TERMGRAPH 2006

Lazy Context Cloning for Non-Deterministic
Graph Rewriting *

Sergio Antoy Daniel W. Brown Su-Hui Chiang

Department of Computer Science
Portland State University
P.O. Bozx 751
Portland, OR 97207
USA

Abstract

We define a rewrite strategy for a class of non-confluent constructor-based term
graph rewriting systems and prove its correctness. Our strategy and its extension
to narrowing are intended for the implementation of non-strict non-deterministic
functional logic programming languages. Our strategy is based on a graph trans-
formation, called bubbling, that avoids the construction of large contexts of redexes
with distinct replacements, an expensive and frequently wasteful operation executed
by competitive complete techniques.

Key words: mnon-deterministic computations, functional logic
programming, bubbling, graph transformations

1 Introduction

Non-determinism is one of the most appealing features of functional logic
programing. A program is non-deterministic when its execution may evaluate
some expression that has multiple results. To better understand this concept,
consider a program to find a donor for a blood transfusion to a patient. The
following declarations, in Curry [18], define the blood types and which type
can be given to which other type:

data BloodTypes = Ap | An | ABp | ABn | Op | On | Bp | Bn

giveTo Ap = Ap 7 ABp
giveTo Op = Op 7 Ap ? Bp ? ABp (1)
giveTo Bp = Bp 7 ABp

* Partially supported by the NSF grant CCR-0218224.
! Emails: antoy@cs.pdx.edu, brownda@cs.pdx.edu, suhui@cs.pdx.edu
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ANTOY, BROWN, AND CHIANG

For example, the first rule of giveTo states that the blood type A+, encoded
as Ap, can be given to patients with blood types A+ and AB+. The evalua-
tion of giveTo Ap non-deterministically returns Ap or ABp. The infix operator
“?7 called choice operation, selects either of its arguments. There are 5 other
giveTo rules that are not shown.

A small database of people, patients and/or donors, and their blood types
follows:
btype "John" = ABp
btype "Doug" = ABn (2)
btype "Lisa" = An

The goal, given a patient, is to find a suitable donor for a transfusion. A
non-deterministic program to solve this problem is natural, terse and elegant.

donorFor x
| giveTo (btype y) =:= btype x & x =/=y (3)
= y where y free

The condition of operation donorFor holds when the blood of some donor y
can be given to patient x and ensures that y is not x, since self donation is
not intended. For example, the execution of donorFor "John" yields "Doug"
or "Lisa" non-deterministically, whereas no donor is found for "Lisa" in
our very small database of people (2). The evaluation of the program is by
narrowing. In particular, when the condition of donorFor is evaluated, y is
initially unknown and becomes instantiated to a suitable value, if one exists.

Non-determinism reduces the effort of designing and implementing data
structures and algorithms to encode this problem into a program. The sim-
plicity of the program inspires confidence in its correctness.

This paper addresses both theoretical and practical aspects of the imple-
mentation of non-determinism. Section 2 highlights some deficiencies of typical
implementations of non-determinism and sketches our proposed solution. Sec-
tion 3 discusses the background of our work. Section 4 defines our strategy
and related concepts. Section 5 proves the soundness and completeness of
our strategy. Section 6 very briefly discusses problems and some solutions of
the extension of the strategy to narrowing. Section 7 briefly addresses related
work. Section 8 offers our conclusion.

2 DMotivation

Functional logic programs are traditionally seen as term rewriting systems
(TRSs) [9,11,12,21] with the constructor discipline [23]. The execution of a
program is the repeated application of narrowing steps to a term until either
a constructor term is reached, in which case the computation succeeds, or an
unnarrowable term with some occurrence of a defined operation is reached, in
which case the computation fails. Examples of the latter are an attempt to

2

ANTOY, BROWN, AND CHIANG

divide by zero or to return the first element of an empty list.

A strategy computes steps on a term. The set of all the terms obtained from
a term t with repeated applications of the strategy S is the computation space
of t (according to S). For the TRSs that we consider, the computation space
of a term is a tree-like structure. A child is obtained through the application of
a step to its parent. A tree branch occurs when the strategy computes two or
more distinct steps on the same term. When a parent has several children, the
order in which the strategy is applied to these children and their descendants
is important, although most strategies for functional logic languages [4] are
unconcerned with this order. The order of application affects only how the
computation space of a term is traversed or explored, not the content of the
space itself.

In practice, there are two main approaches: depth-first and breadth-first.
Operationally, these approaches are implemented by backtracking and copying,
respectively. While the former is standard terminology, we do not know any
commonly accepted name for the latter. We informally describe a computation
of a term with each approach. Let t[u] be a term in which ¢[] is a context and
u is a subterm that non-deterministically evaluates to x or y.

With backtracking, the computation of ¢[u] first requires the evaluation of
t[z]. If this evaluation fails to produce a constructor term, the computation
continues with the evaluation of ¢[y]. Otherwise, if and when the evaluation of
t[z] completes, the interpreter may give the user the option of evaluating t[y].

With copying, the computation of t[u] consists in the simultaneous, e.g., by
interleaving steps, independent evaluations of ¢[x] and t[y]. If either evaluation
produces a constructor term, this term is a result of the computation, and the
interpreter may give the user the option of continuing the evaluation of the
other term. If the evaluation of one term fails to produce a constructor term,
the evaluation of the other term continues unaffected.

Both backtracking and copying have been used in the implementation of FL
languages. For example, PAKCS [17] and 7 Q) [22] are based on backtracking,
whereas the FLVM [8] and the interpreter of Tolmach et al. [25] are based on
copying. Unfortunately, both backtracking and copying as described above
have non-negligible drawbacks. Consider the following program, where div
denotes the usual integer division operator and n is some positive integer.

loop = loop (4)

fx=1+2+(...+(n ‘div‘ x)...))
We describe the evaluation of ¢ = £ (Loop 7 1) with backtracking. If the first
choice for the non-deterministic expression is loop, no value of ¢ is ever com-
puted although ¢ has a value, since the evaluation of f loop does not ter-
minate. This is a well-known problem of backtracking referred to as loss of
completeness. Since narrowing computations are complete with an appropri-
ate strategy [4], in this example the culprit is backtracking.

We describe the evaluation of ¢t = £ (071) with copying. Both f0 and

ANTOY, BROWN, AND CHIANG

f 1 are evaluated. Of course, the evaluation of the first one fails. The problem
in this case is the construction of the term 1+(2+(...+(n ‘div‘ 0)...)).
The effort to construct this term, which becomes arbitrarily large as n grows,
is wasted, since the first step of the computation, which is needed [4], is a
division by zero and consequently the computation fails.

Thus, copying may needlessly construct terms, and backtracking may fail
to produce results. To avoid these drawbacks, we propose a new approach
to non-deterministic computations. Instead of evaluating only one non-de-
terministic choice or copying the entire context for each non-deterministic
choice, we slowly “bubble” the non-deterministic choices up their contexts.
Informally, the evaluation of £ (07 1) goes through the following intermediate
terms, where fail is a distinguished symbol denoting any expression that
cannot be evaluated to a constructor term:

f (07 1)
— 1+(2+(...+(n ‘div‘ (0 7 1))...))
— 1+2+(. .. +((n ‘dive 0) ? (n ‘div¢ 1))...)) (5)

— 1+(2+(.. . +(fail ? (n ‘div‘ 1))...))
— 1+2+(C. .. +(n ‘div‘ 1)...))

Because fail occurs at a position where a constructor-rooted term is needed
for the execution of a needed step, the fail choice is eliminated. Since no
rewrite rule matches fail in any position, no constructor term can be derived
from that choice.

In this example, the obvious advantages of our approach are that no choice
is left behind and no unnecessarily large context is copied. In the second
step, we have distributed the parent of an occurrence of the choice opera-
tion over its arguments. Unfortunately, a “distributive property” of the kind
f(x?y) = f(x)? f(y) is unsound in the presence of sharing. Consider the
following operation:

f x = (not x, not x) (6)

and the term ¢ = f (True ?False). The evaluation semantics of non-right
linear rewrite rules, such as (6), is called call-time choice [20]. Informally, the
non-deterministic choice for the argument of £ is made at the time of £’s in-
vocation. Therefore, the instances of x in the right-hand side of (6) should
all evaluate to True or all to False. The term being evaluated is graphically
depicted in the left-hand side of the following figure:

The right-hand side of the above figure shows the result of bubbling up the non-
deterministic choice in a way similar to (5). This term has 4 normal forms. One
is (True,False) which is not obtainable with either backtracking or copying,
and it is not intended by the call-time choice semantics. Therefore, although
advantageous in some situations, unrestricted bubbling is unsound.

Section 4 introduces a definition of bubbling that is sound and central to

ANTOY, BROWN, AND CHIANG

® ®
N N

not not ? 7
N7 /NN
? not not not not

N N/

True False True False

Fig. 1. The left-hand side depicts a term graph. The right-hand side is obtained
from the left-hand side by bubbling up to the parents the non-deterministic choice.
The two term graphs have a different set of constructor normal forms.

the strategy we present. Some properties of bubbling are discussed in [5].

3 Background

Modern FL languages use narrowing for computing [16]. Echahed and Jan-
odet [13] define a theoretically efficient narrowing strategy for the inductively
sequential graph rewriting systems. This strategy adequately models shar-
ing with graphs but does not support the non-deterministic programs of this
paper. Antoy [3] defines a theoretically efficient strategy for the overlapping
inductively sequential term rewriting systems This class adequately models
non-determinism—as in the programs of this paper—but it does not consider
sharing.

An adequate background theory for our work would be the combination of
the above extensions. Unfortunately, this combination has not yet been for-
malized. We do not foresee any substantial problem in combining [13] and [3].
The formalization of term graphs does not depend on inductive sequential-
ity, and the strategy of [13] depends on the rule’s left-hand sides. Extending it
from the inductively sequential TRSs to the overlapping inductively sequential
TRSs poses no problem, since the rule’s left-hand sides are the same for terms
and term graphs. Likewise, the notion of overlapping inductive sequentiality
does not depend on differences between terms and graphs, and the strategy
of [3] depends on the rule’s left-hand sides. Extending this strategy from terms
to term graphs poses no problem as well, since the rule’s left-hand sides are
the same for overlapping and non-overlapping inductively sequential TRSs.

The theory of graph rewriting is significantly more complicated than that
of term rewriting. Furthermore, there are multiple presentations with non-
trivial variations in the literature. In this paper, we follow the systemization
of Echahed and Janodet [13] because the class that they consider is a good
fit for our programs, as we will discuss later. The space allotted to this paper
allows us only to recall the key concepts. The complete details can be found
in [13].

Definition 3.1 Let ¥ be a signature, X a countable set of variables, and
N a countable set of nodes. A (rooted) graph over (X, N,X) is a 4-tuple

5

ANTOY, BROWN, AND CHIANG

g= Ny, L,,S,, Roots,) such that:
1. N, C N is the set of nodes of g;

2. L, N; = X UX is the labeling function mapping each node of g to a
signature symbol or a variable;

3.8, : N, — N; is the successor function mapping each node of g to
a possibly empty string of nodes of g, such that if £4(n) = s, where
s € X UX, and (for the following condition, we assume that a variable
has arity zero) arity(s) = k, then there exist ny,...,n, in N, such that
Sy(n) =nq...ny;

4. Roots, C N, is a subset of nodes of g called the roots of g;

5. if L,(n1) € X and L4(n2) € X and Ly(n1) = L4(ng), then ny = no, ie.,
every variable of g labels one and only one node of g; and

6. for each n € N, either n € Roots, or there is a path from r to n where
r € Rootsy, i.e., every node of g is reachable from some root of g.

A graph is called a term (graph) if Roots, is a singleton.

In the pictorial representation of graphs, e.g., as in Fig. 1, we do not show
the nodes’ names, but only their labels. The nodes’ names are arbitrary and
irrelevant to most purposes.

The following definition is essential to our approach.

Definition 3.2 A node d dominates a node n in a rooted graph g if every
path from the root of g to n contains d. If d and n are distinct, then d properly
dominates n in g.

For example, in the left-hand side graph of Fig. 1, the occurrence of “?” is
properly dominated by the root only. Every other occurrence, except the root,
is properly dominated by its predecessor.

4 Formalization

The formulation of the strategy comprises various pieces. In constructor-based
TRSs and GRSs the core of a strategy [4,13] is a function that takes an
operation-rooted term or term graph and uses a definitional tree of the root
symbol to compute either a step or a set of steps depending on the class of
programs. Definitional trees were introduced in [2]. We recall this notion below.
Examples are found in [4]. A pattern is a term graph of the form f(¢y,...,t,)
where f is an operation symbol and t¢y,...,t, are constructor terms.

Definition 4.1 [Definitional tree] A definitional tree of an operation f is a
finite non-empty set 7 of linear patterns partially ordered by subsumption
and having the following properties up to a renaming of variables:

¢ [leaves property] The maximal elements, referred to as the leaves, of 7 are all
and only variants of the left hand sides of the rules defining f. Non-maximal

6

ANTOY, BROWN, AND CHIANG

elements are referred to as branches.

¢ [root property] The minimum element, referred to as the root, of 7 is
f(Xy,...,X,), where Xy, ..., X, are fresh, distinct variables.

e [parent property| If 7 is a pattern of 7 different from the root, there exists
in 7 a unique pattern n’ strictly preceding m such that there exists no other
pattern strictly between m and 7. 7’ is referred to as the parent of m and 7
as a child of =’

¢ [induction property] All the children of a pattern 7 differ from each other
only at common position which is referred to as inductive. The inductive
position is the position of a variable in 7.

In a constructor-based GRS, a rewrite rule is a pair [— r of term graphs
where [is a pattern. A rewrite rule [— r defines an operation f iff the root
node of [is labeled by f. An operation f is inductively sequential if the set
of the left-hand sides of the rules defining f has a definitional tree. A GRS is
iductively sequential iff all its operations are inductively sequential.

We consider an overlapping inductively sequential [3] GRS S. In this class,
the left-hand sides of two rules can overlap, but only if they are variants of
each other, i.e., they differ at most by a renaming of their variables. The GRS
S includes the choice operation shown in the introduction, denoted by the
infix operator “?” and defined by the following rewrite rules:

X7y =X

X7y =y (7)

We assume that these are the only overlapping rules of S. Overlapping origi-
nating from other rules can be eliminated, without altering the computations,
using the choice operation [3].

Definition 4.2 [Limited overlapping] A limited overlapping inductively se-
quential GRS, abbreviated LOIS, is a constructor based GRS, S, such that
S contains the choice operation “?” defined in (7) and every other defined
operation of S is inductively sequential.

In the rest of this paper, we assume that programs are possibly overlap-
ping inductively sequential admuissible term graph rewriting systems. These
programs will be abbreviated as GRSs. We recall that a graph is admissi-
ble [13] if none of its defined operations belongs to a cycle.

A computation in our approach consists of two kinds of steps: an ordinary
rewrite step or multistep and the new kind of step that we called bubbling
earlier. The following definitions formalize bubbling steps.

Definition 4.3 [Partial renaming] Let g = (N, £,, S,, Roots,) be a term
graph over (X, N, X}, N, a subset of N; and N, a set of nodes disjoint from M.
A partial renaming of g with respect to N, and N, is a bijection © : N' — N

7

ANTOY, BROWN, AND CHIANG

such that:

o(n) = {n where n’ € N, if n € N,;

n otherwise.

By analogy with the terminology for substitutions, we call N, and N the
domain and image of O, respectively. We overload © to graphs as follows:
©(g) = ¢ is a graph over (X, N, X) such that:

Ng/ = @(Ng)a

Ly (©(n)) = Ly(n),

Sy (0(n)) = O(n1)O(ng)...0(ny) iff Sp(n) = ning...ny, for k > 0,
Rootsy = O(Roots,).

In simpler words, ¢’ is equal to ¢ in all aspects except that some nodes in
N,, more precisely all and only those in N, are consistently renamed, with
a “fresh” name, in ¢’ Obviously, in any partial renaming, the cardinalities of
the domain and the range are the same.

Definition 4.4 [Bubbling] Let g be a graph and ¢ a node of g such that the
subgraph of g at ¢ is of the form z 7y, i.e., g|. = x ?y. Let d be a proper domi-
nator of ¢ in g and N, the set of nodes that are on some path from d to cin g, in-
cluding d and ¢, i.e., N, = {n | nina...ng € Py(d,c) and n = n; for some i},
where Py(d, c) is the set of all paths from d to c in g. Let ©, and O, be partial
renamings of g with domain N, and disjoint images. Let g, = ©,(gla[c < ¢]),
for g € {z,y}. The bubbling relation on graphs is denoted by “~" and defined
by g ~ g[d < g¢.7g,], where the root node of the replacement of g at d is
fresh. We call ¢ and d the origin and destination, respectively, of the bubbling
step, and we denote the step with “~.;,” when this information is relevant.

In simpler words, bubbling moves a choice in a graph up to a dominator
node. To execute this move some portions of the graph, more precisely those
between the end points of the move, must be cloned. An example of bubbling
is shown in Figure 2.

) ?

not not) ()
N7 /NN
v not not not not

N NSNS

True False True False

Fig. 2. The left-hand side depicts a term graph. The right-hand side is obtained
from the left-hand side by bubbling up to a proper dominator the non-deterministic
choice. The two term graphs have the same set of constructor normal forms.

The bubbling relation entails 3 graph replacements. The graphs involved in
these replacements are all compatible [13, Def. 6] with each other. Therefore,
the bubbling relation is well defined according to [13, Def. 9].

8

ANTOY, BROWN, AND CHIANG

Our approach never applies a rule of the choice operation. In a constructor-
based GRSs, this is equivalent to considering the choice symbol a constructor
rather than an operation. This has far reaching consequences.

One consequence is that every operation of the GRS becomes incompletely
defined, e.g., not (z ?y) cannot be reduced even if z and y are Boolean val-
ues. Therefore, we handle reductions involving the choice symbol in a needed
position using the strategy that we define below.

A second consequence is that the results of computations change, but this
change is more apparent than substantial. For example, the standard eval-
uation of ¢ = True ? False has two results, True and False. With our ap-
proach, t is a normal form. To a large extent, the difference is only in the
representations of the results. Simple transformations allow us to manipulate
non-standard representations as the standard ones.

A third consequence is a significant change in the characteristics of both the
program and its computation space. If overlapping rules are never applied, and
only admissible graphs are considered, the program becomes confluent. Non-
deterministic replacements are eliminated, and consequently the computation
space of a graph is a sequence, rather than a tree, of graphs. The graph at
the position i 4+ 1 in the sequence is obtained from the graph at the position
¢ with either a reduction step or a bubbling step.

Since there are no non-deterministic steps, a redex has only one replace-
ment. In particular, at the machine or implementation level, a redex can always
be replaced in place, i.e., in the execution of a step, the context of the redex
becomes the context of the redex’s replacement.

For defining our strategy, which extends [13, Def. 29], we need a represen-
tation of definitional trees. Since “?” is the only overlapping operation, and we
never apply its rules, we only need to represent trees of non-overlapping oper-
ations. Our representation not only stores the patterns but also makes explicit
the inductive positions and the parent-child relationship. In the representation,
the symbols rule and branch are uninterpreted functions used to classify the
elements of a tree. The representation of a leaf with pattern 7 is rule(m — r),
where m — 7 is a variant of a rewrite rule. We represent the entire rule, rather
than its left-hand side only, because this eases formulating the strategy. The
representation of a branch with pattern 7 is branch(m,0,7y,...,7,), where o
is the inductive position of 7, and 73, ..., 7, are the representations of all the
children of .

Definition 4.5 [HNF Strategy| The function ¢ takes two arguments, an ad-
missible operation-rooted term graph t and a partial definitional tree 7 such
that pattern(7) < t, and yields a set of pairs (p, R), where p is a node of ¢
and R is either a rewrite rule or the distinguished symbol “~" according to
the definition in Figure 3.

A pair (p, R) in the set computed by ¢ on a graph t is interpreted as
follows. If R is a rule, then a rewrite step with this rule is applicable at the

9

ANTOY, BROWN, AND CHIANG

(Rooty, R) it T = rule(R);

(p, R) it 7 =branch(m,0,Tq,...,7;), and
for some i, pattern(7;) <t and
w(t, T) > (p, R);
(p, R) if 7 = branch(m,0,7y,...,7;),
m matches ¢ at the root by homom. h : 7 — ¢,
o(t,T) 3 h(o) is labeled with “?” in ¢,
q is a successor of h(o) in t, and
¥ (h(0), t[h(0) —t|g],T) > (p, R);
(p, R) it 7 =branch(r,0,71,...,7;),
m matches ¢ at the root by homom. h: 7 — ¢,
h(o) is labeled with an operation f in t,
7T’ is a definitional tree of f, and
¢t ') 3 (p, R)-

where
((c,~) if T =rule(R);

(p, R) if T = branch(r,0,7y,...,7;) and
for some i, pattern(7;) < t and
U(e,t,T;) 3 (p, R);

(p, R) it T = branch(r,0,T1,...,7T}),
7w matches ¢ at the root by homom. h: 7™ — ¢,

ble,t, T) > h(o) is labeled with “?” in t,

q is a successor of h(o) in t, and

(e, t[h(o) —tlg], T) > (p, R);

(p, R) if T = branch(r,0,7Ty,...,7;),
7 matches ¢ at the root by homom. h: 7w — ¢,
h(o) is labeled with an operation f in ¢,
T’ is a definitional tree of f, and

\ Sp(t|h(o)77/> 2 (p7 R)

Fig. 3. The function ¢ defines the strategy subject of this paper on the opera-
tion-rooted admissible term graphs of a limited overlapping inductively sequential
graph rewriting system. The conditions for the application of ¢ are described in
Definition 4.5.

node p of t. If R is the symbol “~" then a bubbling step with origin p is
applicable to t according to Def. 4.4.

Our strategy, defined by cases, is structurally similar to previously pro-
posed strategies [4] except for the third case. Intuitively, when a choice is en-
countered in an inductive position of a definitional tree, the strategy “glides”
over the choice and continues with the choice’s arguments, but its behavior
changes. This is why the function 1 is introduced and carries an extra argu-
ment. The function 9 is very similar to ¢, but it returns a bubbling step instead

10

ANTOY, BROWN, AND CHIANG

of a reduction step if it finds a rule node in the definitional tree. This means
that a reduction would be possible if the choice were not in the way. Therefore,
the strategy clones some portion of the context of a non-deterministic choice
if and only if bubbling enables a reduction step.

When more than one choice is in the way of a redex, only the highest is
selected as the origin of a bubbling step. This can be inferred by the third case
of the definition of 1. The choice passed down to the recursive invocation is
the same as the original invocation.

We extend Definition 4.5 from operation-rooted terms to term graphs rooted
by constructors and choices. We overload the symbol ¢, since the intent is the
same.

Definition 4.6 [Strategy| Let R be a LOIS and ¢ an admissible term graph
over the signature of R. We define:

U o(t;) ift =c(ty,...,t,) and either

c is a constructor or ¢ = 7,

p(t) =
(t) o(t, T) if t = f(t1,...,t,), [is an operation and

T is a definitional tree of f.

Since the strategy applied to an admissible term graph ¢ computes a set
containing several rewriting and/or bubbling steps, in the following definition
we specify how these steps are to be applied to t. Observe that if the strategy
computes a bubbling step (p,~), then p has an operation-rooted ancestor,
which we denote with o(p), such that every node in a path from o(p) to p is
labeled by a constructor symbol. If the destination of the bubbling step (p, ~)
is o(p) or an ancestor of o(p), a redex is created at o(p). If the destination of
the bubbling step (p, ~) is a node labeled by a constructor symbol in the path
from o(p) to p, no redex is created. Instead, a further application of ¢ would
compute another bubbling step of the choice just bubbled and so on until the
choice is eventually bubbled at or above o(p).

Definition 4.7 [Computation] Let R be a LOIS and ¢ an admissible term
graph over the signature of R. A computation of t according to ¢ is a sequence
t =1ty —, t1 —, ---such that, for all 7 > 0, #; is obtained from ¢;_; as follows.
Let S = ¢(t;—1). If S contains some bubbling step (p,~), then t,_; ~,, t;,
where ¢ is o(p) or some ancestor of o(p). Otherwise S = {(pk, Rk) } k=10, 7 > 0,
and ti1 = Uo =y, k) W 7 (p2Ra) - (oo Ra) Un = i

The above definition is non-deterministic both in the choice of a bubbling
step, when more than one is computed by ¢, and in the order in which rewrite
steps are applied, when more than one rewrite step is computed. The follow-
ing claims show that this non-determinism does not affect the results of a
computation.

Theorem 4.8 Let R be a LOIS and t an admissible term graph over the
signature of R. If t >~ u, for some term u, then the constructor normal forms

11

ANTOY, BROWN, AND CHIANG

of u are all and only those of t.

Proof. A constructor normal form of u is a normal form of ¢ [5, Lemma 5.
A constructor normal form of ¢ is a normal form of u [5, Theorem 2]. O

The bubbling relation is not terminating. However, our strategy never com-
putes infinite sequences consisting exclusively of bubbling steps.

Lemma 4.9 Let R be a LOIS and ty an admissible term graph over the sig-
nature of R. If to —, t1 —, -+ s an infinite sequence of steps computed by
@, then for every p > 0 there exists a q = p such that the step t; —, tgq1 s
not a bubbling step.

Proof. We define a well-founded ordering on terms and prove that bubbling
sequences are decreasing with respect to this ordering. If ¢ is a term graph
and s a node of ¢, let §(s) be the minimal number of nodes labeled by an
operation symbols in any path from the root of ¢ to s, and let £(s) be either
the sequence 100...0, where there are d(s) zeros if the label of s is “?”, or
the empty sequence if the label of s is not “?”. Intuitively, 0 is the depth and
& is the momentum of a node labeled by “?”. We overload £ on terms: for any
term graph t, £(t) = Xsené(s), i-e., {(t) is the component-wise sum of £(s)
for every node s of t, i.e., the momentum of a term is total of the momentums
of all its nodes. Let ¢t and u be term graphs with £(¢) = a, a,,_1 ... ag, where
a;, n = i > 0, is a natural and a, > 0, and likewise &(u) = by, b1 - . . bo.
We define £(t) > &(u) iff either n > m or n = m and there exists some k,
0 < k < n, such that a; > b, and for all 7, k£ < ¢ < n, a; = b;. Finally, we
extend > on terms: t = u iff £(t) > &(u).

We now show that if ¢ ~.; u is computed by ¢, then t > u. By Definition 4.7,
d is at or above o(c) and o(c) is operation-rooted. Let k be the depth of c.
The choice at ¢ is “moved” to d, hence above o(c). In the bubbling step, the
nodes between ¢ and d are cloned. The depth of these nodes is strictly smaller
than k because they are above c. The depth of any other node labeled by “?”
is unchanged. Thus, either §(u) < k or a; > by. This entails that £(t) > &(u)
and hence t > u. By Noetherian induction on >, it follows that there is no
infinite sequence of bubbling steps computed by ¢. O

Finally, we show that the order in which the rewrite steps computed by ¢
are applied is irrelevant.

Theorem 4.10 Let R be a LOIS, ty an admissible term graph over the sig-
nature of R and S = (t). For all distinct rewrite steps (p1, R1) and (pa, Rs)
m S, the redex patterns of Ry at py and Ry at py are non-overlapping.

Proof. The labels of p; and ps in t are not “?” since ¢ does not computes
steps of “?”. If p; = po, since R is a LOIS, it follows that Ry = Ry and
contrary to the hypothesis the steps are not distinct. Thus, p; # po and the
limited inductive sequentiality of R ensures that distinct redexes are non-
overlapping. O

12

ANTOY, BROWN, AND CHIANG

Thus, informally, a computation of a term ¢ according to ¢ executes a finite
number of bubbling steps on ¢, that produce a new term that has exactly the
same values of ¢, and/or a set of rewrite steps whose order of application is
irrelevant. These conditions lead to the correctness of the strategy. Its sound-
ness is a consequence of the soundness of bubbling [5]. Its completeness is a
consequence of the completeness of INS [3]. These claims are proved in the
next section.

5 Correctness

In this section we prove the correctness of our strategy. The main purpose of a
strategy is to compute a subset of the steps that could be executed on a term
so that all and only the values of the term are reached. A good strategy does
not compute steps that do not help to reach any value of a term, although
this should be achieved without look-ahead.

Computing only the values of a term is referred to as soundness. Strategies
that compute a subset of all the steps of a term are obviously sound. Since we
allow bubbling steps, the soundness of the strategy is not immediate. Com-
puting all the values of a term is referred to as completeness. A good strategy
should attempt to eliminate as many steps as possible. Proving that a strat-
egy is complete is generally difficult, since if some steps are eliminated, some
values might be lost.

In our context, namely constructor TRSs, a value of a term t is a construc-
tor normal form derived from ¢. Since our strategy does not employ the rules
of “?” formulating the statements of soundness and completeness require a
certain amount of work. The following examples make this point.

Example 5.1 Using the standard functional logic notation for lists [18], con-
sider the term ¢ = [(07 1) +0]. Our strategy reduces this term touw = [0 7 1].
It is easy to verify that there exist no derivation of ¢ into u. However, both
terms rewrite to either [0] or [1], which are the values of t. The term u
rewrites to these values using only the rules of “?”.

Example 5.2 Consider the operation loop defined in (4) and the term ¢ =
loop 7 0. It is immediate to verify that t —,t —,t —, --- and that 0 is the
only value of t.

To deal with the problems highlighted by the previous examples, we formu-
late the correctness of the strategy as follows. Given a term t, a computation
of ¢t according to ¢ produces a term that does not prevent us from reaching
any value of ¢ (completeness) and, likewise, does not enables us to reach a term
that would not be reachable from ¢ (soundness). Since this is true for some
“uninteresting strategies”, e.g., the strategy that computes no steps, or the
strategy that only reduces a term to itself, we also show that given “enough
steps”, the strategy computes a term u from which any value of ¢ can be “ex-
tracted” simply by picking either alternative of every occurrence of a choice

13

ANTOY, BROWN, AND CHIANG

in u.

Our strategy does not reduce terms rooted by “?”. A term with nodes
labeled by “?” represents a set of terms. Hence, the strategy computes a
set of values so represented. Subsets of this set, including singletons, can be
obtained using the following formalization.

Definition 5.3 [Extraction] Let ¢t be an admissible term graph. The graph
u is extracted from t, denoted by u € t, if either of the following conditions
holds:

o u=1t;

e If ¢ is a node of t labeled by “?” and x and y are the successors of ¢ in t,
then u is extracted from either t[c « t|,] or t[c < t,].

Below, we present some simple properties of extraction.

Lemma 5.4 Let R be a LOIS and t an admissible term graph over the sig-
nature of R. For all terms u, u € t if and only there exists a derivation t — u
that applies rules of “?” only.

Proof. The “if” is by induction on the number of steps of ¢ — u. The “only
if” is by induction on the number of node of ¢t labeled by “?”. o

Lemma 5.5 The order in which nodes labeled by “?” are selected in the sec-
ond case of Definition 5.3 does not affect the result.

Proof. Using the equivalence between extraction and reduction of ?-rooted
redexes, we show that the order in which ?-rooted redexes are replaced does
not affect the result. Let t be a term graph, p and ¢ distinct nodes of ¢ labeled
by “?”, and R and R’ rules of “?”. If t —, p v and t —, g v, for some terms
u and v, by case analysis of the relative positions of p and ¢, there exists a
term w such that u —_"p w and v — 5 w. a

Lemma 5.6 Let R be a LOIS and t an admissible term graph over the signa-
ture of R. If, for some term u and nodes ¢ and d, t ~.q u, then, for all terms
v, v €1t if and only if v € u, modulo a renaming of nodes.

Proof. Let ¢’ be the term obtained from ¢ by replacing the subgraph at ¢ with
its left (resp. right) successor, and let u' be term obtained from u by replacing
the subgraph at d with its left (resp. right) successor. By the definition of
bubbling, ¢ = «’ Thus, if the same side is chosen at both ¢ in ¢ and at d in u,
by Lemma 5.5 the claim follows. O

We are now ready to state and prove the soundness of our strategy. Infor-
mally, given a term ¢, any value that can be extracted from a term reached
from t by our strategy can be reached from ¢ by pure rewriting.

Theorem 5.7 (Soundness) Let R be a LOIS andt an admissible term graph
over the signature of R. If t i@, v and u € v, where u is a constructor normal
form, then t = u, modulo a renaming of nodes.

14

ANTOY, BROWN, AND CHIANG

Proof. By induction on the length of the computation. Base case: t = v. By
Lemma 5.4, u € v implies v — u and the claim immediately follows. Ind. case:
t—,t inp v. If t —, t' is not a bubbling step, then, by Definition 4.7, ¢ = ¢’
By the induction hypothesis, ' = u, and, by the transitivity of —, t — wu. If
the step ¢ — ¢’ is a bubbling step, by Theorem 4.8, every constructor normal
form of ¢ is a constructor normal form of ¢. By the induction hypothesis,
t' 5 w, and consequently ¢ — wu. O

We now turn to the completeness of our strategy. We need some prelim-
inary results. Our first claim is similar to the Parallel Moves Lemma. The
notion of residual of a rewrite step by another rewrite step is defined [19,
Sect. 2| for orthogonal TRSs. We consider LOIS GRSs, which are not orthog-
onal, but have a very disciplined form of overlapping. Unless the two rules of
“?” are applied at the same node, the usual definitions of residual of a step
by a step, of a step by a derivation, and of a derivation by a derivation can be
formulated without significant changes to LOIS. In particular, we make use of
the following lemmas.

Lemma 5.8 (Parallel Rewriting Moves) Let R be a LOIS and t an ad-
missible term graph over the signature of R. If t —, r u is a rewrite step and
t —or v is a rewrite step where R' is not a rule of “7”, then there exists a

term w such that u — w is the residual of (¢, R') by (p, R) and v = w is the
residual of (p, R) by (q, R') modulo a renaming of nodes.

Proof. Similar to [19, Lemma 2.2], the proof is by case analysis of the respec-
tive positions of p and gq. O

Since computations by ¢ execute bubbling steps, to discuss commutative
diagrams we need to consider the residual of a rewrite step by a bubbling step
and vice versa. The conditions under which executing residual steps ensure
the commutativity of a diagram are investigated in Lemma 5.10.

Definition 5.9 [Set of Residuals| Let S be a LOIS and t an admissible term
graph over the signature of S. Let t ~4 t, for some graph ¢ and nodes ¢ and
dof t, and t —, r u, for some node p of ¢ and rule R of S.

» We define the set of residuals A of t —, r u by t >4 1’

Let [and r be the successors of ¢ in ¢t. By the definition of bubbling, ¢’ =
tld — ©,(t|a[c < 1])? O, (t|alc < r])], where ©; and O, are partial renamings
with the same domain and disjoint images.

{(d,R)} if p=c;
A=<{(p,R)} if p is not in the domain of ©O;
{(61<p)7 R)> (@r (p)> R)} otherwise

15

ANTOY, BROWN, AND CHIANG

» We define the set of residuals B of t ~.4t' by t —, g u as follows.
%) if p=c;
B = Y
{(c,~)} otherwise.

Lemma 5.10 (Parallel Bubbling Moves) Let S be a LOIS and t an ad-
missible term graph over the signature of S. If t ~.q4 t, for some graph t' and
nodes c and d of t, and t —, g u, for some node p of t and rule R of S, and d

is not in the redex pattern of R at p in t, then there exists u' such that t' 5 o/
is the application of the residual of t =, r u byt ~c t' and u ~_; u' is the
application of the residual of t ~.q t' by t —, r u modulo a renaming of nodes.

Proof. [5, Lemma 3]. O

We now discuss a relatively simple, but essential claim for the completeness
of our strategy. The claim is about the difference between ¢ and INS [3]. Our
proof is less rigorous than the other proofs of this paper, because comparing
@ and INS is not straightforward. Although ¢ and INS are very similar—in
fact, we regard ¢ as an evolution of INS—they are formulated for different
frameworks. INS is a narrowing strategy for term rewriting systems, whereas
@ is a rewriting strategy for graph rewriting systems. In order to compare the
two strategies, we would need to restrict INS to rewriting, which is trivial,
and re-phrase it for graph rewriting, which is much more laborious. A rigorous
treatment of this situation would take us well beyond the scope of this paper.
Fortunately, significant portions of the required theory are already available.
We will only informally fill the gaps.

Echahed and Janodet [13] extend many results of needed narrowing [6] to
term graph rewriting. INS extends needed narrowing by adding one dimen-
sion of non-determinism—the choice of one of the possibly many rules with
the same left-hand side. This aspect of INS is independent of the differences
between terms and graphs. Thus, the treatment in [13] provides the core of
the missing theory.

The description and formalization of computations in the framework of
term rewriting differ from that of graph rewriting. The former uses positions
and substitutions, whereas the latter uses nodes and homomorphisms, respec-
tively. Converting from one framework to the other is mostly a syntactic un-
dertaking. For example, sets of positions are used in standard term graphs|24,
Def. 3.3] to uniquely identify nodes without isomorphisms. Apart from these
syntactic variations, there are only two significant differences between ¢ and
INS. (1) INS does not compute bubbling steps whereas ¢ does. If a node ¢
labeled by “?” matches an inductive position of a definitional tree used in
the computation of a term ¢, then INS reduces the redex at c. By contrast, ¢
either bubbles the node or recursively attempts to independently reduce both
successors of ¢. (2) INS is inherently a non-deterministic strategy, because
some redexes have distinct replacements. INS computes a set of steps on a

16

ANTOY, BROWN, AND CHIANG

term ¢, but only one step in this set is non-deterministically selected and ap-
plied to ¢. By contrast, ¢ rewrites deterministically. (Although the choice of
a bubbling step is non-deterministic, by [5, Lemma 3] the non-determinism is
don’t care.) Similar to INS, ¢ computes a set of steps on a term ¢. If this set
contains only rewrite steps, then all the steps in the set are simultaneously
applied to t.

Both INS and ¢ use definitional trees to compute steps. Some operations
have definitional trees that are not isomorphic, e.g., see [2, Sect.7]|. For these
strategies, the choice of a particular tree does not affect the computation of
constructor normal forms. However, it may affect the order of some steps of a
computation. Therefore, in comparing the behavior of the strategies, we will
fix one tree of any operation, the same for both strategies, and use that tree
in our reasoning.

Lemma 5.11 (Inclusion) Let R be a LOIS and t an admissible term graph
over the signature of R. If INS computes a step t —, g u and R is not a rule
of “?7, then (p, R) € ¢(t) when a uniquely chosen definitional tree is used by
both strategies for each operation symbol.

Proof. With the same choice of definitional trees, INS and ¢ go through the
same cases except for the rules of “?”. If INS computes a step that does not
apply a rule of “?” then the same step is computed by . O

Lemma 5.12 (Persistence by extraction) Let R be a LOIS and t an ad-
missible term graph over the signature of R. If u € t and p € N, then

(p, R) € o(t) if and only if (p, R) € @(u).

Proof. By Definition 4.6, if t = v; ?v,, then ¢(t) = ¢(v;) U ¢(v,). The claim
follows by induction on the number of nodes labeled by “?” in t. O

Lemma 5.13 (Persistence by bubbling) Let R be a LOIS and t an ad-
missible term graph over the signature of R. If (p, R) € ¢(t), where R is not

a rule of “?7, and t ~.q4 u, then there exists some (q, R) in the set of residuals
of (p, R) by t ~cq u such that (q, R) € p(u).

Proof. Let P, = ngn;...n; be a path from the root of ¢ to p that in the
computation of ¢(t) produced (p, R). By the definition of bubbling, there
exist a path P, = mgmy ...m; in u such that the sequence of labels in P, and
P, is the same except for the possible insertion of a single “?” and the possible
removal of a single “?”. Every node in P, except for those corresponding to
the possible insertion and removal of “?”, is the renaming of a corresponding
node of P;. In particular, mg is a renaming of ng, m; is a renaming of ng, a
node labeled by “?” is inserted in P, w.r.t. P, if and only if P, contains d, and
a node labeled by “?” is removed from P, w.r.t. P, if and only if P, contains c.
By the definition of ¢, the computation of a step at node p depends only on the
labels of a path ending at p. Moreover, if the step is a rewriting step, inserting
into or removing from the path nodes labeled by “?” is irrelevant by the third

17

ANTOY, BROWN, AND CHIANG

case of the definition of ¢. Thus, if (p, R) € ¢(t), then (¢, R) € ¢(u). O

Theorem 5.14 (Completeness) Let R be a LOIS and t an admissible term
graph over the signature of R. If t = u, where u is constructor normal form,
and t =ty —, t1 —, -+ - 15 computed by @, then for some n, u € t, modulo a
renaming of nodes.

Proof. The proof is in two parts. First we prove the existence of a certain
diagram, then we use the diagram to prove the theorem’s claim. The definition
of the diagram and the proof of its commutativity are by induction on the
structure of the diagram. In the diagram, a vertical arrow represents either
a step calculated by ¢ or the residual of one such step by horizontal arrows.
Likewise, a horizontal arrow represents either a step calculated by INS or the
residual of one such step by vertical arrows.

(8) too to1 e Lok
t1o t11 e L1k
tn(] tnl te tnk

The base case consists of several items that define the top row and left column
of the diagram. We let toy = t. By hypothesis ¢t = u. Since INS is complete |3,
Corollary 31], there exists an INS derivation of ¢ into u. Thus, we let to; —
to(j+1) be a step computed by INS such that to, = w. Finally, we let ;0 —
L(i+1)0 be a step, either bubbling or rewriting, computed by ¢. The inductive
case defines t(;11y(j+1) and the steps into it from the neighboring terms in the
diagram. The induction hypothesis ensures that these terms and the steps into
them, if any, are defined. The situation that we consider is represented by the
next diagram:

(9) bij — >t)

le lBjJrl

Li+1)) Ti:lt(iﬂ)(jﬂ)

We consider two cases. (1) If B; is not a bubbling step, then it satisfies the
condition of Lemma 5.8 which ensures the existence of #(;;1)(j+1) and the com-
mutativity of the diagram. (2) If B, is a bubbling step, then the destination
of this step cannot be inside a redex pattern [5, Def. 7], since ¢ is outermost.
Thus, [5, Lemma 3] ensures the existence of ¢(;41)(j4+1) and the commutativity
of the diagram. Since in both cases Diagram (9) commutes, by induction the
whole Diagram (8) commutes.

18

ANTOY, BROWN, AND CHIANG

Now, we define an integer function y on the horizontal arrows of Dia-
gram (8) and then we overload it for entire rows. A horizontal arrow A is
either an INS step or the residual of the step above it in the diagram. Obvi-
ously, a residual can be an equality (the null derivation). We define x(A) =0
if A applies rules of “?” or if it is an equality. We define y(A) = 1 in all other
cases. Intuitively, x is the cost of moving in a given row from one column
to the next in the diagram. We place no cost on rewrites that apply rules
of “?” because this fits our purposes. The rows of the diagram are identified
by a natural number. We define x(7), the cost of the i-th row, as the sum of
the costs of all the row’s arrows, i.e., E?;éx(tij — ti(j+1))- It follows from the
definitions of y and of residual that the cost of a step cannot be greater than
the cost of the step directly above it, and consequently that the cost of a row
cannot be greater than the cost of any preceding row.

Finally, we prove the theorem’s claim by Noetherian induction on the cost
of the rows. Preliminarily, observe that by assumption to, = u and u is a
constructor normal form. Since the diagram commutes, for all i, t;;, = u. Base
case: x(0) = 0. Only rules of “?” are applied to t to derive u, hence u € t by
Lemma 5.4 and the claim trivially holds. Ind. case: x(0) = m for some m > 0.
Since x(0) > 0, there exists a smallest index j such that x(to; —p.r tog+1)) =
1, where (p, R) € INS(ty;). By Lemma 4.9, there exists a smallest index ¢ such
that t;0 — £(i41)0 is not a bubbling step. We show that ¢ 11); = t(i+1)(j+1), and
50 X(t(+1); = ta+n+1)) = 0 and consequently x(i + 1) < x(0).

Let S be the set of residuals of (p, R) by to; — t;;. If S is empty, then the
claim is proved. Otherwise, there exists a node p’ of t;; such that (p', R) is in the
set of residuals of (p, R) in S. By Lemma 5.11, (p, R) € ¢(to;). By Lemma 5.12,
(p, R) € ¢(ty). By Lemma 5.13, the set of residuals of (p, R) in t; by too — Lio
includes some (g, R) such that, by the commutativity of the diagram, the set
of residuals of (¢, R) in t;; by t;o — t;; includes (p/, R). Thus, the step (p/, R)
is executed by both the horizontal and the vertical arrows originating from
t;;. Consequently, the set of residuals of (p/, R) in t(;41); is empty, the cost of
the horizontal arrow from #(;11); is zero, and x(i + 1) < x(0). Since the cost
of the rows cannot decrease forever, there exists an n such that y(n) = 0. By
the definition of x, this implies that ¢,y — u where any replacement applies a
rule of “?”. By Lemma 5.4, u € t,,. O

6 Narrowing

The strategy of Section 4 computes rewriting steps. Many of the results and
ideas that we have presented can be used for extending the strategy to nar-
rowing. The correctness of bubbling is independent of whether a bubbling step
is performed in a rewriting or narrowing computation.

Narrowing is inherently non-deterministic and therefore naturally expressed
using the choice operation [7]. Many data types have several data construc-
tors, hence there are many possible instantiations of an unbound variable in

19

ANTOY, BROWN, AND CHIANG

a narrowing step. For example, consider the definition of the operation not
discussed earlier:

data Boolean = True | False
not True = False (10)
not False = True

To narrow not x, where x is a free variable, we bind x to True ? False, since
True and False are the patterns in the definition of not, and we rewrite
not (True ?False) using our strategy. The binding of a variable is obtained,
as for many other narrowing strategies [4], using definitional trees.

Terms with nodes labeled by “?” abstract sets of terms that in an intuitive
sense are more deterministic. For example, the term True ? False abstracts
the set {True,False}. Definition 5.3 formalizes this intuitive notion. A vari-
able x within a term ¢ with a node labeled by “?” may belong to two distinct
terms, say u and v, in the set abstracted by t. Before instantiating = in a
narrowing step of ¢, x must be “standardized apart” in u and v. The trans-
formation that standardizes apart a variable in a graph is very similar to a
bubbling step.

7 Related work

Although strategies for functional logic computations [4] and term graph
rewriting [24] have been intensely investigated, the work on strategies for term
graph rewriting systems as models of functional logic programs has been rel-
atively scarce; for instance, the results of [10] pertain to a different class of
GRSs. The line of work closest to ours is [13,14]. A substantial difference
of our work with this line is the class of programs we consider, namely non-
deterministic ones. The attempt to minimize the cost of some steps by limiting
the cloning of the context of a redex with a non-deterministic replacement is
original. The results of [5] complement those of this paper by describing how
bubbling and rewriting steps interact with each others.

Other efforts on handling non-determinism in functional and functional
logic computations with shared subexpressions include [20], which introduces
the call-time choice semantics to ensure that shared terms are evaluated to
the same result; [15], which defines a rewriting logic that among other prop-
erties provides the call-time choice; and [1] and [25], which define operational
semantics based on heaps and stores specifically for the problem we are dis-
cussing. Our work is in line with these efforts, but it is explicitly based on
term graph rewriting rather than computational data structures.

8 Conclusion

This paper defines a strategy well suited for the execution of functional logic
programming languages. Programs in these languages execute non-determin-
istic steps on shared terms. Our strategy has several distinctive and highly

20

ANTOY, BROWN, AND CHIANG

desirable features. Of course, it is sound and complete. Although it is in-
tended for non-deterministic computations, its steps are deterministic (the
non-determinism in the choice of a bubbling step is “don’t care”). Since the
steps of our strategy are deterministic, its implementation is not required to
copy the context of a non-deterministic redex. Since a non-deterministic com-
putation generally leads to some failures, our strategy has the potential of
improving the performance of functional logic programs by avoiding cloning
the entire contexts of some redexes. Future work will implement the strategy
and measure its performance for realistic programs.

Acknowledgement

Sunita Marathe offered valuable corrections to a draft of this paper.

References

[1] M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of functional
logic programs based on needed narrowing. Theory and Practice of Logic
Programming, 5(3):273-303, 2005.

[2] S. Antoy. Definitional trees. In H. Kirchner and G. Levi, editors, Proceedings of
the Third International Conference on Algebraic and Logic Programming, pages
143-157, Volterra, Italy, September 1992. Springer LNCS 632.

[3] S. Antoy. Optimal non-deterministic functional logic computations. In
Proceedings of the Sixth International Conference on Algebraic and Logic
Programming (ALP’97), pages 16-30, Southampton, UK, September 1997.
Springer LNCS 1298.

[4] S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875-903, 2005.

[5] S. Antoy, D. Brown, and S. Chiang. On the correctness of bubbling. In
F. Pfenning, editor, 17th International Conference on Rewriting Techniques
and Applications (RTA’06). Springer, 2006.

[6] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal
of the ACM, 47(4):776-822, July 2000.

[7] S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Twenty Second International Conference on Logic Programming,
pages 87-101, Seattle, WA, Aug. 2006. Springer LNCS 4079.

[8] S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for
functional logic computations. In Proc. of the 16th International Workshop

on Implementation and Application of Functional Languages (IFL 2004), pages
108-125, Lubeck, Germany, Sept. 2005. Springer LNCS 3474.

21

ANTOY, BROWN, AND CHIANG

[9] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[10] H. P. Barendregt, M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer,
and M. Sleep. Term graph rewriting. In PARLE Parallel Architectures
and Languages Europe, volume LNCS 259, pages 141-158, Eindhoven, 1987.
Springer-Verlag. also technical report SYS-C87-01.

[11] M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term Rewriting Systems.
Cambridge University Press, 2003.

[12] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Vol. B, pages 243-320.
Elsevier, 1990.

[13] R. Echahed and J-C. Janodet. On constructor-based
graph rewriting systems. Research Report 985-1, IMAG, 1997. Available at
http://citeseer.ist.psu.edu/echahed97constructorbased.html.

[14] R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing.
In Proceedings of the Joint International Conference and Symposium on Logic
Programming, pages 325 — 340, Manchester, June 1998. MIT Press.

[15] J. C. Gonzdalez Moreno, F. J. L. Fraguas, M. T. H. Gonzélez, and M. R. Artalejo.
An approach to declarative programming based on a rewriting logic. The
Journal of Logic Programming, 40:47-87, 1999.

[16] M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19&20:583-628, 1994.

[17] M. Hanus (ed.). PAKCS 1.7.1: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs, March 27, 2006.

[18] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry, March 28, 2006.

[19] G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems.
In J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour
of Alan Robinson. MIT Press, Cambridge, MA, 1991.

[20] H. Hussmann. Nondeterministic algebraic specifications and nonconfluent
rewriting. Journal of Logic Programming, 12:237-255, 1992.

[21] J. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II. Oxford University
Press, 1992.

[22] F. Lépez-Fraguas and J. Sénchez-Herndandez. TOY: A multiparadigm
declarative system. In Proceedings of RTA 99, pages 244-247. Springer LNCS
1631, 1999.

[23] M. J. O’Donnell. FEquational Logic as a Programming Language. MIT Press,
1985.

22

http://citeseer.ist.psu.edu/echahed97constructorbased.html
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry

ANTOY, BROWN, AND CHIANG

[24] D. Plump. Term graph rewriting. In H.-J. K. H. Ehrig, G. Engels and
G. Rozenberg, editors, Handbook of Graph Grammars, volume 2, pages 3—61.
World Scientific, 1999.

[25] A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages
using multiple threads and stores. In Proc. of the Ninth International
Conference on Functional Programming (ICFP 2004), pages 90-102, Snowbird,
Utah, USA, Sept. 2004. ACM Press.

23

	Introduction
	Motivation
	Background
	Formalization
	Correctness
	Narrowing
	Related work
	Conclusion
	References

