed if the integers are algebraically defined.

Higher Order: To allow higher-order functions, we introduce two symbols,partial
andapply, that are not in thesourceprogram.Partial acts as a constructor and
apply is a function that manipulates the representation of expressions to handle partial
application. This is a standard technique [37] to “firstify”higher-order programs.

Explicit Failure: Earlier we discussed expressions, such ashead[], that cannot be
reduced to values (constructor normal forms) because they originate from incompletely
defined operations. We represent expressions of this kind with a distinguished symbol
called “fail”. In our compiler, the procedurecompile generatesH-rules that rewrite
to fail upon visitingexemptnodes. Furthermore, the rules ofH andA are extended to
rewrite an expressiont to fail when an inductive position matchesfail. For example, the
rules in (3) are extended with

H(g : not fail) = g[g ← fail]; (4)

5.3 Limitations

The translator ofViaLOISdoes not yet support allFlatCurry constructs and some fea-
tures provided by more mature implementations. However, the supported subset is large

27



enough to encode any Curry program into an equivalent program that can be translated
by ViaLOIS. Cyclic expressions are not supported, but recursive values can be converted
to nullary functions that build the appropriate infinite value lazily. Modular compilation,
functional patterns and set functions are not supported as well, but in our framework,
except for the latter, these features entail only modest code extensions that do not affect
architecture or the core of our implementation. Hence, their introduction should affect
the performance only marginally.

5.4 Performance

Fig. 3 and 4 respectively compare the size in lines of code andthe performance on a
few benchmarks of several Curry systems. We believe that thesmall footprints of our
compiler and runtime are due only in small part to our implementation’s limitations. The
implementation of the basic scheme is subjectively very simple, being a straightforward
encoding of the rules of Fig. 1, and competitively efficient.

Compiler Runtime

ViaLOIS 0.5 (Curry) 0.6 (OCaml)
K ICS2 4.6 (Curry) 1.5 (Haskell)
PAKCS 4.7 (Prolog) 3.3 (Prolog)
MCC 4.3 (Haskell) 9.6 (C)

Fig. 3: Lines of code (in thousands) of several Curry systems. Line counts exclude com-
ments, blank lines, and the standard library. Built-in functions are included as part of
the runtime.
- PAKCS is a mature implementation that compiles to Prolog and hencehandles non-

determinism using backtracking.
- K ICS2 is a recent implementation that compiles to Haskell and uses pull-tabbing for

non-determinism.
- MCC is a compiler and virtual machine written in C and based on backtracking.

The benchmarks are:

ChoiceIDs, a non-deterministic benchmark testing the performance of programs with a
large number of independent choices. The program non-deterministically generates
every integer in a large set looking for a specific value.

PermSort [29], a non-deterministic benchmark testing the performance of non-
deterministic search. The program sorts a list of 13Ints using a permutation sort.

Sharing, a non-deterministic benchmark testing for sharing of results between non-
deterministic branches. The program performs a permutation sort over a list of 5
numbers computed by a small version of the Tree benchmark.

Tree, a deterministic benchmark testing the performance of data structures and recur-
sion. The program inserts 200,000 pseudo-random numbers into a binary search
tree and then counts the number of elements in the tree.
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6 Related work and concluding remarks

The implementation of lazy, functional logic languages is along-standing and active
area of research whose difficulties originate from the combination of laziness, non-
determinism and sharing.

The 90’s saw various implementations, e.g., PAKCS [28], and implementation ap-
proaches [23] in which Prolog is the target language. This target environment provides
built-in logic variables, hence sharing, and non-determinism through backtracking. The
challenge of these approaches is the implementation in Prolog of lazy functional com-
putations.

The following decade saw the emergence of virtual machines,e.g., [10,30,34], with
a focus on operational completeness and/or multithreading. In more recent implemen-
tations [11,13,19], Haskell is the target language. This target environment provides lazy
functional computations and to some extent sharing. The challenge of these approaches
is the implementation of non-determinism in Haskell.

Our approach relies less on the peculiarities of the target environment than most
previous approaches. In fact, in addition to the implementation described in Section 5,
we have easily prototyped a different implementation in an object-oriented language
in which the nodes of an expression are objects and the targetprocedures are methods
dynamically dispatched on the type of these objects.

The basic scheme is conceptually simple, based on localizedgraph replacements,
and easy to control. Concurrency is a major impulse behind our research and local-
ization of updates, joined with a high degree of control and an independence of any
particular run-time environment, makes the basic scheme a good starting point for par-
allel implementations.
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pages 215–223, Ẅurzburg, Germany, October 2007. Technical Report 434.

16. R. Caballero and J. Sánchez, editors.TOY: A Multiparadigm Declarative Language (version
2.3.1), 2007. Available athttp://toy.sourceforge.net.

30

http://cs.pdx.edu/~antoy/homepage/publications/alp97/full.pdf
http://toy.sourceforge.net


17. R. Echahed and J. C. Janodet. On constructor-based graph rewrit-
ing systems. Technical Report 985-I, IMAG, 1997. Available at
ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz.

18. R. Echahed and J. C. Janodet. Admissible graph rewriting and narrowing. In Proceedings
of the Joint International Conference and Symposium on Logic Programming, pages 325 –
340, Manchester, June 1998. MIT Press.

19. S. Fischer, O. Kiselyov, and C. Chieh Shan. Purely functional lazynondeterministic pro-
gramming.J. Funct. Program., 21(4-5):413–465, 2011.

20. W. Fokkink and J. van de Pol. Simulation as a correct transformationof rewrite systems.
In In Proceedings of 22nd Symposium on Mathematical Foundations of Computer Science,
LNCS 1295, pages 249–258. Springer, 1997.
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Artalejo. An approach to declarative programming based on a rewriting logic. The Journal
of Logic Programming, 40:47–87, 1999.

22. M. Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994.

23. M. Hanus. Efficient translation of lazy functional logic programs intoprolog. InLOPSTR
’95: Proceedings of the 5th International Workshop on Logic Programming Synthesis and
Transformation, pages 252–266, London, UK, 1996. Springer-Verlag.

24. M. Hanus. Functional logic programming: From theory to Curry. Tech-
nical report, Christian-Albrechts-Universität Kiel, 2005. Available at
http://www.informatik.uni-kiel.de/∼mh/publications/reports/.

25. M. Hanus, editor.Curry: An Integrated Functional Logic Language (Vers. 0.8.2), 2006.
Available athttp://www-ps.informatik.uni-kiel.de/currywiki/.

26. M. Hanus. Multi-paradigm declarative languages. InProceedings of the International Con-
ference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

27. M. Hanus. Flatcurry: An intermediate representation for Curry programs. Available at
http://www.informatik.uni-kiel.de/∼curry/flat/, 2008.

28. M. Hanus, editor.PAKCS 1.9.1: The Portland Aachen Kiel Curry System, 2008. Available
athttp://www.informatik.uni-kiel.de/∼pakcs.

29. M. Hanus. KiCS2 benchmarks. Available at
http://www-ps.informatik.uni-kiel.de/kics2/benchmarks/, 2011.

30. M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation
in Java.Journal of Functional and Logic Programming, 1999(Special Issue 1):1–45, 1999.

31. J. F. T. Kamperman and H. R. Walters. Simulating TRSs by minimal TRSs a simple, efficient,
and correct compilation technique. Technical Report CS-R9605, CWI, 1996.

32. J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. de Vries. The adequacy of term graph
rewriting for simulating term rewriting. In M. R. Sleep, M. J. Plasmeijer, andM. C. J. D.
van Eekelen, editors,Term Graph Rewriting Theory and Practice, pages 157–169. J. Wiley
& Sons, Chichester, UK, 1993.
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