Introduction to Narrowing

Main concepts of this unit:

Variables
- existential, universal

Residuation
- rigid function

Narrowing
- flexible function
- non-determinism

Strict Equality

Programming with Equations

Properties of Narrowing
- soundness, completeness
Variables

Variables in terms occurs in two situations. In a rewrite rule, a variable stands for any term. This use is like universal quantification. E.g.:

\[
\text{pop (push } _{-} \text{ S)} = S
\]

is intended as: “for any element \(E\) and stack \(S\), the result of \(\text{popping push}(E, S)\) is \(S\)”.

Functional logic programming supports the evaluation of expressions containing variables. Variables in expressions differ from variables in rules. They stand for some unknown value. This use is like existential quantification. E.g.:

\[
\begin{align*}
\text{data Suit} & = \text{Club} \mid \text{Spade} \mid \ldots \\
\text{data Rank} & = \text{Ace} \mid \text{King} \mid \ldots \\
\text{data Card} & = \text{Card Rank Suit} \\
\text{rank } (\text{Card } r _) & = r
\end{align*}
\]

The following Curry code, which finds whether a poker hand is a \emph{four-of-a-kind}, contains unknown variables: \(X\), \(y\), \(Z\) and \(r\).

\[
\begin{align*}
X+[y]++Z & =:= \text{hand} \\
\text{map rank } (X++Z) & =:= [r,r,r,r]
\end{align*}
\]

This unit’s focus is to evaluate expressions of this kind.
Residuation

The problem is the “functional” evaluation of expressions (terms) containing uninstantiated variables. The functions are defined by rewrite rules.

One approach, called residuation, assumes that some special functions, e.g., in Escher the equality operator, may instantiate variables to which are applied. Other functions wait (residuate) when applied to variables. The control is transferred to another expression hoping that the evaluation of this expression will instantiated the variables in question. E.g., in Curry:

\[
\begin{align*}
\text{digit} &= 0 \\
\text{digit} &= 1 \\
\text{digit} &= 2 \\
\ldots \\
\text{test } x \ y &= x + x = := y \ &\& x \times x = := y \ &\& \text{digit} = := x
\end{align*}
\]

Suppose the expression to evaluate is test \(X \ Y \), where the arguments are both uninstantiated variables.

Both “\(+ \)” and “\(\times \)” residuate, but “\(= := \)” does not. The variable \(x \) is instantiated by the last equation, which in turn restarts the evaluation of the residuating expressions.
Narrowing

As for residuation, the problem is still the “functional” evaluation of expressions (terms) containing uninstantiated variables. The functions are defined by rewrite rules.

Another approach, called *narrowing*, guesses values for the variables when this is necessary to keep the computation going. Of course, some guesses may be wrong. A guess comes from a pattern found in a rewrite rule of the function applied to variables. E.g., in the Curry’s *prelude*:

\[
\begin{align*}
\text{length } [] &= 0 \\
\text{length } (_{:}xs) &= 1 + \text{length } xs
\end{align*}
\]

The evaluation of:

```
prelude> length L
```

gives:

Result: 0, Bindings: L=[]
Result: 1, Bindings: L=[_]
Result: 2, Bindings: L=[_,_]

Most functions in Curry behave in this way. Typical exceptions are arithmetic operations and I/O primitives.
Equality

In Curry, there are two equality functions: the boolean equality “==” and the constrained equality “=:=”. Both functions are built-in or predefined. They are implicitly defined for every type by “obvious” rewrite rules.

The boolean equality is rigid. If an argument is a variable, it residuates. It returns True, if the arguments evaluate to identical data terms, False otherwise.

The constrained equality is flexible. If an argument is a variable, it is unified with the other argument. It succeeds, if the arguments evaluate to unifiable data terms, it fails otherwise.

The type Success has no visible constructor(s), but there are predefined functions success and failed.

Exercise 5. Define from scratch (ignore == and =:=) each equality discussed in this page for the type:

 data Color = Red | Green | Blue

Optional: define both equalities for lists of colors, as well. Do you find something annoying about Curry for this problem?
Solving equations

Constrained equality eases coding some problems into programs. Relations between elements of a problem are captured as equations. Narrowing solves these equations and thus solves problems with less coding effort because details are omitted.

Examples 6. Split a list into a prefix and a suffix:

\[\text{list} := \text{prefix} ++ \text{suffix} \]

Compute a permutation of a list:

\[
\begin{align*}
\text{permute} \ [\] &= \ [] \\
\text{permute} \ (x:xs) \mid \text{permute} \ xs &=:= u ++ v \\
&= u ++ x:v \\
&\text{where } u, v \text{ free}
\end{align*}
\]

Pick a duplicate element in a list

\[
\begin{align*}
\text{pickdupl} \ l \mid l &=:= a++d:b++d:c \\
&= d \\
&\text{where } a,b,c,d \text{ free}
\end{align*}
\]

Find the distance between two given elements in a list:

\[
\begin{align*}
\text{distance} \ l \ i \ j \mid l &=:= a+i:b++j:c \\
&= \text{length } b + 1 \\
&\text{where } a,b,c \text{ free}
\end{align*}
\]
Soundness and Completeness

Narrowing solves equations involving user-defined data types. Let e be an equation and v_1, \ldots, v_n uninstantiated variables in e and $\sigma = \{v_1 \mapsto t_1, \ldots, v_n \mapsto t_n\}$ a substitution.

Narrowing is **sound**: if a narrowing evaluation of e succeeds and computes σ, then $\sigma(e)$ succeeds as well (σ is a solution of e).

Narrowing is **complete**: if $\sigma(e)$ succeeds, (σ is a solution of e), then there exists a narrowing evaluation of e that computes a substitution at least as general as σ.

The (operational) completeness of narrowing is not trivial to obtain. Many implementations of narrowing, including the one provided by Pakcs, are incomplete.

Narrowing finds all the solutions of an equation. If the number of solution is finite, narrowing may find it or it may compute forever.

Exercise 7. Invoke the Pakcs interpreter and try to compute repeated solutions of both:

\[X := [1,2,3] \]
\[\text{length } X := \text{length } [1,2,3] \]

How do you interpret the behavior of Pakcs?
Narrowing Computations

Example 8. The following example shows how narrowing computes.

```haskell
data Nat = Zero | Succ Nat
leq Zero _ = True
leq (Succ _) Zero = False
leq (Succ x) (Succ y) = leq x y
add Zero y = y
add (Succ x) y = Succ (add x y)
```

Trace the evaluation of \(\text{leq (add X Y) Y} =:= \text{True} \).

- \(\text{leq (add X Y) Y} \)
- \(\text{-- add X Y} \) guess Zero for \(X \)
- \(\text{-- add Zero Y} \)
- \(\text{-- Y} \)
- \(\text{leq Y Y} \) guess Zero for \(Y \)
- \(\text{leq Zero Zero} \)
- \(\text{True} \) \(\{X \mapsto \text{Zero}, Y \mapsto \text{Zero}\} \)

find new solution, try other last guess

- \(\text{leq Y Y} \) guess (Succ U) for \(Y \)
- \(\text{leq (Succ U) (Succ U)} \)
- \(\text{-- leq U U} \) guess Zero for \(U \)
- \(\text{-- leq Zero Zero} \)
- \(\text{-- True} \)
- \(\text{True} \) \(\{X \mapsto \text{Zero}, Y \mapsto \text{Succ Zero}\} \)

Exercise 8. Which other solutions will \textsc{Pakcs} find? Is this OK?
Programming

The problem is a portion of the *Game of 24*, a puzzle for children (and CS students).

Given four 1-digit positive integers find an arithmetic expression that evaluates to 24 in which each digit occurs exactly once. A number can be divided only by its factors. For example, a solution of the problem [2,3,6,8] is (2+8)*3-6. There are 26 distinct solutions of this problem.

A design pattern for search problems of this kind is called *generate and test*. Its application consists of: (1) generating a well-formed expression of the problem, e.g., (2+3)*(6+8), and testing whether it evaluates to 24 (no for the given example).

Exercise 9. Code a Haskell or Curry program that generates any (all) well-formed expressions of a problem.

Hint: a plausible type for the expressions:

```haskell
data Exp = Num Int
         | Add Exp Exp
         | Mul Exp Exp
         | Sub Exp Exp
         | Div Exp Exp
```
Programming cont’d

The problem is to compute the day schedule of a league of sport teams. A day schedule is a set of games (between two teams), where (1) every team, or every team but one if number of teams is odd, plays daily and (2) no team plays more than one game per day.

Exercise 10a. Code a Haskell or Curry program that computes a day schedule for a league of sport teams.

Hints: a non-deterministic solution picks two teams of the league for a game and recurs on the remaining teams. There are two challenges: (1) ensuring that every day schedule is generated, and (2) avoiding or minimizing repeated computations of the same schedule.

Exercise 10b. Extend the previous program to compute the set of day schedules (do not spend more than 1/2 hour on this).