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Abstract. We present the design of a compiler for a functional logic program-
ming language and discuss the compiler’s implementation.sbeceprogram

is abstracted by a constructor based graph rewriting system obtaimea frtonc-
tional logic program after syntax desugaring, lambda lifting and similaistran
formations provided by a compiler’s front-end. This system is nonragtgstic
and requires a specialized normalization strategy.t@lget program consists of
3 procedures that execute graph replacements originating from egtlgter or
pull-tab steps. These procedures are deterministic and easy to encal®iin
dinary programming language. We describe the generation of the 8daraes,
discuss the correctness of our approach, highlight some key eleofearsim-
plementation, and benchmark the performance of a proof-of-gdn@air com-
pilation scheme is elegant and simple enough to be presented in one page.

1 Introduction

Our goal is the efficient execution of functional logic cortgtions for the implemen-
tation of programming languages such as Curry [25] A [16]. A functional logic
language offers functional application, as found in Hdskél and Scheme, and logic
(also called free or unbound) variables, as found in Proldge logic variables intro-
duce non-determinism. Functional logic languages alser effsecond, more function-
oriented, form of non-determinism, “non-deterministiaétions”. A non-deterministic
function (some people prefer to call it “operation”) is a ¢tion-like symbol that when
applied to some argument returns one among several relsoff variables and non-
deterministic functions, although apparently very difier, are equivalent]7.33] in the
sense that one is easily replaceable by the other withonphg a program’s meaning.
Current functional logic languages provide syntax for biottms of non-determinism
for the convenience of the programmer.

Non-determinism is frequently and conveniently used ingpmming when the
information to make “the right choice” is missing or incoraf@. For example, consider
a program for solving the-queens puzzle. The program places one queen after another
on the board, but the information for appropriately chogsiows and columns of a
placement is incomplete. Thus, rows and columns are nar+detistically chosen and
each choice is constrained to ensure the solution of thelgaulzz many situations,
constraining a value that solves a problem is much simpkan tomputing that value
[5]—even when the information for computing that value isikaize.
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While non-determinism in a functional setting is very exgies and convenient
for the programmer]5], its implementation, particulanlydombination with laziness
and sharing, is difficult. This paper presents a relativetype, complete and compact
solution to this problem.

2 The Basic Scheme

In this section we formalize the programs to which our desggapplicable and the
compilation scheme, which we call thasic schemefor these programs. We assume
some familiarity with the concepts of functional logic pramming [9,21.212,24.26]
and graph rewriting [1[7,118.86] as a formal model of funcéildogic computations.

2.1 Symbols and Expressions

A programis a pair(X U X', R) in which ¥ = C W D is asignaturepartitioned into
constructorsandoperationgor functions) X’ is a denumerable set of (boundjriables
andR is a set ofrewrite ruleswith the characteristics discussed below. Without further
mention, we assume that the signature is many sorted andmlatxpression, to be
defined shortly, over the signature is well typed. Each sukft-hand side is pattern
i.e., anoperationsymbol applied to zero or more expressions consistirgpogtructor
symbols and/or variables only. Each operatiorDiris inductively sequentidd], i.e.,
its rewrite rules are organized in a hierarchical structaled adefinitional treewvhose
definition is given in the next section.

Non-determinism is abstracted by a binary, infix, polymacpperation, denoted
“?" and called thechoiceoperator, and defined by the rules:

X ? =X 1

_?y =y @
We will never apply the choice’s rules in a computation faasens that will be pre-
sented shortly.

Each occurrence of the choice symbol is tagged with an ifien{ic] which is not a
part of the source program. This identifier is used dupuoti-tab steps which are exe-
cuted by our compilation scheme and will be defined shorthe iientifier of a choice
is denoted as a subscript of the choice symbol. We make thentian that every time
a noden labeled by the choice symbol is created either for a toptexgression or by
a rewrite, the choice identifier of is fresh.

A term graph also called aexpressionis defined in the customary way [17, Def.
2], but we extend the decorations of some nodes with a chdestifier [6, Def. 1].
An expressiore is avalueiff every node ofe is labeled by a constructor symbol. Val-
ues are normal forms, but there are normal forms that are aloes, e.g.1/ 0 and
head[] . In a constructor-based system, such expressions araleebasfailures or
exceptionsather than results of computations. The following defomitis motivated by
our decision of not applying the rules o?™.

Definition 1 (Non-deterministic value).We call an expressioa a hon-deterministic
valueiff either e is a value ore = «? v for some non-deterministic valuesand v.
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We may say eterministic valuéto emphasize that some non-deterministic value is a
value.

2.2 Definitional Trees

A definitional tree is a structure derived from the rewritkesuidefining an operation in a
program. Our presentation is identical fd [1] except forighély updated terminology.
In particular, the expressions of the definition are grafdi§.[A simple algorithm for
constructing definitional trees from the rules defining aeragion is in [4]. We use
standard notations, in particulartiindu are expressions ands a node ot, thent|,,

is thesubexpressionf ¢ rooted atp [17, Def. 5] andt[p + u] is thereplacemenby u
of the subexpression ofrooted byp [17, Def. 9].

Definition 2. 7T is a partial definitional tregor pdt, if and only if one of the following
cases holds:

T = branch(rw,o0,T), Wherer is a pattern,o is a node, callednductive labeled by
a variable ofr, the sort ofr|, has constructorg;, . .., ¢, in some arbitrary, but
fixed, ordering, 7 is a sequencdy, ..., 7, of pdts such that for ali in 1,...,k
the pattern in the root of; is w[o < ¢;(z1, ..., x,)], wheren is the arity ofc; and
x1,...,T, are fresh variables.

T = rule(mw,l — r), wherer is a pattern and — r is a rewrite rule such that = 7
modulo a renaming of variables and nodes.

T = exempt(w), wherer is a pattern.

Definition 3. 7 is a definitional treeof an operationf if and only if 7 is a pdt with
f(z1,...,x,) as the pattern argument, whereis the arity of f and x4, ..., x, are
fresh variables.

Definition 4. We call an operationf of a rewrite systenk inductively sequentiaif
and only if there exists a definitional trge of f such that the rules contained ih are
all and only the rules definingj in R. We call a rewrite systefR inductively sequential
if and only if all operations ofR are inductively sequential.

Exemptodes are present in a tree of an incompletely defined operatily. Patterns
do not need explicit representation in a definitional treewklver, we will keep them
around when their presence simplifies the presentationratieas.

2.3 Programs

The programs that we intend to compile are abstracted by lastuglied class of sys-
tems, thdimited overlapping, inductively sequential, graphs réing systemgLOIS).

A general treatment of graph rewriting suitable for our msgs is in[[17]LOIS sys-
tems are discussed inl[4]. In particular, i®IS systems, there is a single operation
whose rules’ left-hand sides overlap. This is theiceoperation defined il {1). Source
programs are coded in a functional logic language such ay©uf O) . After desug-
aring, lambda lifting, firstification, deconditionalizati, etc., we obtaih OIS systems.
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A LOIS system can be seen as a set of definitional trees. In the retidrseve show
how to compile these trees into an executable program.

LOIS systems are an ideal core language for functional logicrprog.LOIS sys-
tems are general enough to perform any functional logic edatjmn [3] and powerful
enough to compute by simple rewritirig [7] without wastingpst [2]. Also for every
LOIS system containinfree (unbound) variables there is an equivalent system that re-
places theree variables with non-deterministic operationg [7,33]. Henas in other
similar approache$ [15], we exclude free variables fromamue language. Sectidn 5
will address this point in practice.

2.4 Computations

A computation(or derivatior) of an expressiomr is a finite or infinite sequence =

eg = e1 = ... such thate; =»e;, 1 IS a step. Astepis a pair of expressions=> u,
such that is obtained fromt by either of two transformations,rawrite [17], denoted
“—" or apull-tab[6], denoted £” The initial expression of a computation is called the
top-levelexpression and each element is callesfetie of the computation

Ina Curry or7 Q) program, some computations of an expression are “subsiignti
different”, i.e., they differ in more than the order of thess. The outcomes of these
computations may include distinct values, exceptions/@nabn-termination. These
differences originate from non-deterministic choicesanmticular from the application
of the choice’s rules defined inl(1).

Pull-tabbing keeps all the outcomes of an expression inglesstructure, the state
of the computation. Informally, an application of a symbab a choicer ?; y is rewrit-
tento(s x) % (s y) without committing to either alternative. Pull-tabbingshthe useful
property that computations of subexpression are autoallgtishared between alter-
natives and still evaluated lazily. Any deterministic walaf the computation can be
“extracted” from the state of the computation. This is inttast with other approaches
to non-deterministic steps, which either selecty onealternative, e.g.backtracking
or managenultiplecomputations, e.gcloning

2.5 Strategy

An evaluation strategy determines the steps of a computaliterestingrewriting
strategies are well understood for several practical efassfunctional logic programs
[4]. Strategies for non-deterministic computations angidglly non-deterministic as
well. While this simplifies the formulation of a difficult prtém, it leaves to the im-
plementation the burden of selecting which step to exech&wthe strategy computes
many non-deterministic steps. There are cgs€es [28,34] ichvthis selection sacrifices
the strategy’s operational completeness. A major cortidbwf our work is adeter-
ministicstrategy for non-deterministic computations.

Strategies for computations that include pull-tab stepsearce and their properties
are only partially known. In particular, we are not aware 0y aesult concerning the
theoretical performance of any such strategy. Brd3¢l [ahbiclers a language witat
andcaseexpressions which serves the same purpose as@Ii8programs. He proves
the soundness and completeness of computations withitatigsiage with respect to a
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natural semantichbased on small steps ovieeapsandconfigurations Our results are
comparable.

2.6 Compilation

We describe the compilation of functional logic programstedxtly. The input of the
compilation is aLOIS systemS, and called thesourceprogram. We construct the def-
initional tree of every operation di’s signature except the choice operation, since its
rules are not applied. We compile both the signature andahefshese trees & into
3targetprocedures denotdd (Normalize) H (Head-normalize) and (Adjust). At the
conceptual level, these procedures aredingetprogram, the executable code resulting
from the compilation of5.

To present thaarget program, we introduce the notion of trace of a node. This
notion allows us to keep track of a subexpression in a grateh tife graph undergoes
a sequence of replacements.

Definition 5 (Trace). Let g, g1, ... be a sequence of expressions such that, for all
1 > 0, g; is obtained fromy;_, by a replacement, i.e., there exist an expression
compatiblef17, Def. 6]with g;_; and a nodep;_; such thaty; = g;—1[pi—1 < ri-1].

A nodem of g; is called atraceof a noden of g;, for j < 4, according to the following
definition by induction on > 0. Base case, = 0: m is a trace ofn iff n = m. Ind. case,

i > 0: by assumptiory; = g;—1[pi—1 < r;—1] and by the induction hypothesis it is
defined whether a nodgof g;_; is a trace ofn. A nodem of g; is a trace of a node:

of g; iff there exists a traceg of n in g;_; such thatn = ¢ or m is the root ofr;_; and

q=DPi-1-

Definition 6 (Target procedures).Eachprocedureof thetargetsystem takes a graph
as argument. Each procedure is defined by cases on its arguBach case, called
a rule, is selected by pattern matching and is defined by a possibpgtyesequence
of semicolon-terminated actions, where @ttionis either a recursive call to #arget
procedure, or a graph replacemefi7, Def. 9] resulting from either a rewritd17,
Def. 23], or a pull-tab step[6, Def. 2] The rules are presented in Figl 1. The rules
have a priority as in common functional languages. Rule& Wwigher priority come
first in textual order. The application of a rule is allowedlpnf no rule of higher
priority is applicable. Any reference to a node in the actiaf any rule is theraceof
the node being referenced, i.e., tracing is consistentty systematically used by every
rule without explicit notation. The notatiamull is a visible representation of the empty
sequence of actions. The notatiBy(d, s) is the pull-tab transformation with source
s and destinationd in g. The notationg[h « e] is the replacement ig of h with e.
Graphs are written inlinear notation[[1l7, Def. 4]e.g., ing : e, g is the root node of
expressiore, with the convention that nodes are explicitly written onlyen they need
to be referenced.

ProcedureN computes the values, if any, of an expression ofsberceprogram.

A representationin the sense of |6, Def. 5] of these values is obtained by aipgly
to a top-level expressioa. Typically, N will make recursive calls and/or invoke the
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N(? (nz : ,ny : 2)) = N(nz); N(ny); N.1
N(g: c(nay @ o Ny 2 2)) = N(nay ); ... N(nay, ); Ag); N.2
N(g: f(5---2)) =H(g);N(g); N.3
Alg:clp: %(5-),-----) = Pe(g,p); A(L(9)); A(R(9)); A1l
A(g se(op i 2(50),-0) = Pylg, p); A(L(9)); A(R(9)); Al
Alg:clomenp 2% (o)) = Pylg P AlL(9)): A(R(9)): AL
Ale(s, -, ...)) = null A2
conpile T
case T of

when brazzch(ﬂ',o,'f) t hen
VT, €T conpile T;

output H(g:mlo<«p: 2 (- -)]) = Pylg,p); H.1
out put H(g:m) =H(nl|o); H.2

when rule(mw,l — r) then
output H(g:1)=glg <+ r; H.3
H(ce(s,...2)) = null H.4

Fig. 1: Compilation of asourceprogram with signature’ into atarget program con-
sisting of 3 procedure$d, H andA. The rules oN andA depend only o). The rules

of H are obtained from the definitional tree of each operatio® efith the help of the
procedureconpi | e. The structure of the rules and the meaning of symbols arat not
tion are presented in Ddif] 6. The symbeland f stand for a generic constructor and
operation of thesourceprogram and is a choice identifier. A symbol of arity is al-
ways applied té argumentsL and R denote the left and right successors, respectively,
of a choice node. The call totargetprocedure with some argumepntonsistently and
systematically operates on ttrace of g. Hence, tracing is not explicitly denoted.

procedures$i andA. If N(e) derivese to a non-deterministic value, then some further
processing is necessary to obtain the deterministic vaemesented by.

Procedure\ extracts the deterministic values, if any, produced by &a®. This is
obtained by pulling choices higher in an expression ungythither reach the root or are
just below choices only. In rules labeléd1, any expression that applies a constructor
symbol to a choice results in a new choice of two expressioms for each alternative
of the original choice (all the rules except the last one)isTthansformation brings
choices at the top of an expression and obtains alterndtiaesre choice free. In the
rule labeledA.2 (the last one), the argument has no choice to pull up, and timnas
performed.

ProcedureH executes rewrite and pulltab steps. A redex of either kinsteps is
always operation-rooted. Each operatjoaf the sourceprogram contributes a handful
of rules definingH. We call themH s—rules The pattern (in théarget program) of all
these rules is rooted hf;. Consequently, the order in which the operations oktharce
program are translated is irrelevant. However, the ordaratheH ;—rules is relevant.
More specific rules are generated first and hence have higioeity All the H y—rules
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are generated by an abstract procedaosypi | e, that traverses a definitional treg,

of f in post-order. Upon visiting a node @f, conpi | e generates some rules depend-
ing on the node’s kind, i.ehranch rule or exempt Since there can be sevetahnch
andrule nodes in a definitional tree of operatighthere can be several distinct rules
of the same type among th&,—rules. The last rule, labeldd.4, handles situations in
which H is applied to an expression which is already constructoted This applica-
tion will occur only to nodes that are reachable along midtiistinct paths.

Definition 7 (Target computation). Let .S be aLOIS program and?’ the targetpro-
gram obtained fromS with the basic scheme. | is an action, the computation of
A, denotedA(A) is inductively defined as follows. M is a graph replacement, then
A(A) = A. Otherwise A = Y (e) for some target procedur¥ of 7" and some expres-
sione of S. If some rulel = ay,as,...,a,, forn > 0, (of highest priority is appli-
cable toY (e), i.e.,Y (e) = o(l) for some matclr, thenA(Y (e)) = (Y (e), B), where
B = A(o(a1)),A(o(az)), ..., A(c(ay,)). OtherwiseA(Y (e)) = Y(e). If A(Y(e)) is
finite, then a left-to-right traversal of its rewrite and pahb steps is called theimu-
latedcomputation ot and denoteds(Y (e)).

A computation in thearget program is a possibly infinite, finitely branching, ordered
tree in which a branch is an application ofaaget procedure that has a matching rule,
whereas a leaf is an application that has no matching ruléfwrea rewrite or a pull-
tab step in thesourceprogram. Under appropriate conditions, a left-to-righ/érsal

of the computation oN(e), wheree is an expression of theourceprogram, visits the
sequence of steps of a computatioredf the sourceprogram.

2.7 Optimization

A rewrite step computed by functiod is applied to an operation-rooted redex, say
t. If this step ist — s and s is again operation-rooted, then the basic scheme will
again apply functiomd to s in an attempt to derive to a constructor-rooted expression.
This property suggests an optimization which is nearly gweery effective. Instead of
executing a single step gtexecute an entire derivation starting withnd ending with a
non-operation-rooted expression. The implementatiorsefi@nchmarks are presented
later includes this optimization.

3 Pull-tabbing

The basic scheme implements computations that executégemd pull-tab steps, but
never reduce a choice. The idea behind pull-tabbing wasnatly presented in[[15]
and further refined in([11]. A detailed description of pwbbing and a proof of its
correctness in the framework of graph rewriting are_in [6ld8v we give an informal
account of the intended use of pull-tabbing within the crinté our work. During the
computation of an expressian choices are pulled toward the root of the state of the
computation. A choice with several predecessors is pulfedoward the root along
several paths, and hence the choice is cloned. Each clome ahbice has the same
identifier as the original. A choice is never pulled abovethaochoice. The result is a
non-deterministic valuésee Def1L).
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The deterministic values af are found by traversing the choices at the top of a

state of the computation ef If the left alternative of a choice identified by some

is traversed, then the left alternative of any other choitaniified by: must be tra-
versed as well, and likewise for the right alternative. Avéniaal violating this condition
combines together subexpressions originating from miyteakclusive alternatives of
the same choice. Nodes and paths on such traversals arg ioat@sistentand must

be discarded, since the values that they produce may be nohsBig.[2 demonstrates
pull-tabbing.

3.1 Anexample

Lett = (not x, not x) wherex=True ?Fal se. We evaluate with the basic
scheme. Theourceprogram defines only the Boolean negatioat . TheHnpot -rules
are shown below:

H(g: not True) = g[g «+ Fal sej;

H(g : not Fal se) = glg « Truej; ®)
H(g:not( 2 (hy:_, hy:_)))=glg+ % (not hy, not hy)];
H(g:not h:_)=H(h);

Informally, the first rule replaceaot Tr ue with Fal se. The second rule is sim-
ilar. Both rules execute a rewrite. The third rule replacest (x ?; y) with
(not x) 2 (not y). This rule executes a pull-tab which “distributes” the ap-
plication ofnot to the choice’s alternatives for further evaluation. Therfb rule is
fired only when the argument ot is operation-rooted. The argument must be head-
normalized in order to head-normalige

A compact representation of the evaluationtdfy the target program is shown
in Fig.[2. Each snapshots depicts a state of the computaithrapplications otarget
procedures to some of its nodes. The third snapshot showgtiessity of tracing. First,
procedureH is applied a node, say, labeled bynot . Then, procedurdl is applied to
thetraceof n, i.e., the result of the previous applicationtbf

In the last graph of Fid.]2, the applicationsAfdo not result in any replacement.
As discussed at the beginning of this section, the valuesaoé found by traversing the
choices at the top of the state of the computation. In thisngte, all the choices have
the same identifier and thus are intended as the same chbieee @re four traversals,
but two of them are discarded because they combine mutusatlysve alternatives
of choices with the same identifier. The discarded travergild ( Tr ue, Fal se)
and (Fal se, True) that are not values of. Thus, the computed values ofare
(True, True) and( Fal se, Fal se).

4 Correctness

We compile asourceprograms' into atarget program7’. The intent is to usd" for
the computations of. The advantage is thdt defines both which redex to reduce and
when to reduce it, whil& does neither. Informally speaking,is S with both astrategy
and explicitpull-tab steps. The latter is quite convenient because neither dawetb
irrevocably choose one alternative of a choice over theratlernative nor do we have
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Fig.2: Annotated states of the computation d¢fnot x, not x) where
x=True ? Fal se. The symbolsl and F are shorthands forTr ue and Fal se
respectively. A superscript of a symbol denotes the apjicaf atargetprocedure
to the node labeled by that symbol. The states are in chrgidborder, but zero or
more replacements may be executed between adjacent states.

to manage multiple computations. Obviously, we exggétd produce the same results
that would be produced hy. While at the conceptual level this is true, the statement
of correctness is not so direct becallsis deterministic wherea$ is not. In particular,
thesinglecomputation ofN(e) in T, for somee in .S, simulatesall the computations of

e in S and consequently ¥ has both terminating and non-terminating computations,
the computation oN(e) is non-terminating.

In the statements of this section, the equality of graphmdicitly modulo a re-
naming of nodes, a standard practice in graph rewrifing [DEf, 15], since every node
introduced by a replacement is “fresh”, see also [6, PrificThe word “simulation”
stems from some similarity of our work with transformatiavfsrewrite systems for

compilation purpose$s [20,B1].

Lemma 1 (Simulation).LetS be aLOIS program,T’ the program obtained frorfi ac-
cording to the basic schemean expression of, andY a procedure of". If A(Y (e))
is finite, thenu(Y (e)) is a pull-tabbing derivation of in S, i.e.,e =ty =>t1 = ...1,,
for somen > 0.

Informally speaking, Lemmid 1 shows that a computation irtdéinget program can be
seen as a pull-tabbing computation in #@irceprogram. This is instrumental for the
correctness of the basic schemec@énsistent computatioff, Def. 4] is a derivation
that for each choice identifier consistently selects eithereft or the right alternative
of any choice with that identifier.

Proposition 1 (Correctness).Let .S be aLOIS program,e an expression of, T' the
targetprogram obtained frond' by the basic schemBl the Normalizeprocedure off’,
andw(N(e)) = to = t1; = ... Modulo a renaming of node$1) if ¢, is an element of
w(N(e)), for somek > 0, andt;, > v is a consistent computation i#, for some value
v of S, thene = vin S; and (2) if e = v in S, for some value of S, andt;, is an
element ofu(N(e)), for somek > 0, thent;, = v, for some consistent computation in
S.
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Given an expressioa of the sourceprogram, we evaluatl(e) in thetargetprogram.
From any state of this computation o¢, through consistent computations, we find all
and only the values afin S. Point (1) ensures theundnessf the basic scheme—the
targetprogram does not derive any valuecdhat is not derivable in thgeourceprogram.
Point (2) ensures a weak form cbmpletenessfrom any state of a computation in
targetprogram it is possible to derive any valueeofThe latter is a weak result since,
e.g., any hypotheticahrget program that rewrites to itself ad infinitum satisfies the
same completeness claim.

We believe that the basic scheme satisfies a stronger canpket result. If is an
expression of @ourceprograms, andT' is thetarget program obtained fron$' with
the basic scheme, then every step of the simulated compuitatte is needed modulo
two appropriate conditions discussed below.

The first condition concerns the fact that pull-tab compatet may create subex-
pressions that are inconsistent in the sense defined editierbasic scheme as pre-
sented in Fig[Jl ignores this possibility when computingesOur implementation
passes éingerprint[8l14] to thetargetprocedureN andA and therefore avoids com-
puting steps on subexpressions that are known to be in¢ensis

The second condition concerns the fact—well-know froin [2]at#step computed
using definitional trees ihOIS systems is needadodulo a non-deterministic choice
This condition is perfectly natural when non-determinisrused to abstract lack of
information for making “the right choice”.

The basic scheme of Figl 1 suffers from the “left bias”. Faaraple, the first rule,
N.1, attempts to normalize the left alternative of a choice.flfghis computation does
not terminate, the right alternative will never be consédeiSeveral other rules exhibit
the same behavior. The left bias can be avoided by interigatie evaluation, e.g., one
or a few steps at the time, of the left and the right altereadi/a choice.

5 Implementation

We implemented the basic scheme in a prototype codenafiae®IS consisting of

a translator fromsourceprograms tatarget programs and a small run-time environ-
ment. The translator takes as indetatCurry [27], a representation of Curry pro-
grams generated by a module of thexes [28] distribution of Curry, and produces
as output the 3arget procedures encoded in OCaml[35]. The run-time environ-
ment provides both support for the execution of théa®et procedures and a few
extensions of the basic scheme described below. Our impl@tien is available at
http://web.cecs.pdx.edu/~amp4/vialois.

5.1 Representation and replacement

An expression of theourceprogram is represented by an OCaml mutable record con-
taining a symbol and the sequence of its arguments. Thigdealostracts a graph’s
node, in particular its labeling and successor functiogml®ls come in a handful of
variants the most important of which acenstructor operationand choice Choice
symbols carry an argument, the choice identifier.
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Beside the 3arget procedures, the run-time environment provides some foncti
ality for the manipulation of the records representing egpions: accessor functions,
printing functions, and most noticeably a procedure foespbession replacement. Re-
placements, which originate only from rewrite and pull-&ibps, are “in-place”, i.e.,
through assignments to records representing expressibiss.design eliminates the
need for pointer redirection [17, Def. 8], which is an expem®peration, but requires
that all records have the same structure and thanairection nodef32, Sec. 8.1] be
used for the replacement of a collapsing rule.

5.2 Extensions

To make the basic scheme practical, the implementatioriges\the following exten-
sions.

Built-in Types: Built-in types, such as the integers, are alloweddurceprograms.

A value of a built-in type is represented by a record whoserilsgl” carries a literal,
such as an integer. A built-in operatigh such as 4" on the integers, is simply the
operation'sH y—rules hand-coded in OCaml. Adding new built-in types and built-in
operations is straightforward.

Variables: Curry allows free variables in source programs’ operatianss. Our for-
malization excluded these variables. Our implementateprasents free variables by
a generator a zero-arity function symbol of some typewhich lazily derives to any
value oft according tol[[7]. Variables of large built-in types, suchtlas integers, are
impractical and therefore are not allowed, although [12jvehthat variables of type
integer can be narrowed if the integers are algebraicafipeie.

Higher Order: To allow higher-order functions, we introduce two symboplar t i al
andappl y, that are not in thesourceprogram.Par ti al acts as a constructor and
appl y is a function that manipulates the representation of espas to handle partial
application. This is a standard techniquel [37] to “firstifyjher-order programs.

Explicit Failure: Earlier we discussed expressions, suclhead [ ], that cannot be
reduced to values (constructor normal forms) because tigiynate from incompletely
defined operations. We represent expressions of this kittdamlistinguished symbol
called ‘fail”. In our compiler, the procedureonpi | e generate$i-rules that rewrite
to fail upon visitingexemptodes. Furthermore, the rulestdfandA are extended to
rewrite an expressionto fail when an inductive position matchisl. For example, the
rules in [3) are extended with

H(g: not fail) = g[g « fail]; 4)

5.3 Limitations

The translator o¥/iaLOISdoes not yet support aflatCurry constructs and some fea-
tures provided by more mature implementations. Howeverstipported subset is large
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enough to encode any Curry program into an equivalent pnoginat can be translated
by ViaLOIS Cyclic expressions are not supported, but recursive salar be converted
to nullary functions that build the appropriate infinitewalazily. Modular compilation,
functional patterns and set functions are not supportededls but in our framework,
except for the latter, these features entail only modest estensions that do not affect
architecture or the core of our implementation. Hencey tindioduction should affect
the performance only marginally.

5.4 Performance

Fig.[d and# respectively compare the size in lines of codetlh@gerformance on a
few benchmarks of several Curry systems. We believe thasried! footprints of our
compiler and runtime are due only in small part to our implatagon’s limitations. The
implementation of the basic scheme is subjectively verygbeing a straightforward
encoding of the rules of Figl 1, and competitively efficient.

| Compiler | Runtime
ViaLOIS | 0.5 (Curry) | 0.6 (OCaml)
KICS2 | 4.6 (Curry) | 1.5 (Haskell)
Pakcs | 4.7 (Prolog) | 3.3 (Prolog)
Mcc 4.3 (Haskell)| 9.6 (C)

Fig. 3: Lines of code (in thousands) of several Curry systéning counts exclude com-

ments, blank lines, and the standard library. Built-in fiisres are included as part of

the runtime.

- Pakcs is a mature implementation that compiles to Prolog and héaoelles non-
determinism using backtracking.

- KICS2 is a recent implementation that compiles to Haskell aed pull-tabbing for
non-determinism.

- Mccis a compiler and virtual machine written in C and based orktoacking.

The benchmarks are:

ChoicelDs, a non-deterministic benchmark testing the performanceagiiams with a
large number of independent choices. The program nonsdetistically generates
every integer in a large set looking for a specific value.

PermSort [29], a non-deterministic benchmark testing the perforoeaf non-
deterministic search. The program sorts a list of b8 s using a permutation sort.

Sharing, a non-deterministic benchmark testing for sharing of itssbétween non-
deterministic branches. The program performs a permutaiiot over a list of 5
numbers computed by a small version of the Tree benchmark.

Tree, a deterministic benchmark testing the performance of datatsres and recur-
sion. The program inserts 200,000 pseudo-random numbirsibhinary search
tree and then counts the number of elements in the tree.
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Fig. 4: Benchmark Resultf] ViaLOIS [ KICS2, | Pakcs, [jMcc.

6 Related work and concluding remarks

The implementation of lazy, functional logic languages isreg-standing and active
area of research whose difficulties originate from the cortion of laziness, non-
determinism and sharing.

The 90's saw various implementations, e.qakBs [28], and implementation ap-
proaches[23] in which Prolog is the target language. Thigeteenvironment provides
built-in logic variables, hence sharing, and non-deteisnirthrough backtracking. The
challenge of these approaches is the implementation ir&afllazy functional com-
putations.

The following decade saw the emergence of virtual machmes, [10,30,34], with
a focus on operational completeness and/or multithreadiingnore recent implemen-
tations [11,18,19], Haskell is the target language. Thigaeenvironment provides lazy
functional computations and to some extent sharing. Thikecitge of these approaches
is the implementation of non-determinism in Haskell.

Our approach relies less on the peculiarities of the tamget@ment than most
previous approaches. In fact, in addition to the implentéadescribed in Sectidd 5,
we have easily prototyped a different implementation in bjed-oriented language
in which the nodes of an expression are objects and the targe¢dures are methods
dynamically dispatched on the type of these objects.

The basic scheme is conceptually simple, based on localjegth replacements,
and easy to control. Concurrency is a major impulse behinrdr@gearch and local-
ization of updates, joined with a high degree of control andralependence of any
particular run-time environment, makes the basic schenwod gtarting point for par-
allel implementations.
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