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1 Introduction

Curry is a universal programming language aiming at the amalgamation of the most impor-

tant declarative programming paradigms, namely functional programming and logic programming.

Curry combines in a seamless way features from functional programming (nested expressions, lazy

evaluation, higher-order functions), logic programming (logical variables, partial data structures,

built-in search), and concurrent programming (concurrent evaluation of constraints with synchro-

nization on logical variables). Moreover, Curry provides additional features in comparison to the

pure languages (compared to functional programming: search, computing with partial information;

compared to logic programming: more efficient evaluation due to the deterministic evaluation of

functions). Moreover, it also amalgamates the most important operational principles developed in

the area of integrated functional logic languages: “residuation” and “narrowing” (see [8, 22, 25] for

surveys on functional logic programming).

The development of Curry is an international initiative intended to provide a common platform

for the research, teaching1 and application of integrated functional logic languages. This document

describes the features of Curry, its syntax and operational semantics.

1Actually, Curry has been successfully applied to teach functional and logic programming techniques in a single

course without switching between different programming languages. More details about this aspect can be found in

[23].
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2 Programs

A Curry program specifies the semantics of expressions. Executing a Curry program means sim-

plifying an expression until a value (together with bindings of free variables) is computed. To

distinguish between values and reducible expressions, Curry has a strict distinction between (data)

constructors and operations or defined functions on these data. Hence, a Curry program consists

of a set of type and function declarations. The type declarations define the computational domains

(constructors) and the function declarations the operations on these domains. Predicates in the

logic programming sense can be considered as functions with result type Bool. Goals, which are the

main expressions in logic programming, are Boolean expressions that are intended to be evaluated

to True.

Modern functional languages (e.g., Haskell [41], SML [37]) allow the detection of many pro-

gramming errors at compile time by the use of polymorphic type systems. Similar type systems

are also used in modern logic languages (e.g., Gödel [28], λProlog [39]). Curry follows the same

approach, i.e., it is a strongly typed language with a Hindley/Milner-like polymorphic type system

[14].2 Each object in a program has a unique type, where the types of variables and operations can

be omitted and are reconstructed by a type inference mechanism.

2.1 Datatype Declarations

A datatype declaration has the form

data T α1 . . . αn = C1 τ11 . . . τ1n1 | · · · | Ck τk1 . . . τknk

and introduces a new n-ary type constructor T and k new (data) constructors C1, . . . , Ck, where

each Ci has the type

τi1 -> · · · -> τini
-> T α1 . . . αn

(i = 1, . . . , k). Each τij is a type expression built from the type variables α1, . . . , αn and some

type constructors. Curry has a number of built-in type constructors, like Bool, Int, -> (function

space), or, lists and tuples, which are described in Section 4.1. Since Curry is a higher-order

language, the types of functions (i.e., constructors or operations) are written in their curried form

τ1 -> τ2 -> · · · -> τn -> τ where τ is not a functional type. In this case, n is called the arity of

the function. For instance, the datatype declarations

data Bool = True | False

data List a = [] | a : List a

data Tree a = Leaf a | Node (Tree a) a (Tree a)

introduces the datatype Bool with the 0-ary constructors (constants) True and False, and the

polymorphic types List a and Tree a of lists and binary trees. Here, “:” is an infix operator, i.e.,

“a:List a” is another notation for “(:) a (List a)”. Lists are predefined in Curry, where the

notation “[a]” is used to denote list types (instead of “List a”). The usual convenient notations

for lists are supported, i.e., [0,1,2] is an abbreviation for 0:(1:(2:[])) (see also Section 4.1).

A data term is a variable x or a constructor application c t1 . . . tn where c is an n-ary constructor

2The extension of this type system to Haskell’s type classes is not included in the kernel language but could be

considered in a future version.
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and t1, . . . , tn are data terms. An expression is a variable or a (partial) application ϕ e1 . . . em
where ϕ is a function or constructor and e1, . . . , em are expressions. A data term or expression is

called ground if it does not contain any variable. Ground data terms correspond to values in the

intended domain, and expressions containing operations should be evaluated to data terms. Note

that traditional functional languages compute on ground expressions, whereas logic languages also

allow non-ground expressions.

2.2 Type Synonym Declarations

To make type definitions more readable, it is possible to specify new names for type expressions by

a type synonym declaration. Such a declaration has the general form

type T α1 . . . αn = τ

which introduces a new n-ary type constructor T . α1, . . . , αn are pairwise distinct type variables

and τ is a type expressions built from type constructors and the type variables α1, . . . , αn. The type

(T τ1 . . . τn) is equivalent to the type {α1 7→ τ1, . . . , αn 7→ τn}(τ), i.e., the type expression τ where

each αi is replaced by τi. Thus, a type synonym and its definition are always interchangeable and

have no influence on the typing of a program. For example, we can provide an alternative notation

for list types and strings by the following type synonym declarations:

type List a = [a]

type Name = [Char]

Since a type synonym introduces just another name for a type expression, recursive or mutually

dependent type synonym declarations are not allowed. Therefore, the following declarations are

invalid :

type RecF a = a -> RecF a -- recursive definitions not allowed

type Place = [Addr] -- mutually recursive definitions not allowed

type Addr = [Place]

However, recursive definitions with an intervening datatype are allowed, since recursive datatype

definitions are also allowed. For instance, the following definitions are valid:

type Place = [Addr]

data Addr = Tag [Place]

2.3 Function Declarations

A function is defined by a type declaration (which can be omitted) followed by a list of defining

equations. A type declaration has the form

f :: τ1 -> τ2 -> · · · -> τk -> τ

where τ1, . . . , τk, τ are type expressions.

The simplest form of a defining equation (or rule) for an n-ary function f (n ≥ 0) is

f t1 . . . tn = e

6



where t1, . . . , tn are data terms (also called patterns) and the right-hand side e is an expression.

Functions can also be defined by conditional equations which have the form

f t1 . . . tn | c = e

where the condition c is a Boolean expression A conditional equation can be applied if its condition

can be evaluated to True.

If the left-hand side f t1 . . . tn of a defining equation contains multiple occurrences of a vari-

able, these occurrences are considered as an equational constraint (cf. Section 2.6) between the

arguments. Thus, a function declaration

f x x = g x

is considered as an abbreviation of the conditional equation

f x y | x=:=y = g x

Thus, each multiple variable occurrence is replaced by a new variable and an equational constraint

is added. These constraints are the first constraints to be solved. For instance, the conditional

equation

f x y x y | c x y = g x

is considered as an abbreviation for

f x y x1 y1 | (x=:=x1 & y=:=y1) &> c x y = g x

An n-ary function f can be defined by more than one (conditional) equation (where each rule must

have the same number of arguments on the left-hand side). Note that one can define functions

with a non-determinate behavior by providing several rules with overlapping left-hand sides or

free variables (i.e., variables which do not occur in the left-hand side) in the conditions or right-

hand sides of rules. For instance, the following non-deterministic function inserts an element at an

arbitrary position in a list:

insert x [] = [x]

insert x (y:ys) = x : y : ys

insert x (y:ys) = y : insert x ys

Such non-deterministic functions can be given a perfect declarative semantics [19] and their imple-

mentation causes no overhead in Curry since techniques for handling non-determinism are already

contained in the logic programming part (see also [5]). However, deterministic functions are advan-

tageous since they provide for more efficient implementations (like the dynamic cut [35]). If one is

interested only in defining deterministic functions, this can be ensured by the following restrictions:

1. Each variable occurring in the right-hand side of a rule must also occur in the corresponding

left-hand side.

2. If f t1 . . . tn | c = e and f t′1 . . . t
′
n | c′ = e′ are rules defining f and σ is a substitution3

with σ(t1 . . . tn) = σ(t′1 . . . t
′
n), then at least one of the following conditions holds:

3A substitution σ is a mapping from variables into expressions which is extended to a homomorphism on expressions

by defining σ(f t1 . . . tn) = f σ(t1) . . . σ(tn). {x1 7→ e1, . . . , xk 7→ ek} denotes the substitution σ with σ(xi) = ei
(i = 1, . . . , k) and σ(x) = x for all variables x 6∈ {x1, . . . , xk}.

7



(a) σ(e) = σ(e′) (compatibility of right-hand sides).

(b) σ(c) and σ(c′) are not simultaneously satisfiable (incompatibility of conditions). A de-

cidable approximation of this condition can be found in [31].

These conditions ensure the confluence of the rules if they are considered as a conditional term

rewriting system [46]. Implementations of Curry may check these conditions and warn the user if

they are not satisfied. There are also more general conditions to ensure confluence [46] which can

be checked instead of the above conditions.

2.3.1 Functions vs. Variables

In lazy functional languages, different occurrences of the same variable are shared to avoid multiple

evaluations of identical expressions. For instance, if we apply the rule

double x = x+x

to an expression double t, we obtain the new expression t+t but both occurrences of t denote the

identical expression, i.e., these subterms will be simultaneously evaluated. Thus, several occurrences

of the same variable are always shared, i.e., if one occurrence of an argument variable, which

might bound to an evaluable expression when the function is applied, is evaluated to some value,

all other occurrences of this variable are replaced by the same value (without evaluating these

other occurrences again). This sharing is necessary not only for efficiency reasons but it has also

an influence on the soundness of the operational semantics in the presence of non-deterministic

functions (see also [19]). For instance, consider the non-deterministic function coin defined by the

rules

coin = 0

coin = 1

Thus, the expression coin evaluates to 0 or 1. However, the result values of the expression

(double coin) depend on the sharing of the two occurrences of coin after applying the rule for

double: if both occurrences are shared (as in Curry), the results are 0 or 2, otherwise (without

sharing) the results are 0, 1, or 2. The sharing of argument variables corresponds to the so-called

“call time choice” in the declarative semantics [19]: if a rule is applied to a function call, a unique

value must be assigned to each argument (in the example above: either 0 or 1 must be assigned

to the occurrence of coin when the expression (double coin) is evaluated). This does not mean

that functions have to be evaluated in a strict manner but this behavior can be easily obtained by

sharing the different occurrences of a variable.

Since different occurrences of the same variable are always shared but different occurrences of

(textually identical) function calls are not shared, it is important to distinguish between variables

and functions. Usually, all symbols occurring at the top level in the left-hand side of some rule are

considered as functions and the non-constructor symbols in the arguments of the left-hand sides

are considered as variables. But note that there is a small exception from this general rule in local

declarations (see Section 2.4).

2.3.2 Rules with Multiple Guards

One can also write conditional equations with multiple guards

8



f t1 . . . tn | b1 = e1
...

| bk = ek

where b1, . . . , bk (k > 0) are expressions of type Bool. Such a rule is interpreted as in Haskell: the

guards are successively evaluated and the right-hand side of the first guard which is evaluated to

True is the result of applying this equation. Thus, this equation can be considered as an abbreviation

for the rule

f t1 . . . tn = if b1 then e1 else

...

if bk then ek else failed

(where failed is a non-reducible function defined in the prelude). To write rules with several

Boolean guards more nicely, there is a Boolean function otherwise which is predefined as True. For

instance, the factorial function can be declared as follows:

fac n | n==0 = 1

| otherwise = fac(n-1)*n

After performing a simple optimization, this definition is equivalent to

fac n = if n==0 then 1 else fac(n-1)*n

Note that multiple guards in a single rule are always sequentially tested, whereas multiple rules for

a function are non-deterministically applied (see the definition of insert in in Section 2.3). Thus,

the following definition of fac has a different meaning than the definition with multiple guards

above, since the second rule is always applicable:

fac n | n==0 = 1

fac n | otherwise = fac(n-1)*n

2.3.3 As-Patterns

The patterns in a defining equation, i.e., the arguments of the left-hand sides, are required to be

data terms without multiple occurrences of variables. Patterns are useful to split the definition of

functions into easily comprehensible cases. Thus, a pattern denotes some part of a structure of

the actual argument. Sometimes one wants to reuse this structure in the right-hand side of the

defining equation. This can be expressed by an as-pattern which allows to identify this structure by

a variable. An as-pattern has the form v@pat where the variable v identifies the structure matched

by the pattern pat. For instance,

dropFalse (False:ys) = ys

dropFalse xs@(True:_) = xs

is equivalent to

dropFalse0 xs = dropFalse’ xs

where

dropFalse’ (False:ys) = ys

dropFalse’ (True:_) = xs

9



(local declarations introduced by where-clauses are discussed in Section 2.4). However, as-patterns

are usually implemented more efficiently without introducing an auxiliary function.

2.4 Local Declarations

Since not all auxiliary functions should be globally visible, it is possible to restrict the scope of

declared entities. Note that the scope of parameters in function definitions is already restricted

since the variables occurring in parameters of the left-hand side are only visible in the corresponding

conditions and right-hand sides. The visibility of other entities can be restricted using let in

expressions or where in defining equations.

An expression of the form let decls in exp introduces a set of local names. The list of local

declarations decls can contain function definitions as well as definitions of constants by pattern

matching. The names introduced in these declarations are visible in the expression exp and the

right-hand sides of the declarations in decls, i.e., the local declarations can be mutually recursive.

For instance, the expression

let a=3*b

b=6

in 4*a

reduces to the value 72.

Auxiliary functions which are only introduced to define another function should often not be

visible outside. Therefore, such functions can be declared in a where-clause added to the right-

hand side of the corresponding function definition. This is done in the following definition of a fast

exponentiation where the auxiliary functions even and square are only visible in the right-hand

side of the rule for exp:

exp b n = if n==0

then 1

else if even n then square (exp b (n ‘div‘ 2))

else b * (exp b (n-1))

where even n = n ‘mod‘ 2 == 0

square n = n*n

Similarly to let, where-clauses can contain mutually recursive function definitions as well as defi-

nitions of constants by pattern matching. The names declared in the where-clauses are only visible

in the corresponding conditions and right-hand sides. As a further example, the following Curry

program implements the quicksort algorithm with a function split which splits a list into two lists

containing the smaller and larger elements:

split e [] = ([],[])

split e (x:xs) | e>=x = (x:l,r)

| e<x = (l,x:r)

where

(l,r) = split e xs

qsort [] = []

qsort (x:xs) = qsort l ++ (x:qsort r)

10



where

(l,r) = split x xs

To distinguish between locally introduced functions and variables (see also Section 2.3.1), we define a

local pattern as a (variable) identifier or an application where the top symbol is a data constructor.

If the left-hand side of a local declaration in a let or where is a pattern, then all identifiers in

this pattern that are not data constructors are considered as variables. For instance, the locally

introduced identifiers a, b, l, and r in the previous examples are variables whereas the identifiers

even and square denote functions. Note that this rule exclude the definition of 0-ary local functions

since a definition of the form “where f = ...” is considered as the definition of a local variable f

by this rule which is usually the intended interpretation (see previous examples). Appendix D.7

contains a precise formalization of the meaning of local definitions.

2.5 Free Variables

Since Curry is intended to cover functional as well as logic programming paradigms, expressions

might contain free (unbound, uninstantiated) variables. The idea is to compute values for these

variables such that the expression is reducible to a data term. For instance, consider the definitions

data Person = John | Christine | Alice | Andrew

mother John = Christine

mother Alice = Christine

mother Andrew = Alice

Then we can compute a child of Alice by solving the equation (see Section 2.6)

mother x == Alice

Here, x is a free variable which is instantiated to Andrew in order to reduce the equation’s left-

hand side to Alice and compute the result True for this equation. Note that we can also compute

the result False by instantiating x to John or Alice. If we are interested to obtain only positive

solutions, we can wrap the initial expression with the operation solve, which is defined in the

prelude by the single rule

solve True = True

Hence, the equation

solve (mother x == Alice)

reduces only to True and yields the value Andrew for x. Using the infix application operator $ defined

in the prelude, we can omit the parentheses and write this equation as

solve $ mother x == Alice

Similarly, we can compute a grandchild of Chistine by solving the equation

mother (mother x) == Christine

which yields the value Andrew for x.

In logic programming languages like Prolog, all free variables are considered as existentially
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quantified at the top level. Thus, they are always implicitly declared at the top level. In a language

with different nested scopes like Curry, it is not clear to which scope an undeclared variable belongs

(the exact scope of a variable becomes particularly important in the presence of search operators,

see Section 8, where existential quantifiers and lambda abstractions are often mixed). Therefore,

Curry requires that each free variable x must be explicitly declared using a local declaration of the

form x free. The variable is then introduced as unbound with the same scoping rules as for all

other local entities (see Section 2.4). For instance, we can define

isGrandmother g | let c free in mother (mother c) == g = True

An exception are anonymous free variables, i.e., free variables occurring only once in an expression,

which can be denoted by “_”. Thus, each occurrence of “_” in an expression can be considered as

an abbreviation of “let x free in x”.

As a further example, consider the definition of the concatentation of two lists:

append [] ys = ys

append (x:xs) ys = x : append xs ys

Then we can define the function last which computes the last element of a list by the rule

last zs | append xs [x] == zs = x where x,xs free

Since the variable xs occurs in the condition but not in the right-hand side, the following definition

is also possible:

last zs | let xs free in append xs [x] == zs = x where x free

which can abbreviated to

last zs | append _ [x] == zs = x where x free

Note that the free declarations can be freely mixed with other local declarations after a let or

where. The only difference is that a declaration like “let x free” introduces an unbound variable

whereas other let declarations introduce local functions or parameters. Since all local declarations

can be mutually recursive, it is also possible to use local variables in the bodies of the local functions

in one let declarations. For instance, the following expression is valid (where the functions h and

k are defined elsewhere):

let f x = h x y

y free

g z = k y z

in c y (f (g 1))

Similarly to the usual interpretation of local definitions by lambda lifting [30], this expression can

be interpreted by transforming the local definitions for f and g into global ones by adding the

non-local variables of the bodies as parameters:

f y x = h x y

g y z = k y z

. . .

let y free in c y (f y (g y 1))

See Appendix D.7 for more details about the meaning and transformation of local definitions.
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2.6 Equality and Constraints

In order to compare the values of two expressions, there is a predefined predicate “==” to test the

convertibility of expressions to identical data terms. The expression e1==e2 reduces to True if e1 and

e2 are reducible to identical ground data terms, and it reduces to False if e1 and e2 are reducible

to different data terms. If we ignore the strong type system of Curry,4 we can consider the equality

predicate as defined by the following rules:

C == C = True -- for all 0-ary constructors C

C x1 . . . xn == C y1 . . . yn = x1==y1 &&. . .&& xn==yn -- for all n-ary constructors C

C x1 . . . xn == D y1 . . . ym = False -- for all different constructors C and D

For instance, consider the datatype Person as defined in Section 2.5 and lists as defined in Sec-

tion 2.1. Then the equality on these types is defined by the following rules (where “&&” is the

Boolean conjunction, see Section 4.1.1):

John == John = True

Christine == Christine = True

Alice == Alice = True

Andrew == Andrew = True

John == Christine = False

...

Andrew == Alice = False

[] == [] = True

(x:xs) == (y:ys) = x==y && xs==ys

[] == (_:_) = False

(_:_) == [] = False

This equality test, which is sometimes called strict equality and also used in functional languages,

is the only sensible notion of equality in the presence of non-terminating functions [18, 38]. For

instance, “[John]==[John]” reduces to True and “[John]==[John,Andrew]” reduces to False.

If one expression contains free variables, they are instantiated in order to evaluate the equality.

For instance, “[John]==x” binds x to [John] and reduces to True, but it also reduces to False with

the bindings of x to [], (Alice:_) etc.

If one is interested only in bindings for positive solutions, i.e., reductions to True, one can also

use the predefined operation “=:=”. Conceptually, it can be considered as defined by the “positive”

“==”-rules:

C =:= C = True -- for all 0-ary constructors C

C x1 . . . xn =:= C y1 . . . yn = x1=:=y1 &. . .& xn=:=yn -- for all n-ary constructors C

True & True = True

With these rules, “[John]=:=x” has a unique result, i.e., x is bound to [John] so that the value

True is returned. Since e1=:=e2 can be interpreted as a constraint between e1 and e2 that must be

solved, it is also called an equational constraint between the expressions e1 and e2. Operationally,

4Although “==” is defined like a polymorphic function, it should be better considered as an overloaded function

symbol. This could be more precisely expressed using type classes which might be included in a future extensions of

Curry.
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the equational constraint e1=:=e2 is solved by evaluating e1 and e2 to unifiable data terms and

computing the unifier between these data terms. For instance, “[John,x]=:=[y,z]” is solved by

binding y to John and x to z (or vice versa). This is in contrast to “[John,x]==[y,z]” which is

solved by binding y to John and both x and z to John, Christine, Alice, or Andrew. Hence, the

equational constraint yields one solution whereas the equality “==” yields four solutions (as well as

many more non-solutions). Therefore, “=:=” can be considered as an optimization of “==”, but it

can only be used in contexts where positive solutions are required, e.g., in conditions of program

rules.

An equational constraint could also be solved in an incremental manner by an interleaved lazy

evaluation of the expressions and binding of variables to constructor terms (see [34] or Section D.3

in the appendix). Note that the basic kernel of Curry only provides strict equations e1=:=e2 between

expressions as elementary constraints. Since it is conceptually fairly easy to add other constraint

structures [36], extensions of Curry may provide richer constraint systems to support constraint

logic programming applications.

As shown in the definition above, equational constraints are combined into a conjunction with

the operator “&”. Since this operators demands that both arguments must be evaluated to True

in order to obtain any result (otherwise, its evaluation fails), this conjunction is interpreted con-

currently : if the combined constraint c1 & c2 should be solved, c1 and c2 are solved concurrently.

In particular, if the evaluation of c1 suspends (see Sections 4.1.3 or 5.6), the evaluation of c2 can

proceed which may cause the reactivation of c1 at some later time (due to the binding of common

variables). In a sequential implementation, the evaluation of c1 & c2 could be started by an attempt

to solve c1. If the evaluation of c1 suspends, an evaluation step is applied to c2.

It is interesting to note that parallel functional computation models [12, 13] are covered by the

use of concurrent constraints. For instance, a constraint of the form

x =:= f t1 & y =:= g t2 & z =:= h x y

specifies a potentially concurrent computation of the functions f, g and h if the function h can

proceed its computation only if the arguments have been bound by evaluating the expressions f t1

and g t2. Since constraints can be passed as arguments or results of functions (like any other

data object or function), it is possible to specify general operators to create flexible communica-

tion architectures similarly to Goffin [13]. Thus, the same abstraction facilities could be used for

sequential as well as concurrent programming. On the other hand, the clear separation between

sequential and concurrent computations (e.g., a program without any occurrences of concurrent

conjunctions is purely sequential) supports the use of efficient and optimal evaluation strategies for

the sequential parts [5, 7], where similar techniques for the concurrent parts are not available.

2.7 Higher-order Features

Curry is a higher-order language supporting common functional programming techniques by partial

function applications and lambda abstractions. Function application is denoted by juxtaposition

the function and its argument. For instance, the well-known map function is defined in Curry by

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs
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However, there is an important difference w.r.t. to functional programming. Since Curry is also

a logic language, it allows logical variables also for functional values, i.e., it is possible to evaluate

the equation map f [1 2] =:= [2 3] which has, for instance, a solution {f=inc} if inc is the in-

crement function on natural numbers. In principle, such solutions can be computed by extending

(first-order) unification to higher-order unification [26, 39, 43]. Since higher-order unification is a

computationally expensive operation, Curry delays the application of unknown functions until the

function becomes known [2, 45].5

In situations where a function is only used a single time, it is tedious to assign a name to it.

For such cases, anonymous functions (λ-abstractions), denoted by

\x1 . . . xn->e

are provided.

5Note that an unbound functional variable can never be instantiated if all program rules are constructor-based and

the equational constraint =:= denotes equality between data terms. However, extensions of Curry might overcome

this weakness by instantiating unbound functional variables to (type-conform) functions occurring in the program in

order to evaluate an application (as in [20]), or by considering partial applications (i.e., functions calls with less than

the required number of arguments) as data terms (as in [48]).
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3 Operational Semantics

Curry’s operational semantics is based on the lazy evaluation of expressions combined with a pos-

sible instantiation of free variables occurring in the expression. If the expression is ground, the

operational model is similar to lazy functional languages, otherwise (possibly non-deterministic)

variable instantiations are performed as in logic programming. If an expression contains free vari-

ables, it may be reduced to different values by binding the free variables to different expressions.

In functional programming, one is interested in the computed value, whereas logic programming

emphasizes the different bindings (answers). Thus, we define for the integrated functional logic

language Curry an answer expression as a pair “σ e” consisting of a substitution σ (the answer

computed so far) and an expression e. An answer expression σ e is solved if e is a data term.

Usually, the identity substitution in answer expressions is omitted, i.e., we write e instead of {} e

if it is clear from the context.

Since more than one answer may exist for expressions containing free variables, in general, initial

expressions are reduced to disjunctions of answer expressions. Thus, a disjunctive expression is a

(multi-)set of answer expressions {σ1 e1, . . . , σn en}. For the sake of readability, we write concrete

disjunctive expressions like

{{x = 0, y = 2} 2 , {x = 1, y = 2} 3}

in the form {x=0,y=2} 2 | {x=1,y=2} 3. Thus, substitutions are represented by lists of equations

enclosed in curly brackets, and disjunctions are separated by vertical bars.

A single computation step performs a reduction in exactly one unsolved expression of a dis-

junction (e.g., in the leftmost unsolved answer expression in Prolog-like implementations). If the

computation step is deterministic, the expression is reduced to a new one. If the computation step

is non-deterministic, the expression is replaced by a disjunction of new expressions. The precise

behavior depends on the function calls occurring in the expression. For instance, consider the

following rules:

f 0 = 2

f 1 = 3

The result of evaluating the expression f 1 is 3, whereas the expression f x should be evaluated to

the disjunctive expression

{x=0} 2 | {x=1} 3 .

To avoid superfluous computation steps and to apply programming techniques of modern functional

languages, nested expressions are evaluated lazily, i.e., the leftmost outermost function call is

primarily selected in a computation step. Due to the presence of free variables in expressions, an

expression may have a free variable at a position where a value is demanded. A value is demanded

in an argument of a function call if the left-hand side of some rule has a constructor at this position,

i.e., in order to apply the rule, the actual value at this position must be the constructor. A value

is also demanded in case expressions (see Section 5.3) or in arguments of external functions (see

Section 9), in particular, in the primitive operation ensureNotFree (see Section 5.6). In this situation

there are two possibilities to proceed:

1. Delay the evaluation of this expression until the corresponding free variable is bound (this
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corresponds to the residuation principle which is the basis of languages like Escher [32, 33],

Le Fun [2], Life [1], NUE-Prolog [40], or Oz [45]).

2. If the value is demanded by the left-hand sides of some defined function, (non-

deterministically) instantiate the free variable to the different values required by these left-

hand sides and apply reduction steps using the different rules (this corresponds to narrowing

principle which is the basis of languages like ALF [21], Babel [38], K-Leaf [18], LPG [9], or

SLOG [17]).

Since Curry is an attempt to provide a common platform for different declarative programming

styles and both are reasonable in different contexts, Curry supports both alternatives. If the value

of a free variable is demanded by the left-hand sides of a defined function, the second alternative

(instantiation) is used, otherwise the evaluation is suspended and the evaluation proceeds with

another subexpression (usually, another constraint). Free variables can also be instantiated by

constraint solving, e.g., by evaluating an equational constraint e1=:=e2 (see Section 2.6). Most

external functions, i.e., functions that are not defined by explicit program rules but implemented

by primitive code (see Section 9), like arithmetic operators (see Section 4.1.3), suspend if some

argument is an unbound variable.

For instance, consider the function f as defined above. The expression f x is evaluated by

instantiating x to 0 or 1 and applying a reduction step in both cases. This yields the disjunctive

expression

{x=0} 2 | {x=1} 3 .

On the other hand, primitive arithmetic functions like “+” or “*” suspend if some argument is a

free variable, e.g., “2+x” can not be evaluated to some result. However, the use of such functions

is reasonable if there is a “generator” for values for x. This is the case in the following constraint:

2+x =:= y & f x =:= y

Here, the first constraint 2+x =:= y cannot be evaluated and suspends, but the second constraint

f x =:= y can be solved by binding x to 1, evaluating f 1 to 3, and binding y to 3. After this

binding (or even after binding x), the first constraint can be evaluated and the entire constraint is

solved. Thus, the constraint is solved by the following steps (note that this is not the only possible

order of steps):

2+x =:= y & f x =:= y

; {x=1} 2+1 =:= y & 3 =:= y

; {x=1,y=3} 2+1 =:= 3

; {x=1,y=3} 3 =:= 3

; {x=1,y=3}

(The empty constraint is omitted in the final answer.)
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4 Types

4.1 Built-in Types

This section describes the types that are predefined in Curry. For each type, some important

operations are discussed. The complete definition of all operations can be found in the standard

prelude (see Appendix B).

4.1.1 Boolean Values

Boolean values are predefined by the datatype declaration

data Bool = True | False

The (sequential) conjunction is predefined as the left-associative infix operator &&:

(&&) :: Bool -> Bool -> Bool

True && x = x

False && x = False

Similarly, the (sequential) disjunction “||” and the negation not are defined as usual (see Ap-

pendix B). Furthermore, the function otherwise is predefined as True to write rules with multiple

guards more nicely.

Boolean values can be used in conditionals, i.e., the conditional function if_then_else is pre-

defined as

if_then_else :: Bool -> a -> a -> a

if_then_else b t f = case b of True -> t

False -> f

where “if b then x else y” is syntactic sugar for the application (if_then_else b x y). Due to

the definition based on a case expression (see Section 5.3), the evaluation of a conditional suspends

of the discriminating Boolean argument is unknown.

A function with result type Bool is often called a predicate.6 The predefined standard pred-

icates “==” and “=:=” have already been discussed in Section 2.6. Furthermore, there are also a

number of built-in predicates for comparing objects, like compare, “<”, etc. User-defined data types

are compared in the order of their definition in the datatype declarations and recursively in the

arguments. For instance, if Coin is defined by

data Coin = Head | Tail

then the operation compare can be considered as defined by the rules

compare Head Head = EQ

compare Head Tail = LT

compare Tail Head = GT

compare Tail Tail = EQ

Note that one can also compare expressions containing free variables. For instance, the evaluation of

“x < [Tail]” yields True for the bindings {x=[]} and {x=(Head:_)}. For built-in types like numbers

6Predicates in the logic programming sense are often partially defined, i.e., they reduce to True or their evaluation

just fails.
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or characters, some Curry systems might suspend when comparing unknown values.

The prelude defines also an operator “&>” to attach a constraint to an arbitrary expression:

(&>) :: Bool -> a -> a

True &> x = x

Hence, “c &> e” can be considered as a constrained expression, i.e., it is evaluated by first solving

the constraint c and then evaluating e. This operator can be used to enforce a sequential order for

constraint evaluation, e.g., the combined constraint c1 &> c2 will be evaluated by first completely

evaluating c1 and then c2.

4.1.2 Functions

The type t1 -> t2 is the type of a function which produces a value of type t2 for each argument

of type t1. A function f is applied to an argument x by writing “f x”. The type expression

t1 -> t2 -> · · · -> tn+1

is an abbreviation for the type

t1 -> (t2 -> (· · · -> tn+1))

and denotes the type of a (currified) n-ary function, i.e., -> associates to the right. Similarly, the

expression

f e1 e2 . . . en

is an abbreviation for the expression

(. . .((f e1) e2) . . . en)

and denotes the application of a function f to n arguments, i.e., the application associates to the

left.

The prelude also defines a right-associative application operator “$” which is sometimes useful to

avoid brackets. Since $ has low, right-associative binding precedence, the expression “f $ g $ 3+4”

is equivalent to “f (g (3+4))”.

Furthermore, the prelude also defines right-associative application operators that enforces the

evaluation of the argument to a particular degree. For instance, the definition of “$!” is based

on a predefined (infix) operator seq that evaluates the first argument and returns the value of the

second argument:

($!) :: (a -> b) -> a -> b

f $! x = x ‘seq‘ f x

Thus, if inf is a non-terminating function (e.g., defined by “inf = inf”) and f a constant function

defined by “f _ = 0”, then the evaluation of the expression “f $! inf” does not terminate whereas

the expression “f $ inf” evaluates to 0. Similarly, the operator “$!!” completely evaluates its

second argument (i.e., to a normal form), “$#” evaluates its second argument to a non-variable term

(by ensureNotFree, see Section 5.6) and suspends, if necessary, and “$##” completely evaluates its

second argument to a term without variables.
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4.1.3 Integers

The common integer values, like “42” or “-15”, are considered as constructors (constants) of type

Int. The usual operators on integers, like + or *, are predefined functions that are evaluated only

if both arguments are integer values, otherwise such function calls are suspended. Thus, these

functions can be used as “passive constraints” which become active after binding their arguments.

For instance, if the constraint digit is defined by the equations

digit 0 = True

. . .

digit 9 = True

then the conjunction x*x=:=y & x+x=:=y & digit x is solved by delaying the two equations which

will be activated after binding the variable x to a digit by the constraint digit x. Thus, the

corresponding computed solution is

{x=0,y=0} | {x=2,y=4}

4.1.4 Floating Point Numbers

Similarly to integers, values like “3.14159” or “5.0e-4” are considered as constructors of type Float.

Since overloading is not included in the kernel version of Curry, the names of arithmetic functions

on floats are different from the corresponding functions on integers.

4.1.5 Lists

The type [t] denotes all lists whose elements are values of type t. The type of lists can be considered

as predefined by the declaration

data [a] = [] | a : [a]

where [] denotes the empty list and x:xs is the non-empty list consisting of the first element x

and the remaining list xs. Since it is common to denote lists with square brackets, the following

convenient notation is supported:

[e1,e2,. . .,en]

denotes the list e1:e2:· · ·:en:[] (which is equivalent to e1:(e2:(· · ·:(en:[])...)) since “:” is a right-

associative infix operator). Note that there is an overloading in the notation [t]: if t is a type,

[t] denotes the type of lists containing elements of type t, where [t] denotes a single element list

(with element t) if t is an expression. Since there is a strong distinction between occurrences of

types and expressions, this overloading can always be resolved.

For instance, the following predefined functions define the concatenation of two lists and the

application of a function to all elements in a list:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys

map :: (a -> b) -> [a] -> [b]
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map f [] = []

map f (x:xs) = f x : map f xs

4.1.6 Characters

Values like ’a’ or ’0’ denote constants of type Char. Special characters can be denoted with a

leading backslash, e.g., ’\n’ for the character with ASCII value 10, or ’\228’ for the character ’ä’

with ASCII value 228.

There are two conversion functions between characters and their corresponding ASCII values:

ord :: Char -> Int

chr :: Int -> Char

4.1.7 Strings

The type String is an abbreviation for [Char], i.e., strings are considered as lists of characters.

String constants are enclosed in double quotes. Thus, the string constant "Hello" is identical to

the character list [’H’,’e’,’l’,’l’,’o’]. A term can be converted into a string by the function

show :: a -> String

For instance, the result of (show 42) is the character list [’4’,’2’].

4.1.8 Tuples

If t1, t2, . . . , tn are types and n ≥ 2, then (t1,t2,...,tn) denotes the type of all n-tuples. The

elements of type (t1,t2,...,tn) are (x1,x2,...,xn) where xi is an element of type ti (i = 1, . . . , n).

Thus, for each n, the tuple-building operation (,. . .,) (with n − 1 commas) can be considered as

an n-ary constructor introduced by the pseudo-declaration

data (a1,a2, . . . ,an) = (,. . .,) a1 a2 . . . an

where (x1,x2,...,xn) is equivalent to the constructor application “(,. . .,) x1 x2...xn”.

The unit type () has only a single element () and can be considered as defined by

data () = ()

Thus, the unit type can also be interpreted as the type of 0-tuples.

4.2 Type System

Curry is a strongly typed language with a Hindley/Milner-like polymorphic type system [14].7 Each

variable, constructor and operation has a unique type, where only the types of constructors have

to be declared by datatype declarations (see Section 2.1). The types of functions can be declared

(see Section 2.3) but can also be omitted. In the latter case they will be reconstructed by a type

inference mechanism.

7The extension of the type system to Haskell’s type classes is not included in the kernel language but may be

considered in a future version.
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Axiom:
A ` x :: τ

if τ is a generic instance of A(x)

Application:
A ` e1 :: τ1 → τ2 A ` e2 :: τ1

A ` e1 e2 :: τ2

Abstraction:
A[x/τ ] ` e :: τ ′

A ` \x->e :: τ → τ ′
if τ is a type expression

Existential:
A[x/τ ] ` e :: τ ′

A ` letx free in e :: τ ′
if τ is a type expression

Figure 1: Typing rules for Curry programs

Note that Curry is an explicitly typed language, i.e., each function has a type. The type can only

be omitted if the type inferencer is able to reconstruct it and to insert the missing type declaration.

In particular, the type inferencer can reconstruct only those types which are visible in the module

(cf. Section 6). Each type inferencer of a Curry implementation must be able to insert the types of

the parameters and the free variables (cf. Section 2.5) for each rule. The automatic inference of the

types of the defined functions might require further restrictions depending on the type inference

method. Therefore, the following definition of a well-typed Curry program assumes that the types

of all defined functions are given (either by the programmer or by the type inferencer). A Curry

implementation must accept a well-typed program if all types are explicitly provided but should

also support the inference of function types according to [14].

A type expression is either a type variable, a basic type like Bool, Int, Float, Char (or any

other type constructor of arity 0), or a type constructor application of the form (T τ1 . . . τn) where

T is a type constructor of arity n, as defined by a datatype declaration (cf. Section 2.1),8 and

τ1, . . . , τn are type expressions (note that list, tuple and function types have the special syntax [·],

(·,· · ·,·), and ·->· as described above). For instance, [(Int,a)]->a is a type expression containing

the type variable a. A type scheme is a type expression with a universal quantification for some

type variables, i.e., it has the form ∀α1, . . . , αn.τ (n ≥ 0; in case of n = 0, the type scheme is

equivalent to a type expression). A function type declaration f::τ is considered as an assignment

of the type scheme ∀α1, . . . , αn.τ to f , where α1, . . . , αn are all type variables occurring in τ . The

type τ is called a generic instance of the type scheme ∀α1, . . . , αn.τ
′ if there is a substitution

σ = {α1 7→ τ1, . . . , αn 7→ τn} on the types with σ(τ ′) = τ .

The types of all defined functions are collected in a type environment A which is a mapping

from identifiers to type schemes. It contains at least the type schemes of the defined functions and

an assignment of types for some local variables. An expression e is well-typed and has type τ w.r.t.

a type environment A if A ` e :: τ is derivable according to the inference rules shown in Figure 1.

A defining equation f t1 . . . tn = e [where x free] is well-typed w.r.t. a type environment A
if A(f) = ∀α1, . . . , αm.τ [and A(x) is a type expression] and A ` \t1-> · · · \tn->e :: τ is derivable

according to the above inference rules. A conditional equation l | c = r is considered (for the

purpose of typing) as syntactic sugar for l = c &> r where “&>” (see Section 4.1.1) has the type

8We assume here that all type constructors introduced by type synonyms (cf. Section 2.2) are replaced by their

definitions.
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scheme A(&>) = ∀α.Bool→ α→ α.

A program is well-typed if all its rules are well-typed with a unique assignment of type schemes

to defined functions.9

Note that the following recursive definition is a well-typed Curry program according to the

definition above (and the type definitions given in the prelude, cf. Appendix B):

f :: [a] -> [a]

f x = if length x == 0 then fst (g x x) else x

g :: [a] -> [b] -> ([a],[b])

g x y = (f x, f y)

h :: ([Int],[Bool])

h = g [3,4] [True,False]

However, if the type declaration for g is omitted, the usual type inference algorithms are not able

to infer this type.

9Here we assume that all local declarations are eliminated by the transformations described in Appendix D.7.
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5 Expressions

Expressions are a fundamental notion of Curry. As introduced in Section 2, functions are defined

by equations defining expressions that are equivalent to specific function calls. For instance, the

program rule

square x = x*x

defines that the function call (square 3) is equivalent to the expression (3*3).

Expressions occur in conditions and right-hand sides of equations defining functions. A compu-

tation evaluates an expression to a data term (see Section 3). Expressions are built from constants

of a specific data type (e.g., integer constants, character constants, see Section 4), variables, or ap-

plications of constructors or functions to expressions. Furthermore, Curry provides some syntactic

extensions for expressions that are discussed in this section.

5.1 Arithmetic Sequences

Curry supports two syntactic extensions to define list of elements in a compact way. The first one

is a notation for arithmetic sequences. The arithmetic sequence

[ e1 , e2 .. e3 ]

denotes a list of integers starting with the first two elements e1 and e2 and ending with the element

e3 (where e2 and e3 can be omitted). The precise meaning of this notation is defined by the

following translation rules:

Arithmetic sequence notation: Equivalent to:

[e .. ] enumFrom e

[e1,e2 .. ] enumFromThen e1 e2

[e1 .. e2] enumFromTo e1 e2

[e1,e2 .. e3] enumFromThenTo e1 e2 e3

The functions for generating the arithmetic sequences, enumFrom, enumFromThen, enumFromTo, and

enumFromThenTo, are defined in the prelude (see page 62). Thus, the different notations have the

following meaning:

• The sequence [e..] denotes the infinite list [e,e+1,e+2,...].

• The sequence [e1..e2] denotes the finite list [e1,e1+1,e1+2,...,e2]. Note that the list is

empty if e1 > e2.

• The sequence [e1,e2..] denotes the infinite list [e1,e1+i,e1+2*i,...] with i = e2 − e1. Note

that i could be positive, negative or zero.

• The sequence [e1,e2..e3] denotes the finite list [e1,e1+i,e1+2*i,...,e3] with i = e2−e1. Note

that e3 is not contained in this list if there is no integer m with e3 = e1 +m ∗ i.

For instance, [0,2..10] denotes the list [0,2,4,6,8,10].
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5.2 List Comprehensions

The second compact notation for lists are list comprehensions. They have the general form

[ e | q1 ,\ldots, qk ]

where k ≥ 1 and each qi is a qualifier that is either

• a generator of the form p <- l, where p is a local pattern (i.e., an expression without defined

function symbols and without multiple occurrences of the same variable, compare Section 2.4)

of type t and l is an expression of type [t], or

• a guard, i.e., an expression of type Bool.

The variables introduced in a local pattern can be used in subsequent qualifiers and the element

description e. Such a list comprehension denotes the list of elements which are the result of

evaluating e in the environment produced by the nested and depth-first evaluation of the generators

satisfying all guards. For instance, the list comprehension

[ x | x <- [1..50], x ‘mod‘ 7 == 0 ]

denotes the list [7,14,21,28,35,42,49], and the list comprehension

[ (x,y) | x<-[1,2,3], y<-[4,5] ]

denotes the list [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)].

The precise meaning of list comprehensions is defined by the following translation rules (for the

purpose of this definition, we also consider list comprehensions with an empty qualifier list):

List comprehension: Equivalent to:

[e | ] [e]

[e | b, q] if b then [e|q] else [] (b Boolean guard)

[e | let decls, q] let decls in [e|q]

[e | p <- l, q] let ok p = [e|q]

ok p1 = []

...

ok pn = []

in concatMap ok l

where {p1, . . . , pn} = complPat(p)

In the last translation rule, concatMap is defined in the prelude (see page 60) and complPat(p)

denotes the set of patterns that are incompatible with p. This set is defined by

complPat(x) = {}

for all variables x and

complPat(C p1 . . . pn) = {C1 x11 . . . x1n1 , . . . , Ck xk1 . . . xknk
}

∪ {C p1 . . . pi−1 p
′ yi+1 . . . yn | 1 ≤ i ≤ n, p′ ∈ complPat(pi)}

where C,C1, . . . , Ck are all the constructors of the result type of C and all xij , yi are fresh variables.

For instance, complPat([True]) = {[], False:zs, True:y:ys} and complPat((x,y)) = {}.
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Note that this translation does not work for patterns containing number constants since in this

case the complement set of patterns is infinite. Therefore, we modify this scheme as follows. If the

pattern p in a list comprehension [e | p <- l, q] contains the integer, float or character constants

c1, . . . , ck, we replace them by corresponding fresh variables z1, . . . , zk in the pattern and apply for

this modified pattern p′ the above translation scheme but with the following modified first rule for

ok:

ok p′ = if z1==c1 &&. . .&& zk==ck then [e|q] else []

For instance, the list comprehension

[x | (2,x) <- [(1,3),(2,4),(3,6)]]

(which is evaluated to [4]) is translated into the following expression:

let ok (y,x) = if y==2 then [x] else []

in concatMap ok [(1,3),(2,4),(3,6)]

5.3 Case Expressions

Case expressions are a convenient notation of sequential pattern matching with defaults. The

simplest form of a case expression is as follows (e, e1, . . . , en are expressions and the patterns

p1, . . . , pn are data terms):

case e of

p1 -> e1
. . .

pn -> en

Note that case expressions use the layout rule (see Section C.3). Thus, the patterns p1, . . . , pn
must be vertically aligned. The informal operational meaning of the case expression is as follows.

Evaluate e so that it matches a pattern pi. If this is possible, replace the entire case expression

by the corresponding alternative ei (after replacing the pattern variables occurring in pi by their

actual expressions). If none of the patterns p1, . . . , pn matches, the computation fails. The pattern

matching is tried sequentially, from top to bottom, and rigid, i.e., without binding free variables

occurring in e. In particular, the evaluation of a case expression suspends if the discriminating

expression e evaluates to a free variable.

Case expressions are a convenient notation for functions with default cases. For instance, the

function

swap z = case z of

[x,y] -> [y,x]

_ -> z

returns a list with swapped elements in case of an input list with exactly two elements and is the

identity in all other cases. Moreover, it suspends if the input is a free variable. If we ignore this

latter property, we can define swap by the following rules:

swap [] = []

swap [x] = [x]

swap [x,y] = [y,x]
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swap (x1:x2:x3:xs) = x1:x2:x3:xs

The latter definition shows the improved readability obtained by case expressions.

Case expressions might also contain guards and local declarations in the alternatives. For

instance, the following expression is legal:

case y of

Left z

| z >= 0 -> sqr z

| otherwise -> - sqr z

where sqr x = x * x

_ -> 0

Guard expressions must be of type Bool. Case alternatives with guards have a “fall-through”

semantics: if all guards of a case alternative evaluate to False, the match is continued with the

next alternative, i.e., this is handled as if the pattern did not match at all. For instance,

case (1,3) of

(x,y) | x < 0 -> (0,y)

z -> z

returns the pair (1,3).

5.4 Flexible Case Expressions

Similarly to the rigid pattern matching of case expressions, there is also a notation for the standard

flexible pattern matching of defined functions without explicitly defining a function for it. Such a

flexible case expression has the general form

fcase e of

p1 | g1 -> e1
...

pn | gn -> en

where e, e1, . . . , en are expressions, the patterns p1, . . . , pn are data terms, and the (optional) guards

g1, . . . , gn are expressions of type Bool. The operational meaning obeys the flexible pattern match-

ing of defined functions, i.e., the alternatives do not have the “fall-through” semantics of case

expressions. Actually, this expression corresponds to the expression

let f p1 | g1 = e1
...

f pn | gn = en

in f e

where f is a fresh auxiliary function symbol. Hence, more than one alternative can be taken during

the evaluation of a flexible case expression. For instance, the expression

fcase () of

_ -> False

_ -> True

non-deterministically evaluates to False or True, i.e., it has the same meaning as False ? True.
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5.5 Datatypes with Field Labels

A datatype declaration may optionally define data constructors with field labels.10 These field

labels can be used to construct, select from, and update fields in a manner that is independent of

the overall structure of the datatype.

5.5.1 Declaration of Constructors with Labeled Fields

A data constructor of arity n creates an object with n components. These components are normally

accessed positionally as arguments to the constructor in expressions or patterns. For large datatypes

it is useful to assign field labels to the components of a data object. This allows a specific field to

be referenced independently of its location within the constructor. A constructor definition in a

data declaration may assign labels to the fields of the constructor, using the record syntax C {. . . }.
Constructors using field labels may be freely mixed with constructors without them. A constructor

with associated field labels may still be used as an ordinary constructor. The various use of labels

(see below) are simply a shorthand for operations using an underlying positional constructor. The

arguments to the positional constructor occur in the same order as the labeled fields.

Translation:

[[C { lts }]] = C [[lts]]

[[lt, lts]] = [[lt]] [[lts]]

[[l, ls :: t]] = t [[ls :: t]]

[[l :: t]] = t

For example, the definition using field labels

data Person = Person { firstName, lastName :: String, age :: Int }

| Agent { firstName, lastName :: String, trueIdentity :: Person }

is translated to

data Person = Person String String Int

| Agent String String Person

A data declaration may use the same field label in multiple constructors as long as the typing of

the field is the same in all cases after type synonym expansion. A label cannot be shared by more

than one type in scope. Field names share the top-level name space with ordinary definition of

functions and must not conflict with other top-level names in scope.

Consider the following example:

data S = S1 { x :: Int } | S2 { x :: Int } -- OK

data T = T1 { y :: Int } | T2 { y :: Bool } -- BAD

Here S is legal but T is not, because y is given inconsistent typings in the latter.

5.5.2 Field Selection

Field labels are used as selector functions, i.e., each field label serves as a function that extracts

the field from an object. Selectors are top-level bindings and so they may be shadowed by local

10Field labels are quite similar to Haskell [41] so that we adopt most of the description of Haskell here.
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variables but cannot conflict with other top-level bindings of the same name. This shadowing only

affects selector functions; in record construction (Section 5.5.3) and update (Section 5.5.4), field

labels cannot be confused with ordinary variables.

Translation: A field label lab introduces a selector function defined as:

lab (C1 p11 ...p1k1
) = x

. . .

lab (Cn pn1 ...pnkn) = x

where C1 . . . Cn are all the constructors of the datatype containing a field labeled with lab,

pij is x when lab labels the jth component of Ci or _ otherwise.

For example the definition of Person above introduces the selector functions

firstName :: Person -> String

firstName (Person x _ _) = x

firstName (Agent x _ _) = x

lastName :: Person -> String

lastName (Person _ x _) = x

lastName (Agent _ x _) = x

age :: Person -> Int

age (Person _ _ x) = x

trueIdentity :: Person -> Person

trueIdentity (Agent _ _ x) = x

5.5.3 Construction Using Field Labels

A constructor with labeled fields may be used to construct a value in which the components are

specified by name rather than by position. In this case, the components are enclosed by braces.

Construction using field labels is subject to the following constraints:

• Only field labels declared with the specified constructor may be mentioned.

• A field label may not be mentioned more than once.

• Fields not mentioned are initialized to different free variables.

The expression C{}, where C is a data constructor, is legal whether or not C was declared with record

syntax ; it denotes C Prelude.unknown1 ... Prelude.unknownn where n is the arity of C. Note that

this will introduce the constructor C with n different free variables as arguments.

Translation: In the binding f = v, the field f labels v.

C { bs } = C (pickC1 bs Prelude.unknown) ... (pickCk bs Prelude.unknown)

where k is the arity of C.

The auxiliary function pickCi bs d is defined as follows:

If the ith component of a constructor C has the field label f and f = v appears in the

binding list bs, then pickCi bs d is v. Otherwise, pickCi bs d is the default value d.
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For example, a Person can be constructed by

smith = Agent { lastName = "Smith", firstName = "Agent" }

which is equivalent to the following agent, whose true identity might be any person:

smith = Agent "Agent" "Smith" _

5.5.4 Updates Using Field Labels

Values belonging to a datatype with field labels may be non-destructively updated. This creates

a new value in which the specified field values replace those in the existing value. Updates are

restricted in the following ways:

• All labels must be taken from the same datatype.

• No label may be mentioned more than once.

• The computation fails when the value being updated does not contain all of the specified

labels.

Translation: Using the prior definition of pick,

e { bs } = fcase e of

C1 v1...vk1 -> C1 (pickC1
1 bs v1) ... (pickC1

k1
bs vk1)

. . .

Cj v1...vkj
-> Cj (pick

Cj

1 bs v1) ... (pick
Cj

kj
bs vkj

)

where {C1, . . . , Cj} is the set of constructors containing all labels in bs, ki is the arity of

Ci.

For example, after watching a few more movies, we might want to update our information about

smith. We can do so by writing

smith { trueIdentity = complement neo }

which is equivalent to

fcase smith of

Agent fn ln _ -> Agent fn ln (complement neo)

5.5.5 Pattern Matching Using Field Labels

A constructor with labeled fields may be used to specify a pattern in which the components are

identified by name rather than by position. Matching against a constructor using labeled fields is

the same as matching ordinary constructor patterns except that the fields are matched in the order

they are named in the field list. All listed fields must be declared by the constructor; fields may

not be named more than once. Fields not named by the pattern are ignored (matched against _).

Translation: Using the prior definition of pick,

C { bs } = (C (pickC1 bs _) ... (pickCk bs _))

where k is the arity of C.
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For example, we could define a Smith-tester by writing:

isSmith Agent { lastName = "Smith" } = True

which is equivalent to

isSmith (Agent _ "Smith" _) = True

5.5.6 Field Labels and Modules

As described in Section 6, there are two forms of exporting a data type T : The simple name T

exports only the types name without constructors, whereas T(..) also exports all constructors.

Analogously, the form T does not export any field labels, whereas T(..) exports all constructors

and all field labels.

5.6 Ensuring Instantiation

In some situations one is interested in defining functions that suspend on unknown inputs, e.g., in

concurrent programming (see Appendix A.6). This behavior can be enforced by case expressions

for particular user-defined datatypes. In order to support a similar definition for primitive types

or types with a large number of constructors, there is a predefined primitive function

ensureNotFree :: a -> a

that evaluates the argument head normal form (i.e., to an expression without a defined function at

the top) and suspends if the result is a free variable. The computation proceeds if the free variable

has been instantiated to a non-variable term. In this case, the evaluated argument is returned (i.e.,

semantically it is the identity function).

Based on this function, one can also define more complex operations that evaluate larger parts

of an expression and suspend as long as some parts are instantiated. For instance, the following

function (which is defined in the standard prelude, see Appendix B), evaluates the argument to

spine form, i.e., the skeleton of the list without the elements, and returns it. It suspends if the

result is a non-variable spine.

ensureSpine :: [a] -> [a]

ensureSpine l = ensureList (ensureNotFree l)

where ensureList [] = []

ensureList (x:xs) = x : ensureSpine xs

This function is useful to model objects that process list of messages (see Appendix A.6 for an

example).
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6 Modules

A module defines a collection of datatypes, constructors and functions which we call entities in the

following. A module exports some of its entities which can be imported and used by other modules.

An entity which is not exported is not accessible from other modules.

A Curry program is a collection of modules. Every module named M (where M does not contain a

dot, see below) must be stored in a file named M.curry. There is one main module which is loaded

into a Curry system. The modules imported by the main module are implicitly loaded but not

visible to the user. After loading the main module, the user can evaluate expressions which contain

entities exported by the main module.

There is one distinguished module, named Prelude, (see Appendix B) which is implicitly im-

ported into each module provided that this module does not contain an explicit import declaration

for the module Prelude. Thus, the entities defined in the standard prelude (basic functions for

arithmetic, list processing etc.) can be always used (if they are not hidden by a hiding declaration,

see below).

A module always starts with the head which contains at least the name of the module followed

by the keyword where, like

module Stack where . . .

If a module stored in a directory in file M.curry does not contain a module head, the standard

module head “module M where” is implicitly inserted. Module names can be given a hierarchical

structure by inserting dots which is useful if larger applications should be structured into different

subprojects. For instance,

company.project1.subproject2.Mod4

is a valid module name. The dots may reflect the hierarchical file structure where mod-

ules are stored. For instance, the module compiler.symboltable could be stored in the file

symboltable.curry in the directory compiler. To avoid such long module names when referring

to entities of this module by qualification, imported modules can be renamed by the use of “as” in

an import declaration (see below).

Without any further restrictions in the module head, all entities which are defined by top-level

declarations in this module are exported (but not those entities that are imported into this module).

In order to modify this standard set of exported entities of a module, an export list can be added

to the module head. For instance, a module with the head

module Stack(stackType, push, pop, newStack) where . . .

exports the entities stackType, push, pop, and newStack. An export list can contain the following

entries:

1. Names of datatypes: This exports only the datatype, whose name must be accessible in this

module, but not the constructors of the datatype. The export of a datatype without its

constructors allows the definition of abstract datatypes.

2. Datatypes with all constructors: If the export list contains the entry t(..), then t must be a

datatype whose name is in the module. In this case, the datatype t and all constructors of

this datatype, which must be also accessible in this module, are exported.
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3. Names of functions: This exports the corresponding functions whose names must be accessible

in this module. The types occurring in the argument and result type of this function are

implicitly exported, otherwise the function may not be applicable outside this module.

4. Modules: The set of all accessible entities imported from a module M into the current module

(see below) can be exported by a single entry “module M” in the export list. For instance, if

the head of the module Stack is defined as above, the module head

module Queue(module Stack, enqueue, dequeue) where . . .

specifies that the module queue exports the entities stackType, push, pop, newStack, enqueue,

and dequeue.

The unqualified names of the exported entities of a module must be pairwise different to avoid

name clashes in the use of these entities. For instance, the module

module M(f,Ma.g) where

import Ma

f x = Ma.g x

exports the names M.f and M.g, i.e., a qualified entity consists always of the name of the exported

module followed by a dot and the unqualified name of the entity. Spaces are not allowed between

the dot and the module/function name. Thus, an identifier immediately followed by a dot and a

variable or infix operator identifier is always interpreted as a qualified name.

If module Ma also exports the entity f, then the export declaration

module M(f,Ma.f) where

import Ma

f x = Ma.f x

is not allowed since the exported name M.f cannot be uniquely resolved.

All entities defined by top-level declarations in a module are always accessible in this module,

i.e., there is no need to qualify the names of top-level declarations. However, they can be qualified

for the sake of readability, i.e., inside module M, it is always possible to refer to an entity f defined

at the top level of this module with the qualified name M.f. Additionally, the entities exported by

another module can be also made accessible in the module by an import declaration. An import

declaration consists of the name of the imported module and (optionally) a list of entities imported

from that module. If the list of imported entities is omitted, all entities exported by that module

are imported. For instance, the import declaration

import Stack

imports all entities exported by the module Stack, whereas the declaration

import Family(father, grandfather)

imports only the entities father and grandfather from the module Family, provided that they are

exported by Family. Similarly to export declarations, a datatype name t in an import list imports

only the datatype without its constructors whereas the form t(..) imports the datatype together

with all its constructors (provided that they are also exported).
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The names of all imported entities are accessible in the current module, i.e., they are equivalent

to top-level declarations, provided that their names are not in conflict with other names. For

instance, if a function f is imported from module M but the current module contains a top-level

declaration for f (which is thus directly accessible in the current module), the imported function is

not accessible (without qualification). Similarly, if two identical names are imported from different

modules and denote different entities, none of these entities is accessible (without qualification). It

is possible to refer to such imported but not directly accessible names by prefixing them with the

module identifier (qualification). For instance, consider the module M1 defined by

module M1 where

f :: Int -> Int

. . .

and the module m2 defined by

module M2 where

f :: Int -> Int

. . .

together with the main module

module Main where

import M1

import M2

. . .

Then the names of the imported functions f are not directly accessible in the main module but one

can refer to the corresponding imported entities by the qualified identifiers M1.f or M2.f.

Another method to resolve name conflicts between imported entities is the qualification of an

imported module. If we change the Main module to

module Main where

import qualified M1

import M2

. . .

then the name f refers to the entity M2.f since all entities imported from M1 are only accessible by

qualification like M1.f.

A further method to avoid name conflicts is the hiding of imported entities. Consider the

following definition:

module Main where

import M1 hiding (f)

import M2

. . .

The name f in the Main module refers to the entity M2.f since the name f is not imported from M1 by

the hiding declaration. The hiding clause effects only unqualified names, i.e., the entity M1.f is still

accessible in the body of the Main module. Therefore, a hiding clause has no effect in combination

with a qualified import. Similarly to export declarations, a datatype t in a hiding clause hides

only the datatype (but not its constructors) whereas the form t(..) hides the complete datatype
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including its constructors.

The effect of several import declarations is cumulative, i.e., if an entity is hidden in one import

declaration, it can still be imported by another import declaration. For instance, if module Mt

exports a datatype t together with its constructors, then the import declarations

import Mt hiding (t(..))

import Mt (t)

imports all entities exported by Mt but only the name t of the datatype without its constructors,

since the first hiding clause imports everything from Mt except the complete datatype t and the

second import specification additionally imports the name of the datatype t.

Imported modules can also be given a new local name in the import declaration. For instance,

the declaration

import M(f) as foo

enables access to the name f (provided that it is not in conflict with another entity with the same

name) and foo.f but not to M.f. This local renaming enables the abbreviation of long module

names and the substitution of different modules without changing the qualifiers inside a module.

Although each name refers to exactly one entity, it is possible that the same entity is referred

by different names. For instance, consider the modules defined by

module M(f) where

f :: Int -> Int

. . .

module M1(M.f) where

import M

. . .

module M2(M.f) where

import M

. . .

together with the main module

module Main where

import M1

import M2

. . .

Now the names f, M1.f, and M2.f refer to the identical entity, namely the function f defined

in module M. Note that there is no need to qualify f in the module Main since this name is

unambiguously resolved to the function f defined in module M, although it is imported via two

different paths.

Qualified names are treated syntactically like unqualified names. In particular, a qualified infix

operator like Complex.+ has the same fixity as the definition of + in the module Complex, i.e., the

expression “x Complex.+ y” is syntactically valid. To distinguish between a function composition

like “f . g”, where “.” is an infix operator (see Section 20, page 54), and a module qualification,

spaces are not allowed in the module qualification while there must be at least one space before

the “.” if it is used as an infix operator. Thus, “f . g” is interpreted as the composition of f and

g whereas “f.g” is interpreted as the object g imported from module f.
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The import dependencies between modules must be non-circular, i.e., it is not allowed that

module m1 imports module m2 and module m2 also imports (directly or indirectly) module m1.
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7 Input/Output

Curry provides a declarative model of I/O by considering I/O operations as transformations on

the outside world. In order to avoid dealing with different versions of the outside world, it must

be ensured that at each point of a computation only one version of the world is accessible. This is

guaranteed by using the monadic I/O approach [42] of Haskell and by requiring that I/O operations

are not allowed in program parts where non-deterministic search is possible.

7.1 Monadic I/O

In the monadic I/O approach, the outside “world” is not directly accessible but only through actions

which change the world. Thus, the world is encapsulated in an abstract datatype which provides

actions to change the world. The type of such actions is IO t which is an abbreviation for

World -> (t,World)

where World denotes the type of all states of the outside world. If an action of type IO t is applied

to a particular world, it yields a value of type t and a new (changed) world. For instance, getChar

is an action which reads a character from the standard input when it is executed, i.e., applied to a

world. Therefore, getChar has the type IO Char. The important point is that values of type World

are not accessible for the programmer—she/he can only create and compose actions on the world.

Thus, a program intended to perform I/O operations has a sequence of actions as the result. These

actions are computed and executed when the program is connected to the world by executing it.

For instance,

getChar :: IO Char

getLine :: IO String

are actions which read the next character or the next line from the standard input. The functions

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

take a character (string) and produces an action which, when applied to a world, puts this character

(string) to the standard output (and a line-feed in case of putStrLn.

Since an interactive program consists of a sequence of I/O operations, where the order in the

sequence is important, there are two operations to compose actions in a particular order. The

function

(>>) :: IO a -> IO b -> IO b

takes two actions as input and yields an action as output. The output action consists of performing

the first action followed by the second action, where the produced value of the first action is ignored.

If the value of the first action should be taken into account before performing the second action,

the actions can be composed by the function

(>>=) :: IO a -> (a -> IO b) -> IO b

where the second argument is a function taking the value produced by the first action as input and

performs another action. For instance, the action
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getLine >>= putStrLn

is of type IO () and copies, when executed, a line from standard input to standard output.

The return function

return :: a -> IO a

is sometimes useful to terminate a sequence of actions and return a result of an I/O operation.

Thus, return v is an action which does not change the world and returns the value v.

To execute an action, it must be the main expression in a program, i.e., interactive programs

have type IO (). Since the world cannot be copied (note that the world contains at least the

complete file system), non-determinism in relation with I/O operations must be avoided. Thus, the

applied action must always be known, i.e., >> and >>= suspend if the arguments are free variables.

Moreover, it is a runtime error if a disjunctive expression (cf. Section 3) σ1 e1 |· · ·| σn en, where

the ei’s are of type IO () and n > 1, occurs as the top-level expression of a program, since it is

unclear in this case which of the disjunctive actions should be applied to the current world. Thus,

all possible search must be encapsulated between I/O operations (see Section 8). The compiler

may warn the user about non-deterministic computations which may occur in I/O actions so that

the programmer can encapsulate them.

7.2 Do Notation

To provide a more conventional notation for programming sequences of I/O operations, Curry has

a special piece of syntax for writing such sequences. For instance, consider the following expression

to read a line form the standard input and to print them together with the string "Your input: "

on the standard output:

getLine >>= \line -> putStr "Your input: " >> putStrLn line

Using the do notation, this expression can be written in a more traditional style:

do line <- getLine

putStr "Your input: "

putStrLn line

Note that the do notation is just another syntax for sequences of I/O actions. Thus, do expressions

can be used wherever an expression of type I/O is required (but note that do expressions use the

layout rule (see Section C.3) and, therefore, they are usually written in separate program lines).

The following table specifies the translation of do expressions into the kernel language:

Do notation: Equivalent to:

do expr expr

do expr
stmts

expr >> do stmts

do p <- expr

stmts
expr >>= \p -> do stmts

do let decls

stmts
let decls

in do stmts
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8 Encapsulated Search

Global search, possibly implemented by backtracking, must be avoided in some situations (user-

control of efficiency, concurrent computations, non-backtrackable I/O). Hence it is sometimes nec-

essary to encapsulate search, i.e., non-deterministic computations in parts of larger programs.

Non-deterministic computations might occur in Curry whenever a function must be evaluated with

a free variable at a flexible argument position. In this case, the computation must follow different

branches with different bindings applied to the current expression which has the effect that the

entire expression is split into (at least) two independent disjunctions. To give the programmer con-

trol on the actions taken in this situation, Curry provides a primitive search operator which is the

basis to implement sophisticated search strategies. This section sketches the idea of encapsulating

search in Curry and describes some predefined search strategies.

8.1 Search Goals and Search Operators

Since search is used to find solutions to some constraint, search is always initiated by a constraint

containing a search variable for which a solution should be computed.11 Since the search variable

may be bound to different solutions in different disjunctive branches, it must be abstracted. There-

fore, a search goal has the type a->Bool where a is the type of the values which we are searching

for. In particular, if c is a constraint containing a variable x and we are interested in solutions for

x, i.e., values for x such that c is satisfied, then the corresponding search goal has the form (\x->c).

However, any other expression of the same type can also be used as a search goal.

To control the search performed to find solutions to search goals, Curry has a predefined operator

try :: (a->Bool) -> [a->Bool]

which takes a search goal and produces a list of search goals. The search operator try attempts to

evaluate the search goal until the computation finishes or performs a non-deterministic splitting.

In the latter case, the computation is stopped and the different search goals caused by this splitting

are returned as the result list. Thus, an expression of the form try (\x->c) can have three possible

results:

1. An empty list. This indicates that the search goal (\x->c) has no solution. For instance, the

expression

try (\x -> 1=:=2)

reduces to [].

2. A list containing a single element. In this case, the search goal (\x->c) has a single solution

represented by the element of this list. For instance, the expression

try (\x->[x]=:=[0])

reduces to [\x->x=:=0]. Note that a solution, i.e., a binding for the search variable like the

substitution {x 7→ 0}, can always be presented by an equational constraint like x=:=0.

11The generalization to more than one search variable is straightforward by the use of tuples.
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Generally, a one-element list as a result of try has always the form [\x->x=:=e] (plus some

local variables, see next subsection) where e is fully evaluated, i.e., e does not contain defined

functions. Otherwise, this goal might not be solvable due to the definition of equational

constraints.

3. A list containing more than one element. In this case, the evaluation of the search goal (\x->c)

requires a non-deterministic computation step. The different alternatives immediately after

this non-deterministic step are represented as elements of this list. For instance, if the function

f is defined by

f a = c

f b = d

then the expression

try (\x -> f x =:= d)

reduces to the list [\x->x=:=a & f a =:= d, \x->x=:=b & f b =:= d]. This example also

shows why the search variable must be abstracted: the alternative bindings cannot be actu-

ally performed (since a free variable is only bound to at most one value in each computation

thread) but are represented as equational constraints in the search goal.

Note that the search goals of the list in the last example are not further evaluated. This provides

the possibility to determine the behavior for non-deterministic computations. For instance, the

following function defines a depth-first search operator which collects all solutions of a search goal

in a list:

solveAll :: (a->Bool) -> [a->Bool]

solveAll g = collect (try g)

where collect [] = []

collect [g] = [g]

collect (g1:g2:gs) = concat (map solveAll (g1:g2:gs))

(concat concatenates a list of lists to a single list). For instance, if append is the list concatenation,

then the expression

solveAll (\l -> append l [1] =:= [0,1])

reduces to [\l->l=:=[0]].

The value computed for the search variable in a search goal can be easily accessed by applying

it to a free variable. For instance, the evaluation of the applicative expression

solveAll (\l->append l [1] =:= [0,1]) =:= [g] & g x

binds the variable g to the search goal [\l->l=:=[0]] and the variable x to the value [0] (due to

solving the constraint x=:=[0]). Based on this idea, there is a predefined function

findall :: (a->Bool) -> [a]

which takes a search goal and collects all solutions (computed by a depth-first search like solveAll)

for the search variable into a list.
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Due to the laziness of the language, search goals with infinitely many solutions cause no problems

if one is interested only in finitely many solutions. For instance, a function which computes only

the first solution w.r.t. a depth-first search strategy can be defined by

first g = head (findall g)

Note that first is a partial function, i.e., it is undefined if g has no solution.

8.2 Local Variables

Some care is necessary if free variables occur in the search goal, like in the goal

\l2 -> append l1 l2 =:= [0,1]

Here, only the variable l2 is abstracted in the search goal but l1 is free. Since non-deterministic

bindings cannot be performed during encapsulated search, free variables are never bound inside en-

capsulated search. Thus, if it is necessary to bind a free variable in order to proceed an encapsulated

search operation, the computation suspends. For instance, the expression

first (\l2 -> append l1 l2 =:= [0,1])

cannot be evaluated and will be suspended until the variable l1 is bound by another part of the

computation. Thus, the constraint

s =:= first (\l2->append l1 l2 =:= [0,1]) & l1 =:= [0]

can be evaluated since the free variable l1 in the search goal is bound to [0], i.e., this constraint

reduces to the answer

{l1=[0], s=[1]}

In some cases it is reasonable to have unbound variables in search goals, but these variables should

be treated as local, i.e., they might have different bindings in different branches of the search. For

instance, if we want to compute the last element of the list [3,4,5] based on append, we could try

to solve the search goal

\e -> append l [e] =:= [3,4,5]

However, the evaluation of this goal suspends due to the necessary binding of the free variable l.

This can be avoided by declaring the variable l as local to the constraint by the use of let (see

Section 2.5), like in the following expression:

first (\e -> let l free in append l [e] =:= [3,4,5])

Due to the local declaration of the variable l (which corresponds logically to an existential quan-

tification), the variable l is only visible inside the constraint and, therefore, it can be bound to

different values in different branches. Hence this expression evaluates to the result 5.

In order to ensure that an encapsulated search will not be suspended due to necessary bindings

of free variables, the search goal should be a closed expression when a search operator is applied

to it, i.e., the search variable is bound by the lambda abstraction and all other free variables are

existentially quantified by local declarations.
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8.3 Predefined Search Operators

There are a number of search operators which are predefined in the prelude. All these operators are

based on the primitive try as described above. It is also possible to define other search strategies

in a similar way. Thus, the try operator is a a powerful primitive to define appropriate search

strategies. In the following, we list the predefined search operators.

solveAll :: (a->Bool) -> [a->Bool]

Compute all solutions for a search goal via a depth-first search strategy. If there is no solution

and the search space is finite, the result is the empty list, otherwise the list contains solved

search goals (i.e., without defined operations).

once :: (a->Bool) -> (a->Bool)

Compute the first solution for a search goal via a depth-first search strategy. Note that once

is partially defined, i.e., if there is no solution and the search space is finite, the result is

undefined.

findall :: (a->Bool) -> [a]

Compute all solutions for a search goal via a depth-first search strategy and unpack the

solution’s values for the search variable into a list.

best :: (a->Bool) -> (a->a->Bool) -> [a->Bool]

Compute the best solution via a depth-first search strategy, according to a specified rela-

tion (the second argument) that can always take a decision which of two solutions is better

(the relation should deliver True if the first argument is a better solution than the second

argument).

As a trivial example, consider the relation shorter defined by

shorter l1 l2 = length l1 <= length l2

Then the expression

best (\x -> let y free in append x y =:= [1,2,3]) shorter

computes the shortest list which can be obtained by splitting the list [1,2,3] into this list

and some other list, i.e., it reduces to [\x->x=:=[]]. Similarly, the expression

best (\x -> let y free in append x y =:= [1,2,3])

(\l1 l2 -> length l1 > length l2)

reduces to [\x->x=:=[1,2,3]].

browse :: (a->Bool) -> IO ()

Show the solution of a solved constraint on the standard output, i.e., a call browse g, where

g is a solved search goal, is evaluated to an I/O action which prints the solution. If g is not

an abstraction of a solved constraint, a call browse g produces a runtime error.

browseList :: [a->Bool] -> IO ()

Similar to browse but shows a list of solutions on the standard output. The browse operators

are useful for testing search strategies. For instance, the evaluation of the expression

42



browseList (solveAll (\x -> let y free in append x y =:= [0,1,2]))

produces the following result on the standard output:

[]

[0]

[0,1]

[0,1,2]

Due to the laziness of the evaluation strategy, one can also browse the solutions of a goal

with infinitely many solutions which are printed on the standard output until the process is

stopped.
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9 Interface to External Functions and Constraint Solvers

Since Curry has only a small number of builtins, it provides a simple interface to connect external

functions (functions programmed in another language) and external constraint solvers. External

functions must be free of side-effects in order to be compatible with Curry’s computation model.

An external constraint solver consists of a constraint store which can be accessed and manipulated

via a few primitive operations.

9.1 External Functions

External functions are considered as an implementation of a potentially infinite set of equations

(describing the graph of the functions). In particular, they have no side effects, i.e., identical

function calls at different points of time yield identical results. Since the implementation of an

external function is unknown, a call to an external function is suspended until all arguments are

fully known, i.e., until they are evaluated to ground data terms. This view is compatible with the

residuation principle covered by Curry’s computation model and very similar to the connection of

external functions to logic programs [10, 11].

An external function is declared by a type declaration followed by external(FName,OF,Lang)

where FName is the name of the external function and its code is contained in the object file OF.

Lang is the implementation language of the external function. For instance, if the addition and

multiplication on integers are defined as C functions named add and mult where the compiled code

is contained in the file “arith.o”, we can connect these functions to a Curry program by providing

the declarations

add :: Int -> Int -> Int external("add","arith.o",C)

mult :: Int -> Int -> Int external("mult","arith.o",C)

Implementations of Curry might have restrictions on the interface. A reasonable requirement is

that the implementation language is constrained to C and the argument and result types are only

simple types like Bool, Int, Float, Char, or String.

9.2 External Constraint Solvers

A constraint solver can be viewed as an abstract datatype consisting of a constraint store together

with a few operations to check the entailment of a constraint or to add a new constraint. In order

to connect a constraint solver to Curry, like a solver for arithmetic or Boolean constraints, the

external solver must provide the following operations (cs denotes the type of the constraint store

and c the type of constraints):

new : → cs (create and initialize a new constraint store)

ask : cs× c → {True, False, Unknown} (check entailment of a constraint)

tell : cs× c → cs (add a new constraint)

clone : cs → cs× cs (copy the constraint store)

Using these operations, it is relatively easy to extend Curry’s computation model to include con-

straints by adding the constraint store as a new component to the substitution part in answer

expressions (cf. Section 3).12

12This section will be modified or extended in a later version.
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10 Literate Programming

To encourage the use of comments for the documentation of programs, Curry supports a literate

programming style (inspired by Donald Knuth’s “literate programming”) where comments are the

default case. Non-comment lines containing program code must start with “>” followed by a blank.

Using this style, we can define the concatenation and reverse function on lists by the following

literate program:

The following function defines the concatenation of two lists.

Note that this function is predefined as ‘++’ in the standard prelude.

> append :: [a] -> [a] -> [a]

> append [] x = x

> append (x:xs) ys = x : append xs ys

As a second example for list operations, we define a

function to reverse the order of elements in a list:

> rev :: [a] -> [a]

> rev [] = []

> rev (x:xs) = append (rev xs) [x]

To distinguish literature from non-literate programs, literate programs must be stored in files

with the extension “.lcurry” whereas non-literate programs are stored in files with the extension

“.curry”.
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11 Interactive Programming Environment

In order to support different implementations with a comparable user interface, the following com-

mands should be supported by each interactive programming environment for Curry (these com-

mands can also be abbreviated to :c where c is an unambiguous prefix string of the command):

:load file Load the program stored in file.curry.

:reload Repeat the last load command.

expr Evaluate the expression expr and show all computed results. Since an expression could

be evaluated to a disjunctive expression (cf. Section 3), the expression could be automati-

cally wrapped in some search operator like depth-first search or a fair breadth-first search,

depending on the implementation.

:debug expr Debug the evaluation of the expression expr, i.e., show the single computation steps

and ask the user what to do after each single step (like proceed, abort, etc.).

:type expr Show the type of the expression expr.

:quit Exit the system.
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A Example Programs

This section contains a few example programs together with some initial expressions and their

computed results.

A.1 Operations on Lists

Here are simple operations on lists. Note that, due to the logic programming features of Curry,

append can be used to split lists. We exploit this property to define the last element of a list in a

very simple way.

-- Concatenation of two lists:

append :: [t] -> [t] -> [t]

append [] ys = ys

append (x:xs) ys = x:append xs ys

-- Naive reverse of all list elements:

rev :: [t] -> [t]

rev [] = []

rev (x:xs) = append (rev xs) [x]

-- Last element of a list:

last :: [t] -> t

last xs | append _ [x] =:= xs = x where x free

Expressions and their evaluated results:

append [0,1] [2,3] ; [0,1,2,3]

append l m =:= [0,1]

; {l=[],m=[0,1]} | {l=[0],m=[1]} | {l=[0,1],m=[]}

rev [0,1,2,3] ; [3,2,1,0]

last (append [1,2] [3,4]) ; 4
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A.2 Higher-Order Functions

Here are some “traditional” higher-order functions to show that the familiar functional program-

ming techniques can be applied in Curry. Note that the functions map, foldr, and filter are

predefined in Curry (see Appendix B).

-- Map a function on a list (predefined):

map :: (t1->t2) -> [t1] -> [t2]

map f [] = []

map f (x:xs) = f x : map f xs

-- Fold a list (predefined):

foldr :: (t1->t2->t2) -> t2 -> [t1] -> t2

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

-- Filter elements in a list (predefined):

filter :: (t -> Bool) -> [t] -> [t]

filter p [] = []

filter p (x:xs) = if p x then x : filter p xs

else filter p xs

-- Quicksort function:

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = quicksort (filter (<= x) xs)

++ [x]

++ quicksort (filter (> x) xs)
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A.3 Relational Programming

Here is a traditional example from logic programming: a simple deductive database with family

relationships. We use a relational programming style, i.e., all relationships are represented as

predicates.

-- Declaration of an enumeration type for persons:

-- (as an alternative, one could consider persons as strings)

data Person = Christine | Maria | Monica | Alice | Susan |

Antony | Bill | John | Frank | Peter | Andrew

-- Two basic relationships:

married :: Person -> Person -> Bool

married Christine Antony = True

married Maria Bill = True

married Monica John = True

married Alice Frank = True

mother :: Person -> Person -> Bool

mother Christine John = True

mother Christine Alice = True

mother Maria Frank = True

mother Monica Susan = True

mother Monica Peter = True

mother Alice Andrew = True

-- and here are the deduced relationships:

father :: Person -> Person -> Bool

father f c | married m f & mother m c = True where m free

grandfather :: Person -> Person -> Bool

grandfather g c | father g f && father f c = True where f free

grandfather g c | father g m && mother m c = True where m free

Expressions and their evaluated results:

father John child ; {child=Susan} | {child=Peter}

grandfather g c ;

{g=Antony,c=Susan} | {g=Antony,c=Peter} |

{g=Bill,c=Andrew} | {g=Antony,c=Andrew}
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A.4 Functional Logic Programming

This is the same example as in the previous section. However, we use here a functional logic

programming style which is more readable but provides the same goal solving capabilities. The

basic functions are husband and mother which express the functional dependencies between the

different persons. Note that the derived function grandfather is a non-deterministic function which

yields all grandfathers for a given person.

data Person = Christine | Maria | Monica | Alice | Susan |

Antony | Bill | John | Frank | Peter | Andrew

-- Two basic functional dependencies:

husband :: Person -> Person

husband Christine = Antony

husband Maria = Bill

husband Monica = John

husband Alice = Frank

mother :: Person -> Person

mother John = Christine

mother Alice = Christine

mother Frank = Maria

mother Susan = Monica

mother Peter = Monica

mother Andrew = Alice

-- and here are the deduced functions and relationships:

father :: Person -> Person

father c = husband (mother c)

grandfather :: Person -> Person

grandfather c = father (father c)

grandfather c = father (mother c)

Expressions and their evaluated results:

solve $ father child == John ; {child=Susan} | {child=Peter}

grandfather c ;

{c=Susan} Antony | {c=Peter} Antony | {c=Andrew} Bill | {c=Andrew} Antony
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A.5 Constraint Solving and Concurrent Programming

In this example we demonstrate how Curry’s concurrent features can be used to solve constraint

problems with finite domains more efficiently than a simple generate-and-test solver. We want to

solve the classical map coloring problem. Consider the following simple map:

Country 1

Country 2

Country 3

Country 4

The problem is to assign to each of the four countries a color (red, green, yellow, or blue) such that

countries with a common border have different colors.

There is a straightforward solution to the map coloring problem. We define a constraint coloring

specifying the valid colors for each country and a constraint correct specifying which countries must

have different colors:

data Color = Red | Green | Yellow | Blue

isColor :: Color -> Bool

isColor Red = True

isColor Yellow = True

isColor Green = True

isColor Blue = True

coloring :: Color -> Color -> Color -> Color -> Bool

coloring l1 l2 l3 l4 = isColor l1 & isColor l2 & isColor l3 & isColor l4

correct :: Color -> Color -> Color -> Color -> Bool

correct l1 l2 l3 l4 = l1 /= l2 & l1 /= l3 & l2 /= l3 & l2 /= l4 & l3 /= l4

As in classical logic programming, we can compute the solutions to the map coloring problem by

enumerating all potential solutions followed by a check whether a potential solution is a correct

one (“generate and test”). This can be expressed by solving the following goal:

coloring l1 l2 l3 l4 && correct l1 l2 l3 l4
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A.6 Concurrent Object-Oriented Programming

The following example shows a simple method to program in a concurrent object-oriented style in

Curry. For this purpose, an object is a process waiting for incoming messages. The local state is a

parameter of this process. Thus, a process is a function of type

State -> [Message] -> Bool

In the subsequent example, we implement a bank account as an object waiting for messages of the

form Deposit i, Withdraw i, or Balance i. Thus, the bank account can be defined as follows:

data Message = Deposit Int | Withdraw Int | Balance Int

account :: Int -> [Message] -> Bool

account _ [] = True

account n (Deposit a : ms) = account (n+a) ms

account n (Withdraw a : ms) = account (n-a) ms

account n (Balance b : ms) = b=:=n & account n ms

-- Install an initial account with message stream s:

makeAccount s = account 0 (ensureSpine s)

A new account object is created by the constraint “makeAccount s” where s is a free variable.

The function ensureSpine (see Section 5.6) used in the definition of makeAccount ensures that the

evaluation of the function call to account suspends on uninstantiated parts of the message list

When s is instantiated with messages, the account object starts processing these messages. The

following concurrent conjunction of constraints creates an account and sends messages:

makeAccount s & s=:=[Deposit 200, Deposit 50, Balance b]

After this goal is solved, the free variable b has been bound to 250 representing the balance after

the two deposits.

To show a client-server interaction, we define a client of a bank account who is finished if his

account is 50, buys things for 30 if his account is greater than 50, and works for an income of 70 if his

account is less than 50. In order to get the client program independent of the account processing,

the client sends messages to his account. Therefore, the client is implemented as follows:

-- Send a message to an object identified by its message stream obj:

sendMsg :: msg -> [msg] -> [msg]

sendMsg msg obj | obj =:= msg:obj1 = obj1 where obj1 free

-- Client process of an bank account

client s | s1 =:= sendMsg (Balance b) s =

if b==50 then s1=:=[] -- stop

else if b>50 then client (sendMsg (Withdraw 30) s1) -- buy

else client (sendMsg (Deposit 70) s1) -- work

where s1,b free

We start the account and client process with an initial amount of 100:
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makeAccount s & client (sendMsg (Deposit 100) s)

A Curry system evaluates this goal by a concurrent evaluation of both processes and computes the

final answer

{s=[Deposit 100, Balance 100, Withdraw 30, Balance 70, Withdraw 30,

Balance 40, Deposit 70, Balance 110, Withdraw 30, Balance 80,

Withdraw 30, Balance 50]}

which shows the different messages sent to the account process.
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B Standard Prelude

This section contains the standard prelude for Curry programs. The module Prelude will be

imported into every Curry module unless the module has an explicit import declaration for the

module Prelude (for instance, in order to hide some names from the standard prelude). Note that

some of the definitions shown below are syntactically not allowed (e.g., datatypes for tuples). They

are only provided for documentation purposes.

module Prelude where

-- Infix operator declarations

infixl 9 !!

infixr 9 .

infixl 7 *, /, ‘div‘, ‘mod‘

infixl 6 +, -

infixr 5 ++, :

infix 4 =:=, ==, /=, <, >, <=, >=

infix 4 ‘elem‘, ‘notElem‘

infixr 3 &&

infixr 2 ||

infixl 1 >>, >>=

infixr 0 $, $!, $!!, $#, $##, ‘seq‘, &, &>, ?

-- Some standard combinators:

-- Function composition

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

-- Identity

id :: a -> a

id x = x

-- Constant function

const :: a -> b -> a

const x _ = x

-- Convert an uncurried function to a curried function

curry :: ((a,b) -> c) -> a -> b -> c

curry f a b = f (a,b)

-- Convert an curried function to a function on pairs

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry f (a,b) = f a b

-- (flip f) is identical to f but with the order of arguments reversed

flip :: (a -> b -> c) -> b -> a -> c
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flip f x y = f y x

-- Repeat application of a function until a predicate holds

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x = if p x then x else until p f (f x)

-- Evaluate the first argument to head normal form and return the

-- second argument.

seq :: a -> b -> b

-- Evaluate the argument to head normal form and returns it.

-- Suspend until the result is bound to a non-variable term.

ensureNotFree :: a -> a

--- Evaluate the argument to spine form and returns it.

--- Suspend until the result is bound to a non-variable spine.

ensureSpine :: [a] -> [a]

ensureSpine l = ensureList (ensureNotFree l)

where ensureList [] = []

ensureList (x:xs) = x : ensureSpine xs

-- Right-associative application

($) :: (a -> b) -> a -> b

f $ x = f x

-- Right-associative application with strict evaluation of its argument.

($!) :: (a -> b) -> a -> b

f $! x = x ‘seq‘ f x

-- Right-associative application with strict evaluation of its argument

-- to normal form.

($!!) :: (a -> b) -> a -> b

f $!! x | x=:=y = f y where y free

-- Right-associative application with strict evaluation of its argument

-- to a non-variable term.

($#) :: (a -> b) -> a -> b

f $# x = f $! (ensureNotFree x)

-- Right-associative application with strict evaluation of its argument

-- to ground normal form.

($##) :: (a -> b) -> a -> b

-- Abort the execution with an error message

error :: String -> _

-- failed is a non-reducible polymorphic function.

-- It is useful to express a failure in a search branch of the execution.

-- It could be defined by: failed = head []
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failed :: _

-- Boolean values

data Bool = False | True

-- Sequential conjunction

(&&) :: Bool -> Bool -> Bool

True && x = x

False && _ = False

-- Sequential disjunction

(||) :: Bool -> Bool -> Bool

True || _ = True

False || x = x

-- Negation

not :: Bool -> Bool

not True = False

not False = True

-- Conditional

if_then_else :: Bool -> a -> a -> a

if_then_else b t f = case b of True -> t

False -> f

--- Useful name for the last condition in a sequence of conditional equations.

otherwise :: Bool

otherwise = True

--- Enforce a Boolean condition to be true.

--- The computation fails if the argument evaluates to False.

solve :: Bool -> Bool

solve True = True

-- Equality on finite ground data terms

(==) :: a -> a -> Bool

-- Disequality

(/=) :: a -> a -> Bool

x /= y = not (x==y)

-- Equational constraint

(=:=) :: a -> a -> Bool

-- Concurrent conjunction

(&) :: Bool -> Bool -> Bool

True & True = True
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-- Constrained expression. (c &> e) is evaluated by first solving c

-- and then evaluating e.

(&>) :: Bool -> a -> a

True &> x = x

-- Ordering

data Ordering = LT | EQ | GT

-- Comparison of arbitrary ground data terms.

-- Data constructors are compared in the order of their definition

-- in the datatype declarations and recursively in the arguments.

compare :: a -> a -> Ordering

-- Less-than on ground data terms

(<) :: a -> a -> Bool

x < y = case compare x y of LT -> True

_ -> False

-- Greater-than on ground data terms

(>) :: a -> a -> Bool

x > y = case compare x y of GT -> True

_ -> False

-- Less-or-equal on ground data terms

(<=) :: a -> a -> Bool

x <= y = not (x > y)

-- Greater-or-equal on ground data terms

(>=) :: a -> a -> Bool

x >= y = not (x < y)

-- Maximum of ground data terms

max :: a -> a -> a

max x y = if x >= y then x else y

-- Minimum of ground data terms

min :: a -> a -> a

min x y = if x <= y then x else y

-- Pairs

data (a,b) = (a,b)

fst :: (a,b) -> a

fst (x,_) = x
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snd :: (a,b) -> b

snd (_,y) = y

-- Unit type

data () = ()

-- Lists

data [a] = [] | a : [a]

type String = [Char]

-- First element of a list

head :: [a] -> a

head (x:_) = x

-- Remaining elements of a list

tail :: [a] -> [a]

tail (_:xs) = xs

-- Is a list empty?

null :: [_] -> Bool

null [] = True

null (_:_) = False

-- Concatenation

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs++ys

-- List length

length :: [a] -> Int

length [] = 0

length (_:xs) = 1 + length xs

-- List index (subscript) operator, head has index 0

(!!) :: [a] -> Int -> a

(x:xs) !! n | n==0 = x

| n>0 = xs !! (n-1)

-- Map a function on a list

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

-- Accumulate all list elements by applying a binary operator from

58



-- left to right, i.e.,

-- foldl f z [x1,x2,...,xn] = (...((z ‘f‘ x1) ‘f‘ x2) ...) ‘f‘ xn :

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl _ z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

-- Accumulate a non-empty list from left to right:

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 f (x:xs) = foldl f x xs

-- Accumulate all list elements by applying a binary operator from

-- right to left, i.e.,

-- foldr f z [x1,x2,...,xn] = (x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)) :

foldr :: (a->b->b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

-- Accumulate a non-empty list from right to left:

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 _ [x] = x

foldr1 f (x1:x2:xs) = f x1 (foldr1 f (x2:xs))

-- Filter elements in a list

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs) = if p x then x : filter p xs

else filter p xs

-- Join two lists into one list of pairs. If one input list is shorter than

-- the other, the additional elements of the longer list are discarded.

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip (_:_) [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

-- Join three lists into one list of triples. If one input list is shorter than

-- the other, the additional elements of the longer lists are discarded.

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]

zip3 [] _ _ = []

zip3 (_:_) [] _ = []

zip3 (_:_) (_:_) [] = []

zip3 (x:xs) (y:ys) (z:zs) = (x,y,z) : zip3 xs ys zs

-- Join two lists into one list by applying a combination function to

-- corresponding pairs of elements (i.e., zip = zipWith (,)):

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipWith _ [] _ = []

zipWith _ (_:_) [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

59



-- Join three lists into one list by applying a combination function to

-- corresponding triples of elements (i.e., zip3 = zipWith3 (,,)):

zipWith3 :: (a->b->c->d) -> [a] -> [b] -> [c] -> [d]

zipWith3 _ [] _ _ = []

zipWith3 _ (_:_) [] _ = []

zipWith3 _ (_:_) (_:_) [] = []

zipWith3 f (x:xs) (y:ys) (z:zs) = f x y z : zipWith3 f xs ys zs

-- Transform a list of pairs into a pair of lists

unzip :: [(a,b)] -> ([a],[b])

unzip [] = ([],[])

unzip ((x,y):ps) = (x:xs,y:ys) where (xs,ys) = unzip ps

-- Transform a list of triples into a triple of lists

unzip3 :: [(a,b,c)] -> ([a],[b],[c])

unzip3 [] = ([],[],[])

unzip3 ((x,y,z):ts) = (x:xs,y:ys,z:zs) where (xs,ys,zs) = unzip3 ts

-- Concatenate a list of lists into one list

concat :: [[a]] -> [a]

concat l = foldr (++) [] l

-- Map a function from elements to lists and merge the result into one list

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap f = concat . map f

-- Infinite list of repeated applications of a function f to an element x:

-- iterate f x = [x, f x, f (f x),...]

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

-- Infinite list where all elements have the same value x:

repeat :: a -> [a]

repeat x = x : repeat x

-- List of length n where all elements have the same value x:

replicate :: Int -> a -> [a]

replicate n x = take n (repeat x)

-- Return prefix of length n

take :: Int -> [a] -> [a]

take n l = if n<=0 then [] else takep n l

where takep _ [] = []

takep n (x:xs) = x : take (n-1) xs

-- Return suffix without first n elements

drop :: Int -> [a] -> [a]

drop n l = if n<=0 then l else dropp n l
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where dropp _ [] = []

dropp n (_:xs) = drop (n-1) xs

-- (splitAt n xs) is equivalent to (take n xs, drop n xs)

splitAt :: Int -> [a] -> ([a],[a])

splitAt n l = if n<=0 then ([],l) else splitAtp n l

where splitAtp _ [] = ([],[])

splitAtp n (x:xs) = let (ys,zs) = splitAt (n-1) xs in (x:ys,zs)

-- Return longest prefix with elements satisfying a predicate

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile _ [] = []

takeWhile p (x:xs) = if p x then x : takeWhile p xs else []

-- Return suffix without takeWhile prefix

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile _ [] = []

dropWhile p (x:xs) = if p x then dropWhile p xs else x:xs

-- (span p xs) is equivalent to (takeWhile p xs, dropWhile p xs)

span :: (a -> Bool) -> [a] -> ([a],[a])

span _ [] = ([],[])

span p (x:xs)

| p x = let (ys,zs) = span p xs in (x:ys, zs)

| otherwise = ([],x:xs)

-- (break p xs) is equivalent to (takeWhile (not.p) xs, dropWhile (not.p) xs)

-- i.e., it breaks a list at the first occurrence of an element satisfying p

break :: (a -> Bool) -> [a] -> ([a],[a])

break p = span (not . p)

-- Break a string into list of lines where a line is terminated at a

-- newline character. The resulting lines do not contain newline characters.

lines :: String -> [String]

lines [] = []

lines (c:cs) = let (l,restcs) = splitline (c:cs) in l : lines restcs

where splitline [] = ([],[])

splitline (c:cs) = if c==’\n’

then ([],cs)

else let (ds,es) = splitline cs in (c:ds,es)

-- Concatenate a list of strings with terminating newlines

unlines :: [String] -> String

unlines ls = concatMap (++"\n") ls

-- Break a string into a list of words where the words are delimited by

-- white spaces.

words :: String -> [String]

words s = let s1 = dropWhile isSpace s
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in if s1=="" then []

else let (w,s2) = break isSpace s1

in w : words s2

where

isSpace c = c == ’ ’ || c == ’\t’ || c == ’\n’ || c == ’\r’

-- Concatenate a list of strings with a blank between two strings.

unwords :: [String] -> String

unwords ws = if ws==[] then []

else foldr1 (\w s -> w ++ ’ ’:s) ws

-- Reverse the order of all elements in a list

reverse :: [a] -> [a]

reverse = foldl (flip (:)) []

-- Compute the conjunction of a Boolean list

and :: [Bool] -> Bool

and = foldr (&&) True

-- Compute the disjunction of a Boolean list

or :: [Bool] -> Bool

or = foldr (||) False

-- Is there an element in a list satisfying a given predicate?

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

-- Is a given predicate satisfied by all elements in a list?

all :: (a -> Bool) -> [a] -> Bool

all p = and . map p

-- Element of a list?

elem :: a -> [a] -> Bool

elem x = any (x==)

-- Not element of a list?

notElem :: a -> [a] -> Bool

notElem x = all (x/=)

--- Looks up a key in an association list.

lookup :: a -> [(a,b)] -> Maybe b

lookup _ [] = Nothing

lookup k ((x,y):xys)

| k==x = Just y

| otherwise = lookup k xys

-- Generating arithmetic sequences:

enumFrom :: Int -> [Int] -- [n..]
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enumFrom n = n : enumFrom (n+1)

enumFromThen :: Int -> Int -> [Int] -- [n1,n2..]

enumFromThen n1 n2 = iterate ((n2-n1)+) n1

enumFromTo :: Int -> Int -> [Int] -- [n..m]

enumFromTo n m = if n>m then [] else n : enumFromTo (n+1) m

enumFromThenTo :: Int -> Int -> Int -> [Int] -- [n1,n2..m]

enumFromThenTo n1 n2 m = takeWhile p (enumFromThen n1 n2)

where p x | n2 >= n1 = (x <= m)

| otherwise = (x >= m)

-- Conversion functions between characters and their ASCII values

ord :: Char -> Int

chr :: Int -> Char

-- Convert a term into a printable representation

show :: a -> String

-- Types of primitive arithmetic functions

(+) :: Int -> Int -> Int

(-) :: Int -> Int -> Int

(*) :: Int -> Int -> Int

div :: Int -> Int -> Int

mod :: Int -> Int -> Int

-- Unary minus (usually written as "- e")

negate :: Int -> Int

negate x = 0 - x

-- Maybe type

data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b

maybe n _ Nothing = n

maybe _ f (Just x) = f x

-- Either type
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data Either a b = Left a | Right b

either :: (a -> c) -> (b -> c) -> Either a b -> c

either f _ (Left x) = f x

either _ g (Right x) = g x

-- Monadic IO

data IO a -- conceptually: \mbox{\it{}World} -> (a,\mbox{\it{}World})

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

(>>) :: IO a -> IO b -> IO b

a >> b = a >>= (\_ -> b)

done :: IO ()

done = return ()

putChar :: Char -> IO ()

getChar :: IO Char

readFile :: String -> IO String

writeFile :: String -> String -> IO ()

appendFile :: String -> String -> IO ()

putStr :: String -> IO ()

putStr [] = done

putStr (c:cs) = putChar c >> putStr cs

putStrLn :: String -> IO ()

putStrLn cs = putStr cs >> putChar ’\n’

getLine :: IO String

getLine = do c <- getChar

if c==’\n’ then return []

else do cs <- getLine

return (c:cs)

-- Convert a term into a string and print it

print :: _ -> IO ()

print t = putStrLn (show t)

-- Solve a constraint as an I/O action:

-- Note: the constraint should be always solvable in a deterministic way

doSolve :: Bool -> IO ()

doSolve b | b = done
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-- IO monad auxiliary functions:

-- Execute a sequence of I/O actions and collect all results in a list:

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = return []

sequenceIO (c:cs) = do x <- c

xs <- sequenceIO cs

return (x:xs)

-- Execute a sequence of I/O actions and ignore the results:

sequenceIO_ :: [IO _] -> IO ()

sequenceIO_ = foldr (>>) done

-- Map an I/O action function on a list of elements.

-- The results of all I/O actions are collected in a list.

mapIO :: (a -> IO b) -> [a] -> IO [b]

mapIO f = sequenceIO . map f

-- Map an I/O action function on a list of elements.

-- The results of all I/O actions are ignored.

mapIO_ :: (a -> IO _) -> [a] -> IO ()

mapIO_ f = sequenceIO_ . map f

-- Non-determinism and free variables

-- Non-deterministic choice par excellence.

-- The value of (x ? y) is either x or y.

(?) :: a -> a -> a

x ? _ = x

_ ? y = y

-- Evaluates to a fresh free variable.

unknown :: _

unknown = let x free in x

-- Type of constraints (included for backward compatibility)

type Success = Bool

success :: Success

success = True

-- Encapsulated search

-- primitive operator to control non-determinism

try :: (a->Bool) -> [a->Bool]
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-- compute all solutions via depth-first search

solveAll :: (a->Bool) -> [a->Bool]

solveAll g = collect (try g)

where collect [] = []

collect [g] = [g]

collect (g1:g2:gs) = concat (map solveAll (g1:g2:gs))

-- compute first solution via depth-first search

once :: (a->Bool) -> (a->Bool)

once g = head (solveAll g)

-- compute all values of solutions via depth-first search

findall :: (a->Bool) -> [a]

findall g = map unpack (solveAll g)

-- compute best solution via branch-and-bound with depth-first search

best :: (a->Bool) -> (a->a->Bool) -> [a->Bool]

-- show the solution of a solved constraint

browse :: (a->Bool) -> IO ()

browse g = putStr (show (unpack g))

-- show the solutions of a list of solved constraints

browseList :: [a->Bool] -> IO ()

browseList [] = done

browseList (g:gs) = browse g >> putChar ’\n’ >> browseList gs

-- unpack a solution’s value from a (solved) search goal

unpack :: (a -> Bool) -> a

unpack g | g x = x where x free
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C Syntax of Curry

The syntax description is not intended to be used by automatic tools (since it contains some

ambiguities for the sake of simplicity).

The syntax is close to Haskell but the following differences should be noted.

• Currently, there are no infix constructors except for “:”, the predefined list constructor. They

will be added later, although they are already used in concrete example programs.

C.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production

NonTerm nonterminal symbol

Term terminal symbol

[α] optional

α | β alternative

α〈β〉 difference – elements generated by α

without those generated by β

C.2 Lexicon

The case of identifiers matters, i.e., “abc” differs from “Abc”. There are four case modes selectable

at compilation time:

• Prolog mode: variables start with an upper case latter, all other identifier symbols start with

a lower case letter.

• Gödel mode: like Prolog mode with the cases swapped.

• Haskell mode: see section 1.3 of the Haskell report.

• free: no constraints on the case of identifiers.

The default case mode is free. If a case mode is selected but not obeyed, the compiler issues a

warning.

The syntax does not define the following non-terminal symbols defining classes of identifiers:

ModuleID, TypeConstrID, DataConstrID, TypeVarID, InfixOpID, FunctionID, VariableID, LabelID.

All, except InfixOpID, consist of an initial letter, whose upper or lower case depend on the case

mode, followed by any number of letters, digits, underscores, and single quotes. Additionally,

ModuleID can contain dots at inner positions. InfixOpID is any string of characters from the string

“~!@#$%^&*+-=<>?./|\:” or another identifier (like VariableID) enclosed in ‘. . .‘ like ‘mod‘.

The following symbols are keywords and cannot be used as an identifier:

case data do else external fcase free

if infix infixl infixr import in let

module of then type where
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Note that the symbols as, hiding, and qualified are not keywords. They have only a special

meaning in module headers and can be used as ordinary identifiers.

The syntax leaves undefined Literal of primitive types. These are literal constants, such as

“1”, “3.14”, or the character “’a’”. They are as in Java which adopts the Unicode standard to

represent characters and character strings.

Comments begins either with “--” and terminate at the end of the line or with “{-” and

terminate with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be

nested.

C.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of

blocks. For this purpose, we define the indentation of a symbol as the column number indicating

the start of this symbol. The indentation of a line is the indentation of its first symbol.13

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,

do, or of. In the subsequent context-free syntax (Section C.4), these lists are enclosed with curly

brackets ({ }) and the single entities are separated by semicolons (;). Instead of using the curly

brackets and semicolons of the context-free syntax, a Curry programmer must specify these lists

by indentation: the indentation of a list of syntactic entities after let, where, do, or of is the

indentation of the next symbol following the let, where, do, of. Any item of this list start with

the same indentation as the list. Lines with only whitespaces or an indentation greater than the

indentation of the list continue the item in its previous line. Lines with an indentation less than

the indentation of the list terminates the entire list. Moreover, a list started by let is terminated

by the keyword in. Thus, the sentence

f x = h x where { g y = y+1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, is written with the layout rules as

f x = h x

where g y = y+1

h z = (g z) * 2

or also as

f x = h x where

g y = y+1

h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are

assumed to start in column 0.

C.4 Context Free Syntax

Module ::= module ModuleID [Exports] where Block

| Block

13In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.
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ModuleID ::= see lexicon

Exports ::= ( Export1 , . . . , Exportn )

Export ::= QFunctionName

| QTypeConstrID

| QTypeConstrID (..)

| module ModuleID

Block ::= { [ImportDecl1 ; . . . ; ImportDeclk ;]

[FixityDeclaration1 ; . . . ; FixityDeclarationm ;]

BlockDeclaration1 ; . . . ; BlockDeclarationn } (k,m, n > 0)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportRestr]

ImportRestr ::= ( Import1 , . . . , Importn )

| hiding ( Import1 , . . . , Importn )

Import ::= FunctionName

| TypeConstrID

| TypeConstrID (..)

BlockDeclaration ::= TypeSynonymDecl

| DataDeclaration

| FunctionDeclaration

TypeSynonymDecl ::= type SimpleType = TypeExpr

SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n > 0)

TypeConstrID ::= see lexicon

DataDeclaration ::= data SimpleType (external data type)

| data SimpleType = ConstrDecl1 | . . . | ConstrDecln (n > 0)

ConstrDecl ::= DataConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| DataConstrID { FieldDeclaration1 , . . . , FieldDeclarationn } (n ≥ 0)

DataConstrID ::= see lexicon

FieldDeclaration ::= LabelID1 , . . . , LabelIDn :: TypeExpr (n > 0)

LabelID ::= see lexicon

69



TypeExpr ::= TypeConsExpr [-> TypeExpr]

TypeConsExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n > 0)

| SimpleTypeExpr

SimpleTypeExpr ::= TypeVarID | _
| QTypeConstrID

| () (unit type)

| ( TypeExpr1 , . . . , TypeExprn ) (tuple type, n > 1)

| [ TypeExpr ] (list type)

| ( TypeExpr ) (parenthesized type)

TypeVarID ::= see lexicon

FixityDeclaration ::= FixityKeyword Natural InfixOp1 , . . . , InfixOpn (n > 0)

FixityKeyword ::= infixl | infixr | infix

Natural ::= Digit | Digit Natural

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

FunctionDeclaration ::= Signature | Equat

Signature ::= FunctionNames :: TypeExpr

FunctionNames ::= FunctionName1 , . . . , FunctionNamen (n > 0)

FunctionName ::= FunctionID | (InfixOpID) (function)

QFunctionName ::= QFunctionID | (QInfixOpID) (qualified function)

FunctionID ::= see lexicon

Equat ::= FunLHS = Expr [where LocalDecls]

| FunLHS CondExprs [where LocalDecls]

FunLHS ::= FunctionName SimplePat1 . . . SimplePatn (n > 0)

| SimplePat InfixOp SimplePat

Pattern ::= QDataConstrID SimplePat1 . . . SimplePatn [: Pattern] (n > 0)

| SimplePat [: Pattern]
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SimplePat ::= VariableID | _
| QDataConstrID

| Literal

| ()

| ( Pattern1 , . . . , Patternn ) (n > 1)

| ( Pattern )

| [ Pattern1 , . . . , Patternn ] (n > 0)

| VariableID @ SimplePat (as-pattern)

| QDataConstrID { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabelID = Pattern

VariableID ::= see lexicon

LocalDecls ::= {LocalDeclaration1 ; . . . ; LocalDeclarationn } (n > 0)

LocalDeclaration ::= FunctionDeclaration

| PatternDeclaration

| VariableID1 , . . . , VariableIDn free (n > 0)

PatternDeclaration ::= Pattern = Expr [where LocalDecls]

CondExprs ::= | InfixExpr = Expr [CondExprs]

Expr ::= InfixExpr :: TypeExpr (expression type signature)

| InfixExpr

InfixExpr ::= NoOpExpr QInfixOp InfixExpr (infix operator application)

| - InfixExpr (unary minus)

| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (n > 0)

| let LocalDecls in Expr (let expression)

| if Expr then Expr else Expr (conditional)

| case Expr of {Alt1 ; . . . ; Altn } (case expression, n > 1)

| fcase Expr of {Alt1 ; . . . ; Altn } (fcase expression, n > 1)

| do {Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n > 0)

| FunctExpr

FunctExpr ::= [FunctExpr] BasicExpr (function application)

BasicExpr ::= VariableID (variable)

| _ (anonymous free variable)

| QDataConstrID (data constructor)
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| QFunctionName (defined function)

| Literal

| () (empty tuple)

| ( Expr ) (parenthesized expression)

| ( Expr1 , . . . , Exprn ) (tuple, n > 1)

| [ Expr1 , . . . , Exprn ] (finite list, n > 0)

| [ Expr [, Expr] .. [Expr] ] (arithmetic sequence)

| [ Expr | Qual1 , . . . , Qualn ] (list comprehension, n > 1)

| ( Expr QInfixOp ) (left section)

| ( QInfixOp〈−〉 Expr ) (right section)

| QDataConstrID { FBind1 , . . . , FBindn } (labeled construction, n > 0)

| BasicExpr〈QDataConstrID〉 { FBind1 , . . . , FBindn }
(labeled update, n > 0)

FBind ::= QLabelID = Expr

Alt ::= Pattern -> Expr [where LocalDecls]

| Pattern GdAlts [where LocalDecls]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

Qual ::= Expr

| let LocalDecls

| Pattern <- Expr

Stmt ::= Expr

| let LocalDecls

| Pattern <- Expr

QInfixOp ::= QInfixOpID

| ‘QFunctionID‘

InfixOp ::= InfixOpID

| ‘FunctionID‘

QTypeConstrID ::= [ModuleID .] TypeConstrID

QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID

QFunctionID ::= [ModuleID .] FunctionID

QLabelID ::= [ModuleID .] LabelID

Literal ::= Int | Char | String | Float

InfixOpID ::= see lexicon
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Int ::= see lexicon

Char ::= see lexicon

String ::= see lexicon

Float ::= see lexicon

If the alternative FunctionDeclaration is used in a LocalDeclaration, then the left-hand side

(FunLHS ) must have at least one pattern after the FunctionName (instead of zero patterns which

is possible in top-level function declarations).

In CondExprs, the first expression must be of type Bool.

In qualified names (e.g., QFunctionID), no characters (e.g., spaces) are allowed between the dot

and the module and entity names. On the other hand, an infix expression (Expr QInfixOpID Expr)

must contain at least one space or similar character after the left expression if the infix operator

starts with a dot.

C.5 Infix Operators

In the grammar above, the use of infix operators in the rule for Expr is ambiguous. These ambigu-

ities are resolved by assigning an associativity and precedence to each operator (InfixOpID) by a

fixity declaration. There are three kinds of associativities, non-, left- and right-associativity (infix,

infixl, infixr) and ten levels of precedence, 0 to 9, where level 0 binds least tightly and level 9

binds most tightly. All fixity declarations must appear at the beginning of a module. Any operator

without an explicit fixity declaration is assumed to have the declaration infixl 9. For instance,

the expression “1+2*3+4==x && b” is equivalent to “((((1+(2*3))+4)==x) && b)” w.r.t. the fixity

declarations provided in the prelude.

Note that the correct use of precedences and associativities excludes some expressions which

are valid w.r.t. the context-free grammar. In general, the arguments of an infix operator must

have an infix operator at the top with a higher precedence than the current infix operator (or no

infix operator at the top). Additionaly, the left or right argument of a left- or right-associative

operator can have a top infix operator with the same precedence. The unary minus operator is

interpreted with precedence 6 which means that its argument must have a precedence of at least

7. The expression “(- t)” is not considered as a right section but as the negation of t. As a

consequence, the expressions “1<2==True” and “1 + - 3” are not allowed and must be bracketed as

“(1<2)==True” and “1 + (- 3)”.
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D Operational Semantics of Curry

The precise specification of the operational semantics of Curry is based on the patterns on the rules’

left-hand sides for each function. Therefore, we describe the computation model by providing a

precise definition of pattern matching (Section D.1) which is the basis to define the computation

steps on expressions (Section D.2). The extension of this basic computation model to solving equa-

tional constraints and higher-order functions is described in Sections D.3 and D.4, respectively.

Section D.5 describes the automatic generation of the definitional trees to guide the pattern match-

ing strategy. Finally, Section D.6 specifies the operational semantics of the primitive operator try

for encapsulating search.

D.1 Definitional Trees

We start by considering only the unconditional first-order part of Curry, i.e., rules do not contain

conditions and λ-abstractions and partial function applications are not allowed. We assume some

familiarity with basic notions of term rewriting [15] and functional logic programming [22].

We denote by C the set of constructors (with elements c, d), by F the set of defined functions

or operations (with elements f, g), and by X the set of variables (with elements x, y), where C, F
and X are disjoint. An expression (data term) is a variable x ∈ X or an application ϕ(e1, . . . , en)

where ϕ ∈ C ∪ F (ϕ ∈ C) has arity n and e1, . . . , en are expressions (data terms).15 The set of all

expressions and data terms are denoted by T (C ∪ F ,X ) and T (C,X ), respectively. A call pattern

is an expression of the form f(t1, . . . , tn) where each variable occurs only once, f ∈ F is an n-ary

function, and t1, . . . , tn ∈ T (C,X ). root(e) denotes the symbol at the root of the expression e.

A position p in an expression e is represented by a sequence of natural numbers, e|p denotes the

subterm or subexpression of e at position p, and e[e′]p denotes the result of replacing the subterm

e|p by the expression e′ (see [15] for details).

A substitution is a mapping σ:X → T (C ∪F ,X ) with σ(x) 6= x only for finitely many variables

x. Thus, we denote a substitution by σ = {x1 7→ t1, . . . , xn 7→ tn}, where σ(xi) 6= xi for i = 1, . . . , n,

and id denotes the identity substitution (n = 0). Dom(σ) = {x1, . . . , xn} is the domain of σ and

VRan(σ) = {x | x is a variable occurring in some ti, i ∈ {1, . . . , n}}

is its variable range. Substitutions are extended to morphisms on expressions by σ(f(e1, . . . , en)) =

f(σ(e1), . . . , σ(en)) for every expression f(e1, . . . , en).

A Curry program is a set of rules l = r satisfying some restrictions (see Section 2.3). In particular,

the left-hand side l must be a call pattern. A rewrite rule is called a variant of another rule if it is

obtained by a unique replacement of variables by other variables.

An answer expression is a pair σ e consisting of a substitution σ (the answer computed so far)

and an expression e. An answer expression σ e is solved if e is a data term. We sometimes omit

the identity substitution in answer expressions, i.e., we write e instead of id e if it is clear from the

context. A disjunctive expression is a (multi-)set of answer expressions {σ1 e1, . . . , σn en}. The

set of all disjunctive expressions is denoted by D.

15Since we do not consider partial applications in this part, we write the full application as ϕ(e1, . . . , en) which is

equivalent to Curry’s notation ϕ e1 . . . en.
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A single computation step performs a reduction in exactly one unsolved expression of a dis-

junction. To provide a precise definition of the operational semantics, we use definitional trees.16

A definitional tree is a hierarchical structure containing all rules of a defined function. T is a

definitional tree with call pattern π iff the depth of T is finite and one of the following cases holds:

T = rule(l = r), where l = r is a variant of a rule such that l = π.

T = branch(π, o, r, T1, . . . , Tk), where o is an occurrence of a variable in π, r ∈ {rigid, flex},
c1, . . . , ck are different constructors of the sort of π|o, for some k > 0, and, for all i = 1, . . . , k,

Ti is a definitional tree with call pattern π[ci(x1, . . . , xn)]o, where n is the arity of ci and

x1, . . . , xn are new variables.

T = or(T1, T2), where T1 and T2 are definitional trees with call pattern π.17

The rigid/flex tag in a branch will be used to specify the suspension behavior w.r.t. free variables

as actual arguments. User-defined functions are always translated into definitional trees with flex

tags, but case expressions are translated into definitional trees with rigid tags.

A definitional tree of an n-ary function f is a definitional tree T with call pattern f(x1, . . . , xn),

where x1, . . . , xn are distinct variables, such that for each rule l = r with l = f(t1, . . . , tn) there is a

node rule(l′ = r′) in T with l variant of l′. In the following, we write pat(T ) for the call pattern of

a definitional tree T .

It is always possible to construct a definitional tree for each function (concrete algorithms are

described in [4, 34] and in Section D.5). For instance, consider the following definition of the

less-or-equal predicate on natural numbers represented by data terms built from z (zero) and s

(successor):

data Nat = z | s Nat

leq :: Nat -> Nat -> Bool

leq z n = True

leq (s m) z = False

leq (s m) (s n) = leq m n

Consider a function call like (leq e1 e2). In order to apply some reduction rule, the first argument

e1 must always be evaluated to head normal form (i.e., to an expression without a defined function

symbol at the top). However, the second argument must be evaluated only if the first argument

has the form (s e).18 This dependency between the first and the second argument is expressed by

the definitional tree

branch(leq(x1, x2), 1, f lex, rule(leq(z, x2) = True),

branch(leq(s(x), x2), 2, f lex, rule(leq(s(x), z) = False),

rule(leq(s(x), s(y)) = leq(x, y))))

16Our notion is influenced by Antoy’s work [4], but here we use an extended form of definitional trees.
17For the sake of simplicity, we consider only binary or nodes. The extension to such nodes with more than two

subtrees is straightforward.
18Naive lazy narrowing strategies may also evaluate the second argument in any case. However, as shown in [7],

the consideration of dependencies between arguments is essential to obtain optimal evaluation strategies.
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Computation step for a single expression:

Eval[[ei]]⇒ D

Eval[[e1 & e2]]⇒ replace(e1 & e2, i,D)
i ∈ {1, 2}

Eval[[ei]]⇒ D

Eval[[c(e1, . . . , en)]]⇒ replace(c(e1, . . . , en), i,D)
i ∈ {1, . . . , n}

Eval[[f(e1, . . . , en); T ]]⇒ D

Eval[[f(e1, . . . , en)]]⇒ D
if T is a definitional tree for f with fresh variables

Computation step for an operation-rooted expression e:

Eval[[e; rule(l = r)]]⇒ {id σ(r)}
if σ is a substitution with σ(l) = e

Eval[[e; T1]]⇒ D1 Eval[[e; T2]]⇒ D2

Eval[[e; or(T1, T2)]]⇒ D1 ∪D2

Eval[[e; branch(π, p, r, T1, . . . , Tk)]]⇒
D if e|p = c(e1, . . . , en), pat(Ti)|p = c(x1, . . . , xn), and Eval[[e; Ti]]⇒ D

∅ if e|p = c(· · ·) and pat(Ti)|p 6= c(· · ·), i = 1, . . . , k⋃k
i=1{σi σi(e)} if e|p = x, r = flex, and σi = {x 7→ pat(Ti)|p}

replace(e, p,D) if e|p = f(e1, . . . , en) and Eval[[e|p]]⇒ D

Derivation step for a disjunctive expression:

Eval[[e]]⇒ {σ1 e1, . . . , σn en}
{σ e} ∪D ⇒ {σ1 ◦ σ e1, . . . , σn ◦ σ en} ∪D

Figure 2: Operational semantics of Curry

This definitional tree specifies that the first argument is initially evaluated and the second argument

is only evaluated if the first argument has the constructor s at the top. The precise operational

meaning induced by definitional trees is described in the following section.

D.2 Computation Steps

The operational semantics is defined by the derivability relation D1 ⇒ D2 on disjunctive expressions

specified in Figure 2. An inference rule
α

β
should be read as “if α is derivable, then β is also

derivable”. We say that the computation of an expression e suspends if there is no D with Eval[[e]]⇒
D. A constraint is solvable if it can be reduced to True. The exact method to solve constraints

depends on the constraint solver. A method to solve equational constraints on data terms is

specified in Section D.3. For the purpose of this definition, we consider True as the neutral element

of the operation &, i.e., True & c and c & True are considered as equivalent to c.

As can be seen by the rules for evaluating constraints in Figure 2, the concurrent conjunction

of two constraints is evaluated by applying computation steps to one of the two constraints. Since

both constraints must be finally solved (i.e., reduced to True), one can consider the evaluation
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of a concurrent conjunction as two computation threads evaluating these constraints. They are

synchronized by accessing common variables (which may suspend a thread, see below). In a sim-

ple sequential implementation, the evaluation of e1 & e2 could be started by an attempt to solve

e1. If the evaluation of e1 suspends, an evaluation step is applied to e2. If a variable responsible

to the suspension of e1 is instantiated, the left expression e1 will be evaluated in the subsequent

step. Thus, we obtain a concurrent behavior with an interleaving semantics. However, a sophis-

ticated implementation should provide a fair selection of threads, e.g., as done in a Java-based

implementation of Curry [27].

A computation step for an expression e attempts to apply a reduction step to an outermost

operation-rooted subterm in e by evaluating this subterm with the definitional tree for the function

symbol at the root of this subterm. Although it is unspecified which outermost subterm is evaluated

(compare second inference rule in Figure 2 for constructor-rooted expressions), we assume that a

single (e.g., leftmost) outermost subterm is always selected. The evaluation of an operation-rooted

term is defined by a case distinction on the definitional tree. If it is a rule node, this rule is applied.

An or node produces a disjunction where the different alternatives are combined. Note that this

definition requires that the entire disjunction suspends if one disjunct suspends. This can be relaxed

in concrete implementations by continuing the evaluation in one or branch even if the other branch

is suspended. However, to ensure completeness, it is not allowed to omit a suspended or branch

and continue with the other non-suspended or branch [24]. For a similar reason, we cannot commit

to a disjunct which does not bind variables but we have to consider both alternatives (see [6] for a

counter-example).

The most interesting case is a branch node. Here we have to branch on the value of the

top-level symbol at the selected position. If the symbol is a constructor, we proceed with the

appropriate definitional subtree, if possible. If it is a function symbol, we proceed by evaluating

this subexpression. If it is a variable and the branch is flexible, we instantiate the variable to

the different constructors, otherwise (if the branch is rigid) we cannot proceed and suspend. The

auxiliary function replace puts a possibly disjunctive expression into a subterm:

replace(e, p, {σ1 e1, . . . , σn en}) = {σ1 σ1(e)[e1]p, . . . , σn σn(e)[en]p} (n ≥ 0)

The overall computation strategy on disjunctive expressions takes a disjunct σ e not in solved

form and evaluates e. If the evaluation does not suspend and yields a disjunctive expression, we

substitute it for σ e composed with the old answer substitution.

Soundness and completeness results for the operational semantics can be found in [24]. Note

that the evaluation of expressions is completely deterministic if the concurrent conjunction of

constraints does not occur.

Conditional rules. Note that the operational semantics specified in Figure 2 handles only un-

conditional rules. Conditional rules are not explicitly treated but we assume that each conditional

rule of the form

l | c = r

is transformed into

l = (c Prelude.&> r)
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Eval[[c(e1, . . . , en)]]⇒ D

Eval[[ensureNotFree(c(e1, . . . , en))]]⇒ D

Eval[[f(e1, . . . , en)]]⇒ D

Eval[[ensureNotFree(f(e1, . . . , en))]]⇒ replace(ensureNotFree(f(e1, . . . , en)), 1, D)

Figure 3: Evaluation of ensureNotFree

(see also Section D.7.3).

Ensuring instantiation The semantics of the primitive ensureNotFree to ensure computations

with instantiated expressions, as informally described in Section 5.6, can be easily described by the

rules in Figure 3. If ensureNotFree occurs in a computation with a constructor term as argument,

it has no effect on the computation (first rule). It behaves like the identity as long as the argument

is a function call. Otherwise (i.e., if the argument is a free variable), no evaluation step is possible.

Sharing and graph rewriting. For the sake of simplicity, this description of the operational

semantics is based on term rewriting and does not take into account that common subterms are

shared (see Section 2.3.1). We only note here that several occurrences of the same variable are

always shared, i.e., if an argument of a function is instantiated during a call to this function to

an expression and this expression is evaluated to some value (head normal form), then all other

expressions resulting from instantiating occurrences of the same argument are replaced by the

same value (head normal form).19 This is necessary not only for efficiency reasons but also for the

soundness of the operational semantics in the presence of non-deterministic functions, as discussed

in Section 2.3.1. The sharing of variables can be described with the more complicated framework

of graph rewriting. Formal descriptions of graph rewriting and narrowing can be found in [16, 19].

A formal description of Curry’s operational semantics based on heap structures to model sharing

can be found in [3].

D.3 Equational Constraints

An equational constraint e1=:=e2 is solvable if both sides are reducible to a unifiable data term

(strict equality). An equational constraint can be solved in an incremental way by an interleaved

lazy evaluation of the expressions and binding of variables to constructor terms. The evaluation

steps implementing this method are shown in Figure 4, where we consider the symbol =:= is a

binary infix function symbol. The last two rules implements an occur check where the critical

variables (cv) are only those variables occurring outside a function call:

cv(x) = {x}
19 It should be noted that values are constructor terms like 23, True, or [2,4,5]. This means that the eval-

uation of constraints and I/O actions are not shared since they are not replaced by a value after evaluation but

constraints are solved in order to apply a conditional rule (in case of constraints) and I/O actions are applied to

the outside world when they appear at the top-level in a program. This is the intended behavior since the expres-

sions “putChar ’a’ >> putChar ’a’” and “let ca = putChar ’a’ in ca >> ca” should have an identical

behvarior, namely printing the character ’a’ twice.
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Eval[[ei]]⇒ D

Eval[[e1=:=e2]]⇒ replace(e1=:=e2, i,D)
if ei = f(t1, . . . , tn), i ∈ {1, 2}

Eval[[c(e1, . . . , en)=:=c(e′1, . . . , e
′
n)]]⇒ {id e1=:=e

′
1 & . . . & en=:=e

′
n}

Eval[[c(e1, . . . , en)=:=d(e′1, . . . , e
′
m)]]⇒ ∅

if c 6= d or n 6= m

Eval[[x=:=e]]⇒ D

Eval[[e=:=x]]⇒ D
if e is not a variable

Eval[[x=:=y]]⇒ {{x 7→ y} True}

Eval[[x=:=c(e1, . . . , en)]]⇒ {σ y1=:=σ(e1) & . . . & yn=:=σ(en)}

if x 6∈ cv(c(e1, . . . , en)),

σ = {x 7→ c(y1, . . . , yn)},
y1, . . . , yn fresh variables

Eval[[x=:=c(e1, . . . , en)]]⇒ ∅
if x ∈ cv(c(e1, . . . , en))

Figure 4: Solving equational constraints

cv(c(e1, . . . , en)) = cv(e1) ∪ . . . ∪ cv(en)

cv(f(e1, . . . , en)) = ∅

However, Curry implementations can also provide other methods to solve equational constraints

or other types of constraints with appropriate constraint solvers. The only property, which is

important for the operational semantics, is the fact that a solved constraint has the form True, i.e.,

a solvable constraint c is reducible to the answer expression σ True where σ is a solution of c.

D.4 Higher-Order Features

Warren [48] has shown for the case of logic programming that the higher-order features of functional

programming can be implemented by providing a (first-order) definition of the application function.

Since Curry supports the higher-order features of current functional languages but excludes the

guessing of higher-order objects by higher-order unification (as, e.g., in [26, 39, 43]), the operational

semantics specified in Figure 2 can be simply extended to cover Curry’s higher-order features by

adding the following axiom (here we denote by the infix operator “@” the application of a function

to an expression):

Eval[[ϕ(e1, . . . , em)@e]]⇒ ϕ(e1, . . . , em, e) if ϕ has arity n and m < n

Thus, we evaluate an application by simply adding the argument to a partial application. If a

function has the right number of arguments, it is evaluated by the rules in Figure 2. Note that

the function application suspends if the applied function is unknown (instead of a possible but

expensive non-deterministic search for the appropriate function).
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λ-abstractions occurring in expressions are anonymous functions and can be implemented by

assigning a new name to each λ-abstraction, where the free variables become parameters of the

function. For instance, the λ-abstraction (f is a free variable)

\x y -> f x y + 2

can be replaced by the (partial) application (lambda f), where lambda is a new name, and adding

the rule

lambda f x y = f x y + 2

Note that this transformation (as well as the extension of Eval[[·]] above) is only used to explain the

operational meaning of Curry’s higher-order features. A concrete Curry system is free to choose

other implementation techniques.

D.5 Generating Definitional Trees

Curry’s computation model is based on the specification of a definitional tree for each operation.

Although definitional trees are a high-level formalism to specify evaluation strategies, it is tedious

to annotate each operation which its definitional tree. Therefore, the user need not write them

explicitly in the program since they are automatically inserted by the Curry system. In the fol-

lowing, we present Curry’s algorithm to generate definitional trees from the left-hand sides of the

functions’ rules.

The generation of definitional trees for each function is not straightforward, since there may

exist many non-isomorphic definitional trees for a single function representing different evaluation

strategies. This demands for a default strategy to generate definitional trees. Curry uses the

following default strategy:

1. The leftmost argument, where a constructor occurs at the corresponding position in all left-

hand sides defining this function, is evaluated to head normal form.

2. or nodes (i.e., disjunctions) are generated in case of a conflict between constructors and

variables in the left-hand sides, i.e., if two rules have a variable and a constructor at the same

position on the left-hand side.

In the following, we assume that all rules are unconditional (it is obvious how to extend it to

conditional rules since only the left-hand sides of the rules are relevant for the definitional trees).

To specify the construction algorithm, we define by

DP (π,R) = {o position of a variable in π | root(l|o) ∈ C for some l = r ∈ R}

the set of demanded positions of a call pattern π w.r.t. a set of rules R. For instance, the demanded

positions of the call pattern leq(x,y) w.r.t. the rules for the predicate leq (see Section D.1, page 75)

are {1, 2} referring to the pattern variables x and y. Furthermore, we define by

IP (π,R) = {o ∈ DP (π,R) | root(l|o) ∈ C for all l = r ∈ R}

the set of inductive positions of a call pattern π w.r.t. a set of rules R. Thus, the inductive

positions are those demanded positions where a constructor occurs in all left-hand sides defining
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this function. For instance, the set of inductive positions of the call pattern leq(x,y) w.r.t. the

rules for the predicate leq is {1}.
The generation of a definitional tree for a call pattern π and a set of rules R (where l is an

instance of π for each l = r ∈ R) is described by the function gt(π,R). We distinguish the following

cases for gt:

1. If the position o is leftmost in IP (π,R), {root(l|o) | l = r ∈ R} = {c1, . . . , ck} where c1, . . . , ck
are different constructors with arities n1, . . . , nk, and Ri = {l = r ∈ R | root(l|o) = ci}, then

gt(π,R) = branch(π, o, flex, gt(π[c1(x11, . . . , x1n1)]o, R1),

. . . ,

gt(π[ck(xk1, . . . , xknk
)]o, Rk))

where xij are fresh variables. I.e., we generate a branch node for the leftmost inductive

position (provided that there exists such a position).

2. If IP (π,R) = ∅, let o be the leftmost position in DP (π,R) and R′ = {l = r ∈ R | root(l|o) ∈
C}. Then

gt(π,R) = or(gt(π,R′), gt(π,R−R′))

I.e., we generate an or node if the leftmost demanded position of the call pattern is not

demanded by the left-hand sides of all rules.

3. If DP (π,R) = ∅ and l = r variant of some rule in R with l = π, then

gt(π,R) = rule(l = r)

Note that all rules in R are variants of each other if there is no demanded position (this

follows from the weak orthogonality of the rewrite system). For non-weakly orthogonal rewrite

systems, which may occur in the presence of non-deterministic functions [19] or conditional

rules, the rules in R may not be variants. In this case we simply connect the different rules

by or nodes.

If R is the set of all rules defining the n-ary function f , then a definitional tree for f is generated

by computing gt(f(x1, . . . , xn), R).

It is easy to see that this algorithm computes a definitional tree for each function since the

number of rules is reduced in each recursive call and it keeps the invariant that the left-hand sides

of the current set of rules are always instances of the current call pattern.

Note that the algorithm gt is not strictly conform with the pattern matching strategy of func-

tional languages like Haskell. For instance, it generates for the rules

f 0 0 = 0

f x 1 = 0

the definitional tree

branch(f(x1,x2), 2, f lex, branch(f(x1,0), 1, f lex, rule(f(0,0) = 0)),

rule(f(x1,1) = 0))
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Eval[[try(g)]]⇒

[] if Eval[[c]]⇒ ∅

[g′] if Eval[[c]]⇒ {σ True} (i.e., σ is a mgu for all equations in c) with

Dom(σ) ⊆ {x, x1, . . . , xn} (or c = True and σ = id) and

g′ = \x->let x1, . . . , xn free in σ ◦ ϕ True

D if Eval[[c]]⇒ {σ c′} with Dom(σ) ⊆ {x, x1, . . . , xn},
g′ = \x->let x1, . . . , xn, y1, . . . , ym free in σ ◦ ϕ c′

where {y1, . . . , ym} = VRan(σ) \ ({x, x1, . . . , xn} ∪ free(g)),

and Eval[[try(g′)]]⇒ D

[g1,...,gk] if Eval[[c]]⇒ {σ1 c1, . . . , σk ck}, k > 1, and, for i = 1, . . . , k,

Dom(σi) ⊆ {x, x1, . . . , xn} and

gi = \x->let x1, . . . , xn, y1, . . . , ymi
free in σi ◦ ϕ ci

where {y1, . . . , ymi} = VRan(σi) \ ({x, x1, . . . , xn} ∪ free(g))

Figure 5: Operational semantics of the try operator for g = \x->let x1, . . . , xn free in ϕ c

(although both arguments are demanded, only the second argument is at an inductive position)

whereas Haskell has a strict left-to-right pattern matching strategy which could be expressed by

the definitionl tree

or(branch(f(x1,x2), 1, f lex, branch(f(0,x2), 2, f lex, rule(f(0,0) = 0))),

branch(f(x1,x2), 2, f lex, rule(f(x1,1) = 0)))

The latter tree is not optimal since it has a non-deterministic or node and always requires the

evaluation of the first argument (in the first alternative). If the function definitions are uniform in

the sense of [47], the strategy described by gt is identical to traditional functional languages.

D.6 Encapsulated Search

The exact behavior of the try operator is specified in Figure 5. Note that a substitution ϕ of the

form {x1 7→ t1, . . . , xn 7→ tn}, computed by evaluating the body of a search goal, must be encoded

as a constraint in the new search goal. Therefore, ϕ is transformed into its equational representation

ϕ, where ϕ is a solved constraint of the form x1=:=t1 &...& xn=:=tn. Hence, a search goal can always

be written as try (\x->ϕ & c). Since the solved constraint ϕ does not have to be evaluated again,

we use the sugared form try (\x->ϕ c) where only c is further evaluated. Thus, an initial search

goal try (\x->c) is equivalent to try (\x->id c).

A search goal is solved (second case) if the constraint is solvable without bindings of global

variables. In a deterministic step (third case), we apply the try operator again after adding the

newly introduced variables to the list of local variables. Note that the free variables occurring in

g, denoted by free(g), must not be locally declared because they can appear also outside of g, and

therefore they have to be removed from VRan(σ). In a non-deterministic step (fourth case), we

return the different alternatives as the result. Note that the evaluation of the try operator suspends

if a computation step on the constraint attempts to bind a free variable. In order to ensure that an

encapsulated search will not be suspended due to necessary bindings of free variables, the search

goal should be a closed expression when a search operator is applied to it, i.e., the search variable
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is bound by the lambda abstraction and all other free variables are existentially quantified by local

declarations.

If one wants to use free variables in a search goal, e.g., for synchronization in systems where

concurrency is intensively used, the goal should perform only deterministic steps until all free

variables have been bound by another part of the computation. Otherwise, a non-deterministic

step could unnecessarily split the search goal. For instance, consider the expression

try (\x -> y=:=[x] & append x [0,1] =:= [0,1])

The computation of y=:=[x] suspends because y is free. Therefore, a concurrent computation of

the conjunction will split the goal by reducing the append expression. However, if y is first bound

to [[]] by another thread of the computation, the search goal could proceed deterministically.

To avoid such unnecessary splittings, we can restrict the applicability of the split case and adapt

a solution known as stability from AKL [29] and Oz [44]. For this purpose, we can slightly change

the definition of try such that non-deterministic steps lead to a suspension as long as a deterministic

step might be enabled by another part of the computation, i.e., the search goal contains free global

variables. To do so, we have to replace only the fourth rule of the try operator:

Eval[[try(g)]]⇒ [g1,...,gk] if Eval[[c]]⇒ {σ1 c1, . . . , σk ck}, k > 1,

Eval[[c]] 6⇒ {σ c′}, free(c) ⊆ {x, x1, . . . , xn}
and, for i = 1, . . . , k,

gi = \x->let x1, . . . , xn, y1, . . . , ymi free in σi ◦ ϕ ci

where y1, . . . , ymi = VRan(σi) \ ({x, x1, . . . , xn} ∪ free(g))

Thus, a non-deteterministic step is only performed if no deterministic step is possible and the

unsolved constraint c contains no free variables except those locally declared in the search goal.

Global variables appearing in the data terms ti of the substitution ϕ = {x1 7→ t1, . . . , xn 7→ tn} but

not in c are not considered by these conditions because they cannot influence the further evaluation

of c. Note that the former condition Dom(σi) ⊆ {x, x1, . . . , xn} is covered by the new condition

free(c) ⊆ {x, x1, . . . , xn} because Dom(σi) is always a subset of free(c).

Note that the first definition of try in Figure 5 computes non-deterministic splittings where the

latter definition suspends. On the other hand, the latter definition can avoid some unnecessary

splittings. Thus, different implementations of Curry can support one or both of these definitions.

D.7 Eliminating Local Declarations

In the description of the operational semantics above, we assumed that a Curry program is a set

of rules l = r where the left-hand side l is a call pattern and the right-hand side r is an expression

containing variables, constructors, and defined functions. However, a Curry program can also

contain local declarations (cf. Section 2.4) whose operational semantics is not defined so far. To

simplify the operational semantics, we do not extend it to local declarations but provide in the

following a transformation of Curry programs containing local declarations into Curry programs

without local declarations (except for free variables). The main purpose of this transformation is to

provide a precise definition of the operational semantics of the full language. This transformation

can also be performed by implementations of Curry but it is also possible that some implementations

provide explicit support for local declarations, provided that they satisfy the operational meaning

described in the following.
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The elimination of local function and pattern declarations is done by the following steps which

are subsequently described in more detail:

1. Eliminate sections and lambda abstractions

2. Eliminate Boolean guards in rules

3. Transform where declarations into let declarations

4. Eliminate fcase

5. Eliminate local patterns and functions

For the following, we assume that all name conflicts have been resolved, i.e., the names of functions

and argument variables defined in the different declarations are pairwise different.

D.7.1 Eliminate Sections and Lambda Abstractions

Left and right sections are transformed into partial applications, i.e.,

(expr op) is transformed into (\f x y -> f x y) (op) expr

(op expr) is transformed into (\f x y -> f y x) (op) expr

Note that a transformation of a right section (op expr) into the lambda abstraction

(\x -> (op) x expr) (where x is a new variable) would have a different behavior w.r.t. sharing

of subterms. A compiler could avoid the introduction of lambda abstractions by transforming a

left section (expr op) into the partial application ((op) expr) and a right section (op expr) into

(Prelude.flip (op) expr).

All λ-abstractions are eliminated by providing a new name (cf. Section D.4), i.e., each λ-

abstraction (\p1 . . . pn->e) is replaced by the expression (let f p1 . . . pn = e in f) where f is a new

function name. This transformation must be recursively applied to all λ-abstractions occurring in

e.

D.7.2 Eliminate Boolean Guards

This is done according the meaning described in Section 2.3.2. A rule of the form

f t1 . . . tn | b1 = e1
...

| bk = ek
where decls

(the where part can also be missing), where all guards b1, . . . , bk (k > 0) are expressions of type

Bool, is transformed into the single rule

f t1 . . . tn = if b1 then e1 else

...

if bk then ek else failed

where decls
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D.7.3 Transform where into let

Each unconditional rule of the form

l = r where decls

is transformed into

l = let decls in r .

Each conditional rule of the form

l | c = r [ where decls ]

is transformed into

l = [ let decls in ] (c Prelude.&> r)

Thus, we assume in the subsequent transformations that all program rules are of the form “l = r”

(where r might be a let-expression).

Note that this transformation is not really necessary but provides for a unified treatment of the

elimination of local pattern and function declarations in let and where.

D.7.4 Eliminate fcase

As discussed in Section 5.4, fcase expressions are a short notation for flexible pattern matching

as used in defined functions. Thus, each fcase expression can be transformed into a let-expression

defining a local function that is subsequently turned into a global function (see below). Hence,

every expression of the form

fcase e of

p1 | g1 -> e1
...

pn | gn -> en

(where some of the guards “| gj” can be omitted) is translated into the expression

let f p1 | g1 = e1
...

f pn | gn = en

in f e

where f is a fresh function symbol not occurring in the initial fcase expression.

D.7.5 Eliminate Local Patterns and Functions

All local pattern and function declarations in a rule “l = r” are eliminated by iterating the elimina-

tion of outermost local declarations as follows. For this purpose, we denote by r = C[let decls in e]p
an outermost let declaration in r, i.e., there is no prefix position p′ < p in r with r|p′ = let . . .

We apply the following transformations as long as possible to eliminate all local pattern and

function declarations in a rule of the form “l = C[let decls in e]p”:
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Eliminate Patterns Select a local pattern declaration which contains only argument variables

from the main function’s left-hand side in the expression, i.e., the rule has the form

l = C[let decls1
p = e′

decls2
in e]p

with free(e′) ⊆ free(l) (it is a programming error if no pattern declaration has this property, i.e.,

cyclic pattern definitions or pattern definitions depending on locally free variables are not allowed).

Then transform this rule into the rules

l = C[f ′ x1 . . . xk e′]p
f ′ x1 . . . xk z = f ′′ x1 . . . xk (f1z) . . . (fmz)

f ′′ x1 . . . xk y1 . . . ym = let decls1
decls2

in e

f1p = y1
. . .

fmp = ym

where x1 . . . xk are all the variables occurring in l, y1 . . . ym are all the variables occurring in p, z

is a new variable symbol, and f ′, f ′′, f1, . . . , fm are new function symbols. Repeat this step for f ′′

until all local pattern declarations are eliminated.

This translation can be optimized in some specific cases. If p is just a variable, the function f ′

is not needed and the definition of l can be simplified into

l = C[f ′′ x1 . . . xk e′]p

Similarly, if e′ is a variable, the function f ′ is also not needed and the definition of l can be replaced

by

l = C[f ′′ x1 . . . xk (f1e
′) . . . (fme

′)]p

Complete Local Function Definitions If a locally declared function f refers in its definition

to a variable v not contained in its argument patterns, then add v as an additional first20 argument

to all occurrences of f (i.e., left-hand sides and calls). Repeat this step until all locally defined

functions are completed. Note that this completion step must also be applied to free variables

introduced in the same let expression, i.e., the rule

f x = let y free

g z = c y z

in g 0

is completed to

f x = let y free

g y z = c y z

in g y 0

20The new arguments must come first because of possible partial applications of this function.
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Globalize Local Function Definitions If the definitions of all locally declared functions are

completed, i.e., the definitions only refer to variables in the argument patterns, delete the locally

declared functions and define them at the top level (and rename them if there are already top-level

functions with the same name). For instance, the previous rule is transformed into the definitions

g y z = c y z

f x = let y free in g y 0

Note that the entire transformation process must be applied again to the new top-level declarations

since they may also contain local declarations.

D.7.6 Resulting Program

After applying these transformation steps to all rules in the program, we obtain a program without

sections and λ-abstractions where all local declarations contain only free variables. Note that

partial applications are not eliminated since they can be treated as shown in Section D.4.
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language babel and its implementation on a graph machine. New Generation Computing,

14:391–427, 1996.

[32] J. Lloyd. Combining functional and logic programming languages. In Proc. of the International

Logic Programming Symposium, pages 43–57, 1994.

[33] J. Lloyd. Declarative programming in escher. Technical report cstr-95-013, University of

Bristol, 1995.
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function application, 14, 79
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print, 64
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putStrLn, 37, 64
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repeat, 60

replicate, 60
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return, 38, 64
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selector function, 28

seq, 19, 55

sequenceIO, 65

sequenceIO_, 65

sharing, 8, 78

show, 21, 63

snd, 58

solve, 11, 56

solveAll, 42, 66

solved expression, 74

span, 61

splitAt, 61

strict equality, 13, 18, 78

String, 21, 58

subexpression, 74

substitution, 7, 74

subterm, 74

Success, 65

success, 65

suspended evaluation, 17, 76

tail, 58

take, 60

takeWhile, 61

True, 18, 56

try, 39, 65

tuple, 21, 57

type, 22

synonym declaration, 6

type constructor, 5, 6

type declaration, 5, 6

type environment, 22

type expression, 5, 22

type instance, 22

type scheme, 22

type synonym declaration, 6

type variable, 5

unbound variable, 11

uncurry, 54

unit type, 21

unknown, 65

unlines, 61

unpack, 66

until, 55

unwords, 62

unzip, 60

unzip3, 60

update, 72

variable, 74

anonymous, 12

declaration, 12

free, 7, 11, 82

search, 39

variable range, 74

variant, 74

well-typed, 22, 23

where, 10, 32, 68

words, 61

writeFile, 64

zip, 59

zip3, 59

zipWith, 59
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