
Testing by Narrowing
Extended Abstract

Sergio Antoy and Dick Hamlet

Portland State University
Department of Computer Science

Portland, OR 97207
{antoy,hamlet}@cs.pdx.edu

1 Introduction

Testing and debugging a program P may require
computing an input I such that the execution of P
on input I goes through some given path T of P .
We describe how to compute such an input for pro-
grams coded in a simple imperative language with
generic expressions including user-defined abstract
data types.

For example, consider the following program
which computes iteratively a preorder traversal of a
tree. Stack and tree are user-defined types.

declare s : stack; t : tree;
begin

if not(is null(t)) then
s := empty;
push(t, s);
while not(is empty(s)) loop

declare x, y : tree;
begin
y := top(s);
pop(s);
visit(y);
x := left(y);
if not(is null(x))

then push(x, s);
end if ;
x := right(y);
if not(is null(x))

then push(x, s);
end if ;

end;
end loop;

end if ;
end;

We may wish to compute an input that leads to
the execution of two iterations through the body of
the while statement such that during the first itera-
tion the guard of the first if statement fails and the

guard of the second if statement succeeds, whereas
during the second iteration these conditions are re-
versed.

Problems of this kind are unsolvable in general.
However, the technique that we describe is capable
of finding any existing solution to the problem.

Our technique is a two-step procedure. First,
given a program P , we compute the weakest precon-
dition [4], say W , that guarantees the execution of
a given path T of P . This computation is straight-
forward. Second, we attempt to solve the equation
W = true with respect to the variables of P . Op-
erationally we use narrowing [5], a sound and com-
plete procedure for solving equations involving sym-
bols defined by a term rewriting system [6]. For our
specific problem, if the narrowing procedure finds a
solution I, then I is an input to P that executes T ,
and conversely, if there exists an input I to P that
executes T , then the narrowing procedure finds I as
a solution.

Next we describe in some detail the two steps of
our technique, we outline a prototypical implemen-
tation, we discuss how more difficult problems can
be solved, and finally we briefly relate our approach
to similar ones previously proposed.

2 Weakest Precondition

Given a program P , a condition C, and a path
T , we compute W = wp(P,C, T), the weakest pre-
condition such that the execution of P begun in any
state satisfying W goes exactly through the state-
ments of T and leaves the program in a state satis-
fying C. wp is a standard predicate transformer for
a deterministic language [8], except for the presence
of a third argument, the path T .

Such a path must be statically plausible, i.e., it
could be executed if we were allowed to arbitrarily
change both the state and the constants in the pro-
gram before the execution of each statement. This

condition is easy to verify. The third argument of
wp controls the choice of the next statement of a
branching statement. A weakest precondition with
respect to a fixed path is computed more easily than
the general weakest precondition of a program.

Weakest preconditions may be huge expressions
even for simple problems. The weakest precondi-
tion of the tree traversal problem discussed earlier
is and(not(is null(t)), . . .), where there are a total
of 75 occurrences of the program’s operations and
the variable t. In the following, we will denote this
expression with W.

3 Narrowing

The meanings of both the predefined operations
of a language and the user-defined operations of a
program are given by an equational specification.
If l = r is an equation, we stipulate that in an
expression we can replace an instance of l with the
corresponding instance of r, but not vice versa. For
this reason we rather write our equation l → r and
call it a rewrite rule [6].

For example, all the operation symbols occuring
inW, whose computation was discussed earlier, are
specified as follows. The signature is obvious from
the context. Capital letters stand for variables. The
symbol ‘ ’ represents an anonymous variable.

and(true,X)→ X
and(false,)→ false
not(true)→ false
not(false)→ true

is empty(empty)→ true
is empty(push(,))→ false

pop(push(, S))→ S
top(push(E,))→ E
is null(null)→ true

is null(tree(, ,))→ false
left(tree(, L,))→ L

right(tree(, , R))→ R

A narrowing step of an expression such as W con-
sists in computing a reduct of σ(W), where σ is a
substitution for the variables of W such that σ(W)
is reducible. For example, we may instantiate t to
tree(x, y, z), where x, y, and z are arbitrary values
and reduce is null(tree(x, y, z)) to false. Thus, we
solve an equation such as W = true by narrowing
W all the way to true.

A solution forW, computed by narrowing, is t =
tree(u, null, tree(v, tree(w, x, y), null)), where u, v,
w, x, and y are variables.

A brute-force implementation of narrowing is
generally very inefficient. Relatively efficient imple-
mentations are based on strategies that limit the

number of substitutions and positions that must
be considered in a narrowing step. These strate-
gies preserve the completeness of narrowing for the
rewrite systems that we generally obtain in specify-
ing the data types used in programming.

4 Implementation

Our prototypical implementation of our tech-
nique is coded in Prolog. The implementation com-
prises two major modules. One computes weak-
est preconditions and the other attempts to nar-
row them to true. The first module is small and
conceptually simple, since the formal definition of
our predicate transformer is easily mapped to Horn
clauses. The translation of a program from its usual
form to the form expected by the implementation of
the predicate transformer is a non-trivial, language-
dependent problem that we have not undertaken
yet.

The second module is small too, but conceptu-
ally more complex. Several interesting implemen-
tation issues arise, in particular, the completeness
of the narrowing procedure and the efficiency of the
computation. We implement a lazy strategy that
takes advantage of a particular representation of
the rewrite rules and we couple our strategy with a
breadth-first control regime.

Narrowing steps are “don’t know” non-determin-
istic, whereas rewrite steps are, to a large extent,
“don’t care” non-deterministic. Thus, we gain effi-
ciency by repeatedly reducing the needed redexes of
an expression that is to be narrowed. Since some of
these expressions may not have a normal form, some
care must be taken to preserve the completeness of
our implementation.

5 Advanced features

Statically plausible paths may be semantically
impossible. For example, this is easy to see for the
tree traversal program. Every time that push is in-
voked one iteration through the loop body must also
be executed before the loop terminates. Thus, we
may specify a path T that is not executed for any in-
put. In this case, the resulting weakest precondition
W has no solutions. If we try to solve W = true by
narrowing, the computation may or may not termi-
nate. In practice, we fail to find inputs that reach
the statements following a while statement.

To overcome this problem we weaken the con-
straints imposed on the path through a while state-
ment. We specify how many iterations are exe-
cuted through the body, but do not specify the
path of each iteration. A weakest precondition for

such a less-constrained path is easily computed us-
ing power functions [1]. If f : S → S is a function
on the state S of a program, the power function of
f , f∗ : N× S → S, is defined by

f∗(k, s) =
{
s, if k = 0;
f∗(k − 1, f(s)), if k > 0.

This approach allows us to find inputs to a program
for reaching the statements that follow a loop.

For example, suppose that the problem is to find
an input to the while statement of our tree traver-
sal program that leads to the termination of the
loop after exactly three iterations through the body.
First, we compute the following weakest precondi-
tion, where power denotes the power function of the
functional abstraction of the loop body.

and(not(is empty(power(0, s)),
and(not(is empty(power(1, s)),
and(not(is empty(power(2, s)),
is empty(power(3, s))

Second, we solve this condition by narrowing, and
we discover that there are only 10 distinct solutions:
5 in which s initially contains 1 tree only, 4 with 2
trees, and 1 with 3 trees.

For each solution we can find the path executed
within the loop body by symbolic execution or by
profiling an actual execution.

6 Related work

There are two research areas related to our work:
program analysis and narrowing. The problem of
finding inputs that will force the execution of a
path in a program has been attacked in a number
of ways. For example, [2] used symbolic execution
and a linear-programming equation solver. Our ap-
proach differs from previous work in several signifi-
cant ways:

1. Whereas it is usual to convert programs into
control-flow graphs and compute paths in these
graphs, we instead use a linear notation based on
the program syntax itself.

2. Whereas it is usual to implement symbolic exe-
cution by following a flowgraph path from top to
bottom, we instead use the weakest-precondition
formalism that proceeds from bottom to top.

3. Whereas the usual method of solving equations
is to employ some form of linear programming or
matrix manipulation, we use narrowing.

The first two distinctions are matters of style only;
nothing can be done using our approach that can-
not be done in the previous way. Nevertheless,

we believe that our approach is simpler. The fi-
nal distinction is one of substance; narrowing can
not only handle the numerical data types that pre-
vious solvers could, but can in principle deal with
equations using arbitrary abstract types, and equa-
tions that arise from additional constraints. Thus
we expect that our approach applies to a far wider
class of programs, and to wider and more difficult
problems.

Narrowing is the operational principle of lan-
guages that integrate the functional and logic pa-
radigms [3]. Our application is unorthodox and the
closest related work concerns the implementation of
narrowing in Prolog, e.g., [7]. For our application
the completeness of narrowing is crucial, thus, we
have extended previous approaches by replacing the
default depth-first search strategy with a breadth-
first one and by interleaving narrowing with exten-
sive rewriting.

References

[1] S. Antoy. Automatically provable specifications.
Technical Report 1876, Dept. of Computer Sci-
ence, University of Maryland, 1987.

[2] L. Clark. A system to generate test data and
symbolically execute test programs. Trans. on
Soft. Eng., SE-2:215–222, 1976.

[3] D. DeGroot and G. Lindstrom, editors. Logic
Programming, Functions, Relations, and Equa-
tions. Prentice Hall, 1986.

[4] E. W. Dijkstra. Guarded commands, nondeter-
minacy a formal derivation of programs. Comm.
of the ACM, 18:453–457, 1975.

[5] M. J. Fay. First-order unification in an equa-
tional theory. In Proc. 4th Workshop on Auto-
mated Deduction, pages 161–167, Austin, TX,
1979. Academic Press.

[6] J. W. Klop. Term Rewriting Systems. In S. A-
bramsky et al., editor, Handbook of Logic in
Computer Science, Vol. II, pages 1–112. Oxford
University Press, 1992.

[7] R. Loogen, F. Lopez Fraguas, and M. Rodŕı-
guez Artalejo. A demand driven computation
strategy for lazy narrowing. In Proc. PLILP’93.
Springer LNCS, 1993. (To appear).

[8] R. T. Yeh. Verification of programs by predicate
transformation. In R. T. Yeh, editor, Current
Trends in Programming Methodology, volume 1,
pages 228–247. Prentice-Hall, 1978.

