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Abstract. We show that non-determinism simplifies coding certain prob-
lems into programs. We define a non-confluent, but well-behaved class of
rewrite systems for supporting non-deterministic computations in functional
logic programming. We show the benefits of using this class on a few examples.
We define a narrowing strategy for this class of systems and prove that our
strategy is sound, complete, and optimal, modulo non-deterministic choices,
for appropriate definitions of these concepts. We compare our strategy with
related work and show that our overall approach is fully compatible with the
current proposal of a universal, broad-based functional logic language.

1 Introduction

Curry [4], a recently proposed, general-purpose, broad-based functional logic lan-
guage, offers lazy evaluation, higher order functions, non-deterministic choices, and a
unified computation model which integrates narrowing and residuation. Curry models
functions by the defined operations of a constructor-based, almost orthogonal, term
rewriting system (CAT ). Non-determinism occurs typically in three situations: when
variables are instantiated during a narrowing step; when certain arguments of a non-
inductively sequential function, e.g., the parallel or, are selected for evaluations; and
when an alternative of a choice operator, a device to encapsulate non-deterministic
computations, is selected for execution. This careful combination of features ensures
true functionality, i.e., the application of a function to a tuple of arguments yields
at most one value. This condition simplifies declarative, non-backtrackable I/O, but,
we will show shortly, it sacrifices the expressive power of the language.

Non-determinism and expressiveness are key ingredients of functional logic pro-
gramming. The contribution of this note is the discovery of the existence of a class of
rewrite systems that are more non-deterministic and expressive than CAT s without
loss of the properties that make CAT s appealing for Curry. Our approach has the fol-
lowing features: (1) it is compatible with the unified computation model for functional
and logic programming based on narrowing and residuation [8]; (2) it is compatible
with the mechanism, the choice operator, that has been proposed to encapsulate
non-deterministic computations [4]; (3) it is sound, depending on an implementation
option, with respect to either the call-time or the evaluation-time semantics that
may be adopted for non-deterministic computations [10]; (4) on deterministic com-
putations it is as efficient as the best currently known strategy [2] and on inherently
non-deterministic computations it has the potential to be superior.
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This paper is organized as follows. We show in a few examples, in Section 2, some
limitations of CAT s for expressing simple non-deterministic computations. Then,
after some preliminaries in Section 3, we define in Section 4 a new class of rewrite
systems and re-program our examples using this class. In Section 5 we define a
narrowing strategy for the new class of systems. In the following Sections 6 and 7 we
prove that our strategy is sound, complete, and optimal. In Sections 8 and 9 we briefly
compare our approach with related work and we offer our conclusions. Sections 6
and 7 are more technical than the rest of the paper and require more specialized
notions of rewrite systems and narrowing strategies. The other sections only require
an introductory knowledge of functional logic programming.

2 Motivation

This section presents three small examples of computations that are not conveniently
coded using CAT s. The first example, rather benign, proposes a simple abstraction
that has to be coded in a less clear, natural, and expressive form than it is com-
monly stated. The second example, more compelling, shows that traditional logic
programmers must give up some convenient, familiar programming techniques when
functions become available. An attempt to adapt a couple of well-typed, pure Prolog
predicates to functional logic programming gives rise to several problems whose so-
lutions require more convoluted code. The third example presents two computations,
conceptually very similar, that should both succeed—however, one may fail.

The common root of these difficulties is non-determinism. Functions modeled by
CAT s are too deterministic for these problems. The ability to handle non-determinism
is a major asset of logic programming, perhaps the single most important factor of its
success. A consequence of overly limiting non-determinism is that programs for the
problems that we discuss must be coded in a less natural, expressive, and declarative
form than a high-level, declarative language would lead us to expect. We will show
later that by adopting a new class of rewrite systems we gain back all the expressive-
ness and declarativeness needed for these problems without any loss of soundness,
completeness, and/or efficiency.

Example 1. Consider an abstraction dealing with family relationships: There are peo-
ple, parents, and a person’s attribute, having blue eyes. Since parent is not a function,
the standard functional logic approach to its definition is to cast parenthood as a
binary predicate.

parent Alice Beth = true

parent Fred Beth = true

parent Carol Dianna = true
...

blue_eyed Alice = true

With this program, a goal to find out whether Beth has a blue-eyed parent is

(parent x Beth) && (blue_eyed x)

where && is Curry’s predefined sequential conjunction operator.
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There are several mildly undesirable aspects of this program:

- it is not clear from a program equation whether the first argument of parent is the
parent or the child, e.g., whether Alice is a parent of Beth or vice versa.

- parent is a function less completely defined than it should, e.g., parent Carol Beth,
is undefined even though we may know that its value is false.

- the goal is clumsy and verbose, it is not a natural formalization of the way one
would state it: “Is there a blue-eyed parent of Beth?”

Example 2. Consider a program that computes permutations of a list. A naive trans-
lation of the standard Prolog approach, e.g., see [12, p. 38], would be

permute [] [] = true

permute (x:xs) y = (permute xs ys) && (insert x ys y)

insert x xs (x : xs) = true

insert x (y : ys) (y : z) = insert x ys z

Unfortunately, the above program is incorrect in Curry for three independent reasons.

- In the second equation of permute the symbol ys is an extra variable [7,13], i.e., it
occurs in the right hand side of the equation, but not in the left hand side.

- Both equations of insert are not left-linear, i.e., some variable, e.g., x in the first
equation, occurs twice in the left hand side.

- The equations of insert create a non-trivial critical pair, i.e., there exists a unifier
of the left hand sides of the two equations that does not unify the right hand sides.

Example 3. To keep small the size of this example, we consider an abstract problem.
Suppose that ok is a unary function that, for all arguments, evaluates to true and
double is a function of a natural number that doubles its argument.

ok = true

double 0 = 0

double (s x) = s (s (double x))

Evaluating whether the “double of some expression t is ok”, i.e., solving the goal

ok (double t)

succeeds regardless of t, i.e., even if t is undefined.

Suppose now that we extend our program with a mechanism to halve numbers.
We call it “mechanism,” rather than function, because halving odd numbers rounds
non-deterministically. Even numbers are halved as usual. Following the standard
practice, we code half as a predicate.

half 0 0 = true

half (s 0) 0 = true

half (s 0) (s 0) = true

half (s (s x)) (s y) = half x y

Now, if we want to find out whether the “half of some expression t is ok”, we must
solve the goal

(half t x) && (ok x)

which requires to evaluate t and consequently is unnecessarily inefficient and may
even fail if t cannot be evaluated to a natural. However, we have shown that the
analogous computation for double always succeeds.
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3 Preliminaries

A narrowing step, or step for short, of a term t is a two-part computation. Part one is
an instantiation of t, i.e., the application of a substitution to t. Part two is a rewrite
step, i.e., the application of a rule to a subterm of t. The substitution in part one of
a narrowing step is a constructor substitution, and can be the identity. In this case,
part one has no effect on the term and we consider it only for uniformity. This is
consistent with the viewpoint that narrowing generalizes rewriting. It is convenient
to consider steps in which part two has no effect on a term as well, i.e., there is no
rewriting. These steps, called degenerate, are not intended to be performed during
the execution of a program. We consider them only as a device to prove some results.
A non-degenerate narrowing step is denoted (p, l → r, σ). Its application is denoted
t ;(p,l→r,σ) t′, were t′ is obtained from σ(t) by contracting the subterm at p using
rule l → r. A degenerate narrowing step is denoted (=,=, σ). Its application to a
term t yields σ(t).

Traditionally, the substitution of a narrowing step is a most general unifier of a
term and the left hand side of a rule. Every time we select a rule to compute a step,
the rule’s variables are new, i.e., different from the variables of any other term and/or
rule used to compute the step. Consequently, the substitution of these variables is
usually of no interest and we stipulate the following. In a step t ;(p,l→r,σ) t′, σ is
a substitution, rather than the traditional unifier, that makes t|p an instance of l. A
most general substitution σ makes a term t an instance of a rule’s left hand side l

is denoted with t¢ l. In this case, the domain of t¢ l is contained in the set of the
variables of t and over these variables t¢ l is equal to mgu(t, l), a most general unifier
of t and l. Note that “¢” is not a commutative function.

The composition σ1 ◦ σ2 of substitutions σ1 and σ2 is defined for all terms t as
(σ1 ◦ σ2)(t) = σ2(σ1(t)). A substitution σ is idempotent iff σ ◦ σ = σ. A most general
unifier of a narrowing step is an idempotent substitution. Two substitutions σ1 and
σ2 are unifiable iff there exists a substitution σ such that σ1 ◦ σ = σ2 ◦ σ. For a
discussion of properties of substitutions and unifications used in this paper, see, e.g.,
[5].

4 Overlapping Inductively Sequential Systems

Below we reformulate at a higher level of abstraction the notion of definitional tree
originally proposed in [1]. We assume that defined operations are not “totally un-
defined.” Symbols of this kind are generally regarded as constructors in constructor
based systems.

Definition 4. A pattern is a term of the form f(t1, . . . , tn), where f is a defined
operation and, for all i = 1, . . . , n, ti is a constructor term. A definitional tree of an
operation f is a non-empty set T of linear patterns partially ordered by subsumption
and having the following properties up to renaming of variables.

– [leaves property] The maximal elements, referred to as the leaves, of T are all and
only variants of the left hand sides of the rules defining f . Non-maximal elements
are referred to as branches.
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– [root property] The minimum element, referred to as the root, of T is f(X1,

. . . , Xn), where X1, . . . , Xn are new, distinct variables.
– [parent property] If π is a pattern of T different from the root, there exists in T

a unique pattern π′ strictly preceding π such that there exists no other pattern
strictly between π and π′. π′ is referred to as the parent of π and π as a child of
π′.

– [induction property] All the children of a same parent differ from each other only
at the position, referred to as inductive, of a variable of their parent.

There exist operations with no definitional tree, and operations with more than
one definitional tree, examples are in [1]. The existence of a definitional tree of an
operation is decidable. In most practical situations, computing a definitional tree
of an operation is a simple task. An operation is called inductively sequential if it
has a definitional tree. A rewrite system is called inductively sequential if all its
operations are inductively sequential. It follows from the definition that inductively
sequential systems are left linear. So far, inductive sequentiality has been studied
only for non-overlapping systems [1,2]. In the following, we extend this study to
overlapping systems.

The adjective “inductive” is motivated by the fact that, for completely defined
operations, the children of a pattern are obtained by “doing a data type induction”
on the inductive variable of their parent. This variable is typeset in boldface in the
examples shown later.

The next result shows that the left hand sides of the rules of an inductively
sequential rewrite program overlap only if they are variants (of each other), i.e., one
can be obtained from the other by a renaming of variables. The converse obviously
holds for any program. This property of overlapping left hand sides is stronger than
that of weakly orthogonal rewrite systems. By contrast, in inductively sequential
systems there are no specific restrictions on the right hand sides beside those of
general rewrite systems.

Proposition 5. Let f be an inductively sequential operation and l → r and l′ → r′

defining rules of f . If l and l′ overlap, then l and l′ are variants.

Proof. Suppose that l and l′ overlap. Since f is inductively sequential, there exists
a definitional tree T of f containing leaf patterns π and π′ variants of l and l′,
respectively. If π and π′ are distinct patterns, there exists a maximal pattern π̂ in T
such that π̂ < π and π̂ < π′. Let p be the inductive position of π̂. The subterms of
both π and π′ at p are rooted by different constructors, hence l and l′ cannot overlap.
Thus, π = π′, l and l′ are both variants of π, and consequently they are variants of
each other.

Proposition 5 suggests to group together all the equations whose left hand sides
are variants and to code the left hand side only once with alternative choices for the
right hand sides. This notation is reminiscent of the definitions of types. Equations
so defined become identical to those of ML and Haskell, except for multiple choices
of right hand sides. As in ML and Haskell, one could adopt priorities among the
equations based on textual ordering. This is merely a syntactic issue that we do
not pursue in this paper. We revisit our introductory examples using overlapping
inductively sequential systems.
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Example 6. (Example 1 revisited) Only the definition of parent changes.

parent Beth = Alice | Fred

parent Dianna = Carol
...

blue_eyed Alice = true

and the goal is

blue_eyed (parent Beth)

All the mildly annoying, syntactical problems discussed earlier disappear.

Example 7. (Example 2 revisited) The definitions of both permute and insert change.
Insert non-deterministically inserts its first argument, an element, into its second
argument, a list of elements, either at the head or anywhere but the head. For the
second choice we introduce a new operation, tail insert, that implicitly ensures that
the second argument of insert is a non-empty list. We will further discuss this example
in Section 8.

permute [] = []

permute (x : xs) = insert x (permute xs)

insert x xs = (x : xs) | tail_insert x xs

tail_insert x (y : ys) = (y : insert x ys)

Example 8. (Example 3 revisited) The definition of half changes as follows.

half 0 = 0

half (s 0) = 0 | s 0

half (s (s x)) = half x

The goal becomes

ok (half t)

and its behavior with respect to evaluation, efficiency, and termination becomes iden-
tical to the analogous goal involving double.

5 Narrowing

In this section we define a narrowing strategy, which we call Inductively Sequential
Narrowing Strategy, or INS for short, for possibly overlapping, inductively sequential
rewrite systems. In following sections we prove that INS is sound, complete, and
optimal. INS coincide with the Needed Narrowing Strategy [2], NN for short, on
non-overlapping systems, but has some relevant differences in general due its larger
domain. NN has strong normalization properties. In particular:

- NN is hyper-normalizing on ground terms, i.e., if a ground term is reducible to a
data term, then there exists no derivation that computes an infinite number of NN
steps,

- NN is optimal in the number of steps, provided that the common subterms of a
term are shared,

- NN only performs steps that are needed to compute root-stable terms, this property
is more fundamental than normalization, since it allows us to compute infinitary
normal forms [13].

However, INS shares only a weaker form of the last property with NN. The first two
properties do not hold as shown by the following overlapping, inductively sequential
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rewrite program
f = f | 0 (1)

INS computes, among others, the derivation f → f → · · ·. We will argue later that
this difference originates from non-determinism and that inherently non-deterministic
computations performed by NN are in practice similar to, if not less efficient than,
those computed by INS.

Throughout the rest of the paper, we make the following assumptions:

- Every rewrite system that we discuss is inductively sequential, possibly overlapping.
- Definitional trees are fixed. We choose a tree for every defined operation once and
for all and we use it for all our claims. The choice of the tree does not affect a claim.

Lemma 9. Let t = f(t1, . . . , tk) be an operation-rooted term and T a definitional
tree of f . There exists a pattern in T that unifies with t.

Proof. Witness is the root of T .

Definition 10. Let t = f(t1, . . . , tk) be an operation-rooted term, T the fixed def-
initional tree of f , and π a maximal pattern of T that unifies with t. INS(t) is the
set of all and only the triples of the form (p,R, σ), where p is a position, R is a rule,
and σ is a substitution such that:

(p,R, σ) =







































(Λ, R, t¢ l) if π is a leaf of T, where
R = l→ r is a variant of a rule
such that l = π;

(q · q′, R, η ◦ η′) if π is a branch of T, where
q is the inductive position of π,
η = t¢ π, and
(q′, R, η′) ∈ INS(η(t|q)).

(2)

If t is not operation-rooted, then a triple s = (p,R, σ) is in INS(t) iff s ∈ INS(t′)
for some maximal operation-rooted subterm t′ of t.

If s = (p,R, σ) is a triple computed by Equation 2 on some term t, then a
representation of s of the form (p1 · . . . · pn, R, σ1 ◦ . . . ◦ σn) is called the canonical
decomposition of s, and n is called the length of s, iff either n = 1, p1 = p = Λ, and
σ1 = σ, or n > 1, p1 and σ1 are computed by the second case of Equation 2 on t,
and (p2 · . . . · pn, R, σ2 ◦ . . . ◦ σn) is the canonical decomposition of a step of σ1(t|p1

).

Lemma 11. If t is a term such that s = (p,R, σ) ∈ INS(t), then

- s is a narrowing step of t,
- σ is a constructor substitution, and
- the canonical decomposition of s is unique.

Proof. By induction on the length of the canonical decomposition of s.

Definition 10 is non-trivial. The following informal account of the computation of
a narrowing step may help its understanding. Let t = f(t1, . . . , tk) be an operation-
rooted term to narrow. We most-generally unify t with some non-deterministically
chosen maximal pattern π in a definitional tree T of f . Let η be the restriction to
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the variables of t of a most general unifier of t and π. If π is a leaf of T, η(t) is a
redex and we contract it. If π is a branch of T, we consider the subterm u of η(t)
at the inductive position of π. u cannot be a variable. If u is operation-rooted, we
attempt to narrow it. If u is constructor-rooted, we fail, since it can be proved that
η(t) cannot be narrowed at the top, which is necessary to narrow t to a data term.

The substitution of a step computed by INS is not the restriction of a most general
unifier. This is different from most narrowing strategies, the major exception being
Needed Narrowing. The “extra” substitution computed by INS ensures that future
steps of a derivation are necessary. This claim will be proved later. The following
simple example clarifies this point.

Example 12. Consider the inductively sequential, non-overlapping program

0 <= _ = true

(s _) <= 0 = false

(s x) <= (s y) = x <= y

0 + x = x

(s x) + y = s (x + y)

INS computes the step s̄ = (2, 0 + z → z, {x 7→ s x′, y 7→ 0}) on the term x ≤ y + y.
Without instantiating x in the substitution of s̄, the step is still possible, but it could
become superfluous depending on later steps. E.g., one could compute

x ≤ y + y ;{y 7→0} x ≤ 0;{x7→0} true

where the first step is useless. However, including {x 7→ s x′} in s̄ prevents this
derivation.

Lemma 13. Let t be a term and s = (p,R, σ) ∈ INS(t) and s′ = (p′, R′, σ′) ∈ INS(t).

- σ (and σ′) is of the form {v1 7→ t1, . . . vn 7→ tn}, where for all i in 1, . . . , n, ti is
a linear term whose set of variables is disjoint from the set of variables of tj, for
j 6= i and j in 1, . . . , n;

- σ and σ′ unify iff, for any variable v in the domains of both σ and σ′, σ(v) and
σ′(v) unify.

Proof. We prove the first claim by induction on the length of the canonical decom-
position of s. Base case: σ = t¢π, for some pattern π. If a variable v is in the domain
of σ, then v is a variable of t and σ(v) is a most general unifier of the set of term
{π|q}q∈Q, where q ∈ Q iff q is an occurrence of π and t|q = v. Since π is a linear term
with all new variables the claim is immediate. Ind. case: Let σ = η1 ◦ . . . ◦ ηn the
canonical decomposition of σ and let η′ abbreviate η2 ◦ . . . ◦ ηn . Consider η′(η1(v1))
and η′(η1(v2)), where v1 and v2 are distinct variables of t. The claim holds for η1, the
proof being identical to the base case. The claim holds for η′ too, by the induction
hypothesis. Thus σ(v1) and σ(v2) are lienar and do not share any variable.

We now prove the second claim. Suppose that for any variable v of t in the domains
of both σ and σ′, σ(v) and σ′(v) unify. By the first claim, there exists a most general
unifier η of the set of sets of terms {{σ(v), σ′(v)}v∈Var(t)}. It is easy to verify that
η is a unifier, actually a most general one, of σ and σ′. The opposite implication is
immediate.
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6 Soundness and Completeness

Proposed notions of soundness and completeness of a calculus with non-deterministic
functions [6,10] have not yet obtained a universal consensus. In this paper we take the
following approach. A term rewriting system defines all and only the allowed steps of
a computation, but it does not say which of the generally many steps that are allowed
in term should be performed. The selection of a step is the job of a strategy. Since
not every step selection policy is useful, a good strategy should guarantee that all
and only the results of a computation are reached and that time and space resources
are not unnecessarily consumed.

In constructor based system, constructors define data, whereas operations define
computations. Thus, a term t is a computation and if t

∗
→ u and u is a normal form,

i.e., it cannot be further rewritten, then u is a result or value of t. In constructor
based system, as in most functional programming languages, only normal forms that
do not contain operations are interesting or legal and we refer to them as data terms.

The notions of soundness and completeness arise in computations performed with
incomplete information, i.e., in terms containing uninstantiated variables. Narrowing
has the potential to fill in the missing information necessary to compute results. We
stipulate, as usual, that a variable of sort S stands for all and only the ground data
terms of sort S and we consider only well-typed instantiations of a variables. Thus,
if t is a computation with incomplete information, i.e., a term with uninstantiated
variables, the results of t are all and only the elements of the set of data terms
rewritten from σ(t), when σ(t) is ground and σ is a ground constructor substitution
whose domain is the set of variables of t. The soundness and completeness of a
narrowing strategy are thus defined as the properties of the strategy to compute
only and all, respectively, the results of a term. A differing viewpoint is discussed in
Section 8.

In practice, things are slightly more complicated. When we compute with incom-
plete information, we care not only for the results, but also, and perhaps even more,
for the substitutions, called computed answers, that allow us to compute the results.
For example, the result of the computation 0 ≤ x, where “≤” is the usual relational
operator on the naturals defined in Example 12, are the data term true and the
computed answer set {{x 7→ 0}, {x 7→ s 0}, . . .}. Infinite sets of computed answers
are not unusual and dealing with them is unconvenient at best, thus we relax the
requirement that values and computed answers must be ground. This, for example,
allows us to represent the result of the above computation, in Curry’s computed ex-
pression notation, as {} [] true. The following definitions capture the intuition that
we just discussed.

Definition 14. A narrowing strategy S is sound iff for any derivation t;σ u com-
puted by S, σ(t)

∗
→ u. A narrowing strategy S is complete iff for any derivation

σ(t)
∗
→ u, where u is a data term and σ is a constructor substitution, there exists a

derivation t
∗
;σ′ u

′ computed by S such that σ′ ≤ σ and u′ ≤ u.

Next we prove the soundness and completeness of INS. In passing, we observe
that rewriting is unaffected by incomplete information.

Proposition 15. If t
∗
→ u, then, for any substitution σ, σ(t)

∗
→ σ(u).
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Proof. The rewrite relation is closed under substitution.

Theorem 16. If INS computes a narrowing derivation A : t
∗
;σ u, where u is a

data term, then σ(t)
∗
→ u.

Proof. By induction on the length of A. The base case is trivial. Let A be t ;η

t′
∗
;η′ u. By the definition of narrowing, σ = η ◦ η′ and η(t) → t′. By the definition

of rewriting, η′(η(t))→ η′(t′). By the indcution hypothesis, η′(t′)
∗
→ u. Thus, σ(t)→

η′(t′)
∗
→ u.

The proof of completeness requires a few auxiliary lemmas that shed some light
on the ideas of Definitional Tree and Inductively Sequential Narrowing. Lemma 20
is an extension to narrowing of the Parallel Moves Lemma [9]. Lemma 22 shows that
a pattern is an abstraction of the set of rules that can narrow a term that unifies
with the pattern. Lemmas 23 and 24 address the persistence of a step computed by
INS in a term t after t undergoes respectively an instantiation or another narrowing
step. These properties are crucial since a necessary step of t remains necessary if t is
further instantiated or another step is performed on t, provided that these operations
are compatible with the necessary step. Lemma 26 shows that a step computed by
INS must be performed, eventually, to reach a certain class of constructor-rooted
terms. These computations are more fundamental than needed computations [11].
Theorem 27 shows that any derivation that narrows a term at the root must perform
a step computed by INS on t. Its proof further shows that INS lays the foundations for
a sequence of steps that must be performed to compute a root-stable form. Although
INS does not compute a minimal (most general) unifier for a step, it computes a
minimal unifier for this sequence of steps. Theorem 29 addresses the relationship
between any derivation to a data term and the INS step implicitly performed by
this derivation. Corollary 30 shows that if a term t is narrowable to a data term,
then there exists an INS derivation that computes a similar term. Termination is a
relevant aspect of the proof. Finally, Corollary 31 proves the completeness of INS.

It is well-known that a set of disjoint redexes in a term can be contracted simul-
taneously [9]. We generalize this notion to a sets of narrowing step. In addition to
the disjointness of redexes, we also require the unifiability of the substitutions of the
steps.

Definition 17. If S = {(pi, li → ri, σi)}i=1,...,n is a set of narrowing steps of a
term t such that σ is an upper bound of the set of substitutions {σi}i=1,...,n, and
for all distinct i and j in 1, . . . , n, σi(t)|pi

and σj(t)|pj
are disjoint redexes, then

t′ = σ(t)[σ(r1), . . . , σ(rn)]|p1,...,pn
is well defined and independent of the order in

which the redexes are contracted. We call t; t′ a narrowing multistep.

Likewise, we generalize to narrowing the notion of descendant [9], which is of
paramount importance for investigating the derivation space of a term. Separating
the two parts of a narrowing step pays off here.

Definition 18. Let t be a term and s1 = (p1, R1, σ1) and s2 = (p2, R2, σ2) possibly
degenerate narrowing steps of t. Steps s1 and s2 are compatible iff σ1 and σ2 unify
and if p1 = p2 then R1 = R2. If s1 and s2 are compatible, t ;s1 t1, and σ is a
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most general unifier of σ1 and σ2 restricted to the variables of t1, then the set of
descendants of s2 by s1, denoted s2\s1, is defined as follows.

s2\s1 =



































{(=,=, σ)} if p1 = p2

{(p2, R2, σ)} if p1 6≤ p2

{(p1 · p · q,R2, σ) | r1|p = x} if s1 is not degenerate,
R1 = l1 → r1,
p2 = p1 · p

′ · q, and
l1|p′ = x is a variable

(3)

The notions of descendant of either a step or multistep by either a multistep or a
derivation are defined as for rewriting using Equation 3. The descendants of a term t

by a narrowing step (p,R, σ) is defined as the descendant of σ(t) by the rewrite step
at p.

The above definition is a conservative extension of the definition of descendant
(residual) for rewriting in orthogonal systems. Narrowing in inductively sequential
systems adds two new dimensions to the problem: instantiations and distinct right
hand sides of a same left hand side. Compatibility of steps, which always holds for
rewriting in orthogonal systems, ensures (see Lemma 20) that after a narrowing step
s1 of a term t we can perform what remains to be done of a narrowing step s2 of t. The
major novelty in our discussion is when two steps differ only in their substitutions.
If, after doing one step, we want to catch up with the other step, we may have to
further instantiate the term without any rewriting. This situation is consistent and
natural with our viewpoint that a narrowing step is a two-part computation.

Example 19. Consider the program that defines addition and multiplication on the
naturals in unary representation

0 + x = x

(s x) + y = s (x + y)

0 * x = 0

(s x) * y = y + x * y

and the term t = y + x ∗ y. Given the following steps of t (only the substitution is
indicated in the steps)

y + x ∗ y ;s1={y 7→0} x ∗ 0
y + x ∗ y ;s2={x7→0} y + 0

the step x ∗ 0;{x7→0} 0 is a descendant of s2 by s1 whereas x ∗ 0;{x7→s z} 0 + z ∗ 0
is not.

Lemma 20. If t;s1 t1 and t;s2 t2 are compatible steps, then

- there exist narrowing steps t1 ;s2\s1 u and t2 ;s1\s2 v;
- u = v;
- t;s1 t1 ;s2\s1 u and t;s2 t2 ;s1\s2 v compute the same substitution;
- for every step s of t compatible with both s1 and s2, s\(s2\s1) = s\(s1\s2).

Proof. By case analysis of the possible relative positions of the steps s1, s2, and s.
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Example 21. Consider the functions half and double defined in Example 8. The di-
agram of Fig. 1, where f is a binary function whose rules are irrelevant, illustrates
Lemma 20. Let t = f (half u) (double u). The top left step narrows t at position 1,
whereas the top right step narrows t at position 2. Each bottom step is the descendant
of the step at the opposite side of the diagram.

f (half u) (double u)

f (s (half y)) (double (s (s y)))

{u 7→ s (s y)}

f (half (s x)) (s (s (double x)))

{u 7→ s x}

f (s (half y)) (s (s (double (s y))))

{} {x 7→ s y}

Fig. 1. Pictorial representation of the Parallel Narrowing Moves Lemma. An arrow repre-
sents a narrowing step and its label shows the step’s substitution.

Lemma 22. Let t be an operation rooted term, T the fixed definitional tree of the
root of t, π a maximal pattern of T that unifies with t, and η = t¢ π. If l → r is a
rule applied to narrow a descendant of η(t), then π ≤ l.

Proof. Consider any derivation A : η(t)
∗
; t′ ;(Λ,l→r,σ) t′′, where the last step of

A is the only step of A at the root, i.e., it is the step that narrows a descendant of
η(t). If π and l are incomparable, then there exists in T a maximal pattern π′ strictly
smaller than both π and l. If p is the inductive position of π′, then l|p and π|p are
rooted by different constructor symbols and so are l|p and η(t)|p. The only step of A
at a position equal to or above p is the last one, since all symbols at a position equal
to or above p in η(t), except the root, are constructor symbols, thus the root of t′|p
is the same as the root of η(t)|p. This implies that l→ r cannot be applied to narrow
t′. Thus, π and l must be comparable, and π ≤ l.

Lemma 23. Let t be a term such that s = (p,R, η) ∈ INS(t), and σ an idempotent
substitution whose domain is contained in the set of the variables of t. If σ and η are
unifiable, then there exists a substitution σ′ such that (p,R, σ′) ∈ INS(σ(t)).

Proof. Let (p1 · . . . · pn, R, η1 ◦ . . . ◦ ηn) be the canonical decomposition of s. Let
πi, for i in 1, . . . , n, be the pattern used in the i-th application of the second case
of Definition 10 during the computation of s. Let Mt and Mπ be the n-tuples of
terms 〈t, t|p1

, t|p1·p2
, . . .〉 and 〈π1, π2, . . .〉, respectively. Since INS computes step s

on t, Mt and Mπ unify and have a most general unifier η̂ such that η and η̂ co-
incide on the variables of t. Since σ and η unify and η and η̂ differ only for vari-
ables that are not in the domain of σ, σ and η̂ unify too. Let ρ an unifier of σ
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and η̂. Since ρ unifies σ and η̂, ρ(σ(Mt)) = ρ(η̂(Mt)). Since η̂ unifies Mt and Mπ,
η̂(Mt) = η̂(Mπ). By substitutivity, ρ(σ(Mt)) = ρ(η̂(Mπ)). Since σ is an idempotent
substitution, ρ(σ(σ(Mt))) = ρ(σ(Mπ)), hence σ ◦ ρ is a unifier of σ(Mt) and Mπ.
Thus a computation of INS on σ(t) parallels the computation of s, except for the
unifiers, and INS computes a step (p,R, σ′) on σ(t), for some σ′.

Lemma 24. Let t be a term, t;s1 t1 any narrowing step, t;s2 t2 a narrowing step
compatible with s1 computed by INS on t, and s3 = s2\s1. If s3 is not degenerate,
then s3 ∈ INS(t1).

Proof. Let s1 = (p1, R1, σ1) and s2 = (p2, R2, σ2). Since s3 is not degenerate, p1 6= p2.
Since s1 and s2 are compatible and s2 is computed by INS, position p1 cannot be
above position p2. Thus, we only have to prove the claim for the second case of
Equation 3. Using Lemma 23, it can be verified that the computation of s3 parallels
that of s2, except for the unifiers.

Definition 25. We say that a narrowing step (p, l → r, σ) is root-needed for an

operation-rooted term t iff in any narrowing derivation t
+
;η u, where u is constructor-

rooted and η ≥ σ, a descendant of t|p is narrowed.

Lemma 26. INS computes only root-needed steps.

Proof. Let t be an operation rooted term, s = (p, l→ r, σ) a step computed by INS on

t, and A : t
+
;η u a derivation of t into a constructor-rooted term u such that η ≥ σ.

We prove the claim by induction on the length of the canonical decomposition of s.
Base case: σ(t), hence η(t), is a redex and its descendants remain redexes, regardless
of other steps of A, until they are narrowed. Ind. case: Let s = (q · q′, l → r, τ ◦ τ ′),
where π is a maximal pattern in the fixed definitional tree of the root of t that unifies
with t, q is the inductive position of π and τ = t¢π. By Lemma 22, any descendant of
τ(t), hence of η(t), can be narrowed at the root only by rules whose left hand sides are
instances of π. All these rules have a constructor symbol at position q. However, τ(t)
has an operation symbol at position q. Thus, no descendant of τ(t) can be narrowed
at the root, unless t|q is narrowed to a constructor-rooted term, i.e., a step at q is
needed to narrow τ(t) at the root. By the induction hypothesis, (t|q)|q′ is root-needed
for any instance of τ ′(τ(t)|q). Since (t|q)|q′ = t|p, by transitivity, s is root-need for t.

INS does not compute every root-needed step of a term, but if an operation-rooted
term t can be narrowed to a constructor-rooted term, then INS always computes a
step of t. If a term t is narrowable, but not to a data term, then INS may fail to
compute any step. This property is a blessing in disguise. For example, consider

f = 0

g 0 = 0

h 0 0 = 0

and the term t = h (g (s 0)) f . For some definitional tree of h, e.g., {h x1 y1,

h 0 y2, h 0 0}, INS does not compute any step on t, although t is narrowable
(reducible) at position 2. However, t cannot be narrowed (reduced) to a data term.
The early failure of INS saves performing useless steps.

Lemma 26 shows that INS computes only root-needed steps. We now prove a
somewhat complementary result roughly equivalent to the fact that INS computes all
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the steps necessary to reach a data term. Because narrowing in non-confluent systems
is more general than rewriting in strongly sequential systems, our formulation takes
a different form and is broken into several results.

Theorem 27. Let t be an operation-rooted term and A : t
+

;η′ t
′ a derivation that

performs a step at the root. INS computes a step s = (q,R, η) on t such that η ≤ η′.

Proof. Let A : t = t0 ;s1 t1 ;s2 · · ·;sn
tn = t′, for all i in 1, . . . , n, let si = (pi, li →

ri, σi), and let k be the minimum index such that pk = Λ. If t and lk unify, then
s = (Λ, lk → rk, t¢ lk) ∈ INS(t) and it can be verified that t¢ lk ≤ σ1 ◦ . . . ◦ σk ≤ η′.
Otherwise, we construct s by structural induction on t. The base case is vacuous.
Ind. case: Since t and tk have the same root symbol, there exists a maximal pattern
π in the fixed definitional tree of the root of t such that π and t unify, σ = t¢π, and
π < lk. Let p be the inductive position of π. Since k is the index of the first step of A
at the root and p is the position of an inductive variable of π, for all i in 1, . . . , k− 1,
and all q such that q < p and q 6= Λ, ti|q is constructor-rooted. Hence, in the initial
portion of A up to index k, no step occurs at a position strictly above p. Since t|p
is operation-rooted and tk−1|p is constructor-rooted, A defines a derivation, which
we denote A|p, of t|p to a constructor-rooted term. By the induction hypothesis, INS
computes a step s′ = (p′, l→ r, τ) on t|p and τ ≤ σ1 ◦ · · · ◦σk−1. We now prove that τ

and σ unify. For each variable v in t, let Hv = {π|p | t|p = v}. Informally, Hv is the set
of the subterms of π matching instances of v in t. σ restricted to v is a most general
unifier of Hv. Since the variables in the terms in Hv are all new, σ(v) and τ(v) unify
if and only if the set Hv ∪ {τ(v)} unifies. Since v is in the domain of σ, there exists
an occurrence pv of π such that t|pv

= v. By assumption, tk−1|pv
= σ1 ◦ · · · ◦σk−1(v).

Thus, using the induction hypothesis, τ(v) ≤ tk−1|pv
. Let H ′

v = {lk|p | π|p ∈ Hv}.
Since π < lk, for all h in Hv, there exists some h′ in H ′

v such that h ≤ h′. The
k-th step of A implies that the set H ′

v ∪ {tk−1|pv
} unifies. Thus Hv ∪ {τ(v)} unifies

too and σ(v) and τ(v) unify. Since σ(v) and τ(v) unify for every variable v, by
Lemma 13, σ and τ unify. By Lemma 23, there exists a substitution σ′ such that
(p′, l → r, σ′) ∈ INS(σ(t|p)) and consequently s = (p · p′, l → r, σ ◦ σ′) ∈ INS(t). To
prove that η ≤ η′ we need an auxiliary result. Let (p1 · . . . · pn, R, η1 ◦ . . . ◦ ηn) be the
canonical decomposition of s. We show, by induction on n, that for all i in 1, . . . , n,
there exists a step of A whose position is p1 ·. . .·pi−1, where for i = 1 we stipulate that
p1 · . . . · p0 = Λ. Base case: when n = 1 we only have to prove that A performs a step
at the root. This is already an assumption. Ind. case: by the induction hypothesis, we
assume the claim for the derivation that earlier we denoted with A|p. In this context
p = p1. Since A|p1

is embedded into A, the induction hypothesis guarantees that A

performs a step at position p1 · . . . · pi−1, for i in 2, . . . , n. Since we also assume that
the k-th step of A is at the root, the claim holds for i = 1, too. Now, let 〈π1, . . . , πn〉
be the tuple of patterns used in the computation of s and, for all i in 1, . . . , n, let
π′i be the left hand side of the rule applied to narrow a descendant of t|p1·...·pi−1

, let
x be a variable in t, let Mi be the sets of subterms of πi matching x, and let M ′

i

be the set of corresponding subterms of π′
i, i.e., for all positions p, π′i|p ∈ M ′

i if and
only if πi|p ∈Mi. Let M = M1 ∪ . . .∪Mn and M ′ = M ′

1 ∪ . . .∪M ′
n. By definition of

INS, πn = π′n. For all i in 1, . . . , n− 1, by Lemma 22, πi < π′i. By convention, let the
unifier of an empty set be the identity substitution. η(x) is a most general unifier of
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M and (σ1 ◦ . . . ◦σk)(x) is a unifier of M ′. For each term m in M there exists a term
m′ in M ′ such that m ≤ m′. Thus, η ≤ σ1 ◦ . . . ◦ σk and consequently η ≤ η′.

The proof of previous theorem associates a step computed by INS to any deriva-
tion that narrows an operation-rooted term to a constructor-rooted term. Next we
formally define this step.

Definition 28. Let t be an operation-rooted term and A : t = t0 ;s1 t1 ;s2

· · · ;sn
tn a derivation that performs a step at the root. For all i in 1, . . . , n, let

si = (pi, li → ri, σi) and let k be the minimum index such that pk = Λ. We define the
step s associated to A as follows. If t and lk unify, then s = (Λ, lk → rk, t¢ lk), else
we define s by structural induction on t as follows. The base case of the definition
is vacuous. Ind. case of the definition: There exists a non-empty set S of patterns
of the fixed definitional tree of the root of t that unify with t. Let π be a maximal
pattern in S, σ = t¢ π, and π < lk. Let p be the inductive position of π. Since t|p is
operation-rooted and tk−1|p is constructor-rooted, A defines a derivation, which we
denote A|p, of t|p to a constructor-rooted term. By induction, let (p′, l→ r, τ) be the
step associated to A|p. The proof of Theorem 27 shows that σ and τ unify. Hence,
by Lemma 23, there exists a substitution σ′ such that (p′, l → r, σ′) ∈ INS(σ(t|p)).
We define s = (p · p′, l→ r, σ ◦ σ′).

Theorem 29. Let A = A1;A2; . . . An be a narrowing derivation of a term t0 to a
data term tn, and let B0 be the step associated to A. There exists a commutative
diagram (arrows stand for narrowing multisteps)

t0
A1

t1
A2

· · ·
An

tn

B0 B1 Bn

t′0
A′

1
t′1

A′
2

· · ·
A′
n

t′n

where A′
i+1 = Ai+1\Bi and Bi+1 = Bi\Ai+1, for i = 0, . . . , n−1, and the substitution

of step Bn is a permutation.

Proof. For i = 0, . . . , n, ηi will denote the substitution of step Bi, and for i = 1, . . . , n,
σi will denote the substitution of step Ai. Without loss of generality assume that σi
is a unifier restricted to the set of variables of ti−1 and consequently is an idempotent
substitution. We begin by proving that for all i in 1, . . . , n, if ηi−1 ≤ σi◦σi+1◦. . .◦σn,
then ηi−1 and σi unify. This result will be used later in the proof. Let σ′ abbreviate
σi◦σi+1◦. . .◦σn. Since ηi−1 ≤ σ′, there exists a substitution ρi such that ηi−1◦ρi = σ′.
Applying both sides to ηi−1 yields ηi−1 ◦ ηi−1 ◦ ρi = ηi−1 ◦ σ′. Since ηi−1 is an
idempotent substitution, ηi−1 ◦ ρi = ηi−1 ◦ σ′. Since ηi−1 ◦ ρi = σ′, σ′ = ηi−1 ◦ σ′.
Since σi is an idempotent substitution, σi ◦σ

′ = ηi−1 ◦σ
′. Thus, σ′ is a unifier of ηi−1

and σi. Now we prove that for all i in 1, . . . , n, ηi−1 ≤ σi◦σi+1◦. . .◦σn. The proof is by
induction on i. Base case: Immediate from Theorem 27. Ind. case: Assume the claim
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for i > 0. This assumes the existence of the diagram up Bi−1. Let y be a variable in
the domain of ηi. If y ∈ Var(ti−1), then σi(y) = y, then ηi−1(y) ≤ (σi+1 ◦ . . . ◦σn)(y)
and ηi−1(y) = ηi(y), then ηi ≤ σi+1 ◦ . . . ◦ σn. If y 6∈ Var(ti−1), then there exist a
variable x ∈ Var(ti−1) and a term tx such that σi(x) = tx and y ∈ Var(tx). ηi(tx)
is a lowest upper bound of {ηi−1(x), σi(x)}. Since ηi−1(x) ≤ (σi ◦ . . . ◦ σn)(x) and
σi(x) ≤ (σi ◦ . . . ◦σn)(x) we have ηi(tx) ≤ (σi ◦ . . . ◦σn)(x). Since σi(x) = tx we have
ηi(tx) ≤ (σi+1◦. . .◦σn)(tx), hence ηi(y) ≤ (σi+1◦. . .◦σn)(y), hence ηi ≤ σi+1◦. . .◦σn.
Thus the entire diagram exists and commutes. Finally, since the substitution of step
Bn−1 is not greater than the substitution of step An, we have that the substitution
of step Bn is a permutation.

Corollary 30. Let A : t
+

;σ u a narrowing derivation of a term t to a data term u.
INS computes a narrowing derivation B : t

+

;σ′ u
′ such that σ′ ≤ σ and u′ ≤ u.

Proof. Consider the commutative diagram

t00
A01

t01
A02

· · ·
A0n

t0n

B10 B11 B1n

t10
A11

t11
A12

· · ·
A1n

t1n

B20

...

B21

...

B2n

...

where A = A01;A02; . . . ;A0n. Let Ai abbreviate Ai0;Ai1; . . ., for i ≥ 0. Let Bi be
the step associated to Ai and let B appreviate B10;B20; . . . We first prove that B

terminates. By Theorem 27 and Lemma 26, for all i ≥ 0, Ai performs a step at the
position of Bi0. If d is the index of this step, then A(i+1)d is degenerate, whereas Aid

is not. Thus, for all i ≥ 0, the number of degenerate steps of Ai+1 is greater than the
number of degenerate steps of Ai. Since the number of steps, degenerate or non, in
A is finite, B must have only a finite number of steps. The condition of minimality
of σ′ and u′ are a consequence of the fact that, by the second claim of Theorem 29,
the sequence B1n;B2n; . . . consists of degenerate steps with a substitution equivalent
to the identity.

Corollary 31. If A : σ(t)
∗
→ u, where u is a data term and σ is a constructor

substitution, then INS computes a narrowing derivation B : t
∗
;σ′ u with σ′ ≤ σ and

u′ ≤ u.

Proof. If σ(t) = u, the claim is trivial. Otherwise, let A : σ(t) → t′
∗
→ u. Consider

the narrowing derivation A′ : t ;σ t′
∗
;{} u. The claim is a direct consequence of

Corollary 30 applied to A′.
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7 Optimality

Strategies are intended to avoid or minimize unnecessary computations. When non-
determinism is involved, the notion of what is or is not necessary becomes subtle.
Often, we use non-determinism when we do not know how to make the “right” steps
and we cannot expect the narrowing strategy to choose for us. Thus, a realistic mea-
sure of the quality of a strategy should discount unnecessary work which is performed
only because of a wrong non-deterministic choice.

INS makes three kinds of non-deterministic choices in the computation of a step
of a term t: (0) a maximal operation-rooted subterm t′ of t; (1) a maximal pattern
π that unifies with t′ in the fixed definitional tree of the root of t′, and (2) when π is
leaf, a rule whose left hand side is a variant of π. We refer to these choices as type-0,
type-1, and type-2 choices, respectively. Type-0 choices are don’t care choices whereas
the other choices are don’t know choices. Type-2 choices originate from overlapping
rules whereas type-1 choices occur in non-overlapping systems too, e.g., the strongly
sequential ones. The following results show that according to this viewpoint INS does
not waste a single step, though it may still make “wrong” choices.

Lemma 32. Let s1 = (p1, l1 → r1, σ1) and s2 = (p2, l2 → r2, σ2) be narrowing steps
computed by INS on some operation-rooted term t. If s1 and s2 differ for a type-1
choice, then σ1 and σ2 are independent.

Proof. Let 〈π11, π12, . . .〉 and 〈π21, π22, . . .〉 be the sequences of patterns chosen in the
computations of s1 and s2 respectively. Suppose that k is the smallest index such
that π1k 6= π2k. This implies that p11 · · · p1(k−1) = p21 · · · p2(k−1). By Definition 10,
(σ11 ◦ . . . ◦ σ1k)(t|p11···p1(k−1)

)¢ π1k and (σ21 ◦ . . . ◦ σ2k)(t|p21···p2(k−1)
)¢ π2k. Since π1k

and π2k are distinct incomparable patterns of the same definitional tree, they do not
unify, and consequently σ11 ◦ . . . ◦ σ1k and σ21 ◦ . . . ◦ σ2k are independent. Thus σ1

and σ2 are independent, too.

Theorem 33. Let A1 : t
+

;σ1
t1 and A2 : t

+

;σ2
t2 be narrowing derivations com-

puted by INS. If A1 and A2 differ for a type-1 choice in some step, then σ1 and σ2

are independent.

Proof. Let A1 : t = t10 ;σ11
t11 ;σ12

. . . and A2 : t = t20 ;σ21
t21 ;σ22

. . . Let k

be the smallest index such that the k-th steps of A1 and A2 differ for a type-1 choice.
We prove the claim by induction on k. Base case: k = 1 and the claim is a direct
consequence of Lemma 32. Ind. case: Let k > 1. By the induction hypothesis, there
exist a variable v in t1k = t2k such that (σ1k◦σ1(k+1)◦. . .)(v) and (σ2k◦σ2(k+1)◦. . .)(v)
do not unify. It is easy to verify [2, Full version, Prop. 2] that either v is in t10 or
that there exists a variable v′ in t10 such that v ∈ Var((σ11 ◦ . . . ◦σ1(k−1))(v

′)). Since
A1 and A2 are equal up to the k-th step, either condition ensures the claim.

Corollary 34. A narrowing derivation to a data term computed by INS performs
only unavoidable steps, modulo non-deterministic choices.

Proof. The claim is trivial for empty derivations, thus let A : t
+
;σ u a non-empty

derivation of a term t to a data term u. Type-0 choices do not play any role, since
every maximal operation-rooted subterm of a term must be narrowed to a data term.
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By Theorem 33, no other derivation with the same type-1 choices computes σ. By
Lemma 26, if any step of A involving a type-2 choice were avoided, then u could not
be reached.

Example 35. The previous result, does not imply that INS computes “the best”
derivation. Referring to the operation defined in display (1), both the following deriva-
tions satisfy Corollary 34.

f → 0
f → f → 0

This fact is not surprising. It is obvious a posteriori that the second derivation makes
an inappropriate type-2 choice to minimize the number of steps of the derivation.
This is not a specific problem of INS. It is well-known [9] that even when the rewrite
system does not allow type-2 choices, a derivation that makes only unavoidable steps
may not minimize their number.

8 Related Work

INS has similarities with both Needed Narrowing [2] and CRWL [6]. The class of
rewrite systems to which INS can be applied is wider than the class to which NN can
be applied. NN is limited to confluent systems and consequently does not support the
kind of non-deterministic computations discussed in Section 2. By contrast, CRWL
does not place any specific limitation on rewrite systems. This “in-between” position
of INS is an asset for the reasons discussed next.

Needed Narrowing is optimal in the number of steps of a derivations, but is likely
to be less efficient than INS on inherently non-deterministic computations. For ex-
ample, suppose that we want to solve the N -queen problem with the well-known
technique of trial and error. With limited non-determinism, we would follow the
standard functional programming approach, e.g., see [3, p. 133–134], which employs
list comprehensions and higher order functions. This approach lazily generates per-
mutations, stores them in a structure, and then tests the generated permutations one
after another. By contrast, an inductively sequential program, see Example 7, does
not require the explicit potential generation of all the permutations nor a structure
to hold them nor higher order functions to process this structure. This approach sim-
plifies the programming task and does not incur the cost of explicitly building and
later garbage collecting the structure that holds the permutations. We dare to argue
that inductively sequential programs would be welcome in functional programming,
if this paradigm were equipped for backtracking and non-deterministic choices.

The lack of restrictions placed by CRWL on rewriting systems is not always ad-
vantageous. CRWL does not guarantee that computed answers are independent or
that every performed step is unavoidable modulo non-deterministic choices. Further-
more, pattern matching for functions defined by not left-linear rules may become
computationally expensive. From a software design perspective, programs in CRWL
can be poorly structured. E.g., referring to Example 7 the following definition of
insert, accepted by CRWL, is not inductively sequential.

insert x xs = (x : xs)

insert x (y : ys) = (y : insert x ys)
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According to this program, the need to evaluate or instantiate the second argument
of insert depends on the non-deterministic selection of a rule, rather than on the
definition of a function. Reasoning about laziness becomes difficult in this situation.
By contrast, the definitions of functions in inductively sequential programs are well-
understood and familiar. They are exactly the first order Haskell programs except,
possibly, for allowing multiple choices of right hand side expressions. Inductive se-
quentiality imposes on the definition of functions restrictions weaker than those of
functional programming, yet we have shown that it provides considerable benefits.

The notion of soundness that we have proposed differs from that adopted in [6].
CRWL adopts what is referred to as call-time choice for non-deterministic computa-
tions [10]. By contrast, we have adopted an evaluation-time choice. Intuitively, the
first freezes at the time of a call the non-deterministic choices that will be made to
evaluate the arguments of the call, whereas the second does not. Both approaches
are plausible and defensible and we defer any decision on their appropriateness to
another arena. However, we observe that evaluation-time choice is more natural when
semantics are based on rewriting. The call-time choice approach is sound only if some
rewrite steps, legal according to the rewrite semantics, are actually prohibited. From
a purely computational and implementative point of view, our approach effortlessly
supports call-time choice if the common subterms of a term are shared. Sharing
would have no negative effects on our strategy completeness, whose definition for
call-time choice differs, and would strengthen its optimality by ensuring derivations
of minimum length modulo type-2 non-deterministic choices.

9 Conclusion

We have defined a novel class of programs, modeled by possibly overlapping induc-
tively sequential rewrite systems, which simplifies coding non-deterministic functional
logic computations. Our approach has been driven by Curry, a universal functional
logic language currently discussed by researchers in this field, and has been inspired
by CRWL, a rewriting logic for declarative programming. We have shown the exis-
tence of a sound, complete, and optimal narrowing strategy for inductively sequential
programs.

The unified computation model proposed for Curry is based on definitional trees.
Thus, it can be applied to inductively sequential programs, whether or not over-
lapping, without any change. When multiple results of non-deterministic compu-
tations are not acceptable, the choice operator already provided in Curry can be
used, explicitly or implicitly, to prune the solution space. An implementation op-
tion, based on sharing common subterms of a term, accommodates either call-time
or evaluation-time choice as the semantics of non-deterministic computations. Deter-
ministic computations are performed by our strategy as efficiently as theoretically
possible. In particular, inductively sequential narrowing is a conservative extension
of needed narrowing. Inherently non-deterministic computations are performed more
efficiently than needed narrowing computations, since it is no longer necessary to
cast non-deterministic algorithms into deterministic ones.

There are two directions along which our work could be extended. One is the ad-
dition of conditions to rewrite rules. The other is a mild relaxation of the overlapping
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requirements by allowing trivial critical pairs between rules with multiple right hand
sides.
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Artalejo. A rewriting logic for declarative programming. In ESOP’ 96, Linköping,
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