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Preface

This book is about programming in Curry, a general-purpose declarative programming lan-

guage that integrates functional with logic programming. Curry seamlessly combines the

key features of functional programming (nested expressions, lazy evaluation, higher-order

functions), logic programming (logical variables, partial data structures, built-in search), and

concurrent programming (concurrent evaluation of constraints with synchronization on logical

variables).

This book is best used as an introduction to Curry. Curry is a rigorously defined program-

ming language. The “Report” is a still evolving, but fairly stable, document that precisely

defines the language, in particular both its syntax and operational semantics. However, the

report is not best suited to the beginner, rather it may be consulted in conjunction with this

tutorial for the sake of a completeness that is not sought here.

There are several implementations of Curry. The examples and exercises in this book

have been developed and executed using PAKCS. PAKCS is also accessible (in a restricted

form) on-line via a web-based system. In this document, you find for many programs a

“Browse” link which directly loads the program into this web-based system so that you can

run or modify it. Alternatively, you can download the example programs and execute them

on your locally installed Curry system.
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Part I

Language Features
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Chapter 1

Introduction

Curry is a universal programming language aiming at the amalgamation of the most im-

portant declarative programming paradigms, namely functional programming and logic pro-

gramming. Curry combines in a seamless way features from functional programming (nested

expressions, lazy evaluation, higher-order functions), logic programming (logical variables,

partial data structures, built-in search), and concurrent programming (concurrent evaluation

of constraints with synchronization on logical variables). Moreover, Curry provides addi-

tional features in comparison to the pure languages (compared to functional programming:

search, computing with partial information; compared to logic programming: more efficient

evaluation due to the deterministic evaluation of functions). Moreover, it also amalgamates

the most important operational principles developed in the area of integrated functional

logic languages: “residuation” and “narrowing” (see [10, 16] for surveys on functional logic

programming).

The development of Curry is an international initiative intended to provide a common

platform for the research, teaching1 and application of integrated functional logic languages.

This document is intended to provide a tutorial introduction into the features of Curry

and their use in application programming. It is not a formal definition of Curry which can

be found in [18].

1Actually, Curry has been successfully applied to teach functional and logic programming techniques in a

single course without switching between different programming languages. More details about this aspect can

be found in [11].
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Chapter 2

Getting Started with Curry

There are different implementations of Curry available1. As such we can not describe the use

of a Curry system in general. Some implementations are batch-oriented. In this case a Curry

program is compiled into machine code and then executed. In this introduction we prefer

an implementation that supports an interactive environment which provides faster program

development by loading and testing programs within the integrated environment.

PAKCS (Portland Aachen Kiel Curry System) [17]2 contains such an interactive envi-

ronment so that we show the use of this system here in order to get started with Curry.

When you start the interactive environment of PAKCS (e.g., by typing “pakcs” as a shell

command), you see something like the following output after the system’s initialization:

______ __ _ _ ______ _______

| __ | / \ | | / / | ____| | _____| Portland Aachen Kiel

| | | | / /\ \ | |_/ / | | | |_____ Curry System

| |__| | / /__\ \ | _ | | | |_____ |

| ____| / ______ \ | | \ \ | |____ _____| | Version 2.1.2-b8

|_| /_/ \_\ |_| \_\ |______| |_______|

Curry2Prolog(swi 8.1) Compiler Environment (Version of 2019-08-12)

(RWTH Aachen, CAU Kiel, Portland State University)

Type ":h" for help (contact: pakcs@curry-lang.org)

Prelude>

Now the system is ready and waits for some input. By typing “:q” (quit) you can always leave

the system, but this is not what we intend to do now. The prefix of the current input line

always shows the currently loaded module or program. In this case the module Prelude is

loaded during system startup. The standard system module Prelude contains the definition

of several predefined functions and data structures which are available in all Curry programs.

For instance, the standard arithmetic functions like +, * etc are predefined so that we can

use the system as a simple calculator (the input typed by the user is underlined):

1Check the web page http://www.curry-lang.org for details.
2http://www.informatik.uni-kiel.de/~pakcs
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Prelude> 3+5*4

23

In this simple example you can already see the basic functionality of the environment: if

you type an expression, the system evaluates this expression to a value (i.e., an expression

without evaluable functions) and prints this value as the result. Now you can type additional

expressions to be evaluated. For instance, you can compare the values of two expressions

with the usual comparison operators >, <, <=, >=:

Prelude> 3+5*4 >= 3*(4+2)

True

== and /= are the operators for equality and disequality and can be used on numbers as well

as on other datatypes:

Prelude> 4+3 == 8

False

One may want to use Curry as more than a mere desk calculator. Therefore, we will discuss

how to write programs in Curry. In general, a Curry program is a set of function definitions.

The simplest sort of functions are those that do not depend on any input value, i.e., constant

functions. For instance, a definition like

nine = 3*3

(such definitions are also called rules or defining equations) defines the name nine as equal to

the value of 3*3, i.e., 9. This means that each occurrence of the name nine in an expression

is replaced by the value 9, i.e., the value of the expression “4*nine” is 36.

Of course, it is more interesting to define functions depending on some input arguments.

For instance, a function to compute the square value of a given number can be defined by

square x = x*x

Now it is time to make some remarks about the syntax of Curry (which is actually very similar

to Haskell [19]). The names of functions and parameters usually start with a lowercase letter

followed by letters, digits and underscores. The application of a function f to an expression e

is denoted by juxtaposition, i.e., by “f e”. An exception are the infix operators like + or * that

can be written between their arguments to enable the standard mathematical notation for

arithmetic expressions. Furthermore, these operators are defined with the usual associativity

and precedence rules so that an expression like “2+3+4*5” is interpreted as ((2+3)+(4*5)).

However, one can also enclose expressions in parenthesis to enforce the intended grouping.

If we write the definitions of nine and square with a standard text editor into a file (note

that each definition must be written on a separate line starting in the first column) named

“firstprog.curry” ([Browse Program][Download Program]), we can load (and compile) the

program into our environment by the command

Prelude> :l firstprog

which reads and compiles the file “firstprog.curry” and makes all definitions in this pro-
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gram visible in the environment. After the successful processing of this program, the envi-

ronment shows the prefix to the input line as

firstprog>

indicating that the program “firstprog” is currently loaded. Now we can use the definitions

in this program in the expressions to be evaluated:

firstprog> square nine

81

If we change our currently loaded program, we can easily reload the new version by typing

“:r”. For instance, if we add the definition “two = 2” to our file “firstprog.curry”, we

can reload the program as follows:

firstprog> :r

...

firstprog> square (square two)

16

Functions containing only a single arithmetic expression in the right-hand side of their defining

equations might be useful abstractions of complex expressions but are generally only of limited

use. More interesting functions can be written using conditional expressions. A conditional

expression has the general form “if c then e1 else e2” where c is a Boolean expression

(yielding the value True or False). A conditional expression is evaluated by evaluating the

condition c first. If its value is True, the value of the conditional is the value of e1, otherwise it

is the value of e2. For instance, the following rule defines a function to compute the absolute

value of a number:

absolute x = if x>=0 then x else -x

Using recursive definitions, i.e., rules where the defined function occurs in a recursive call in

the right-hand side, we can define functions whose evaluation requires a non-constant number

of evaluation steps. For instance, the following rule defines the factorial of a natural number

[Browse Program][Download Program]:

fac n = if n==0 then 1

else n * fac(n-1)

Note that function definitions can be put in several lines provided that the subsequent lines

start in a column greater than the column where the left-hand side starts (this is also called

the layout or off-side rule for separating definitions).

You might have noticed that functions are defined by rules like in mathematics without

providing any type declarations. This does not mean that Curry is an untyped language. On

the contrary, Curry is a strongly typed language which means that each entity in a program

(e.g., functions, parameters) has a type and ill-typed combinations are detected by the com-

piler. For instance, expressions like “3*True” or “fac False” are rejected by the compiler.

Although type annotations need not be written by the programmer, they are automatically

inferred by the compiler using a type inference algorithm. Nevertheless, it is a good idea to

6
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write down the types of functions in order to provide at least a minimal documentation of

the intended use of functions. For instance, the function fac maps integers into integers and

so its type can be specified by

fac :: Int -> Int

(Int denotes the predefined type of integers; similarly Bool denotes the type of Boolean

values). If one is interested in the type of a function or expression inferred by the type

inference algorithm, one can show it using the command “:t” in PAKCS:

absfac> :t fac

fac :: Int -> Int

absfac> :t fac 3

fac 3 :: Int

A useful feature of Curry (as well as most functional and logic programming languages) is

the ability to define functions in a pattern-oriented style. This means that we can put values

like True or False in arguments of the left-hand side of a rule and define a function by using

several rules. The rule that matches the pattern of left-hand side will be called. For instance,

instead of defining the negation on Boolean values by the single rule

not x = if x==True then False

else True

we can define it by using two rules, each with a different pattern (here we also add the type

declaration):

not :: Bool -> Bool

not False = True

not True = False

The pattern-oriented notation becomes very useful in combination with more complex data

structures, as we will see later.

One of the distinguishing features of Curry in comparison to functional languages is its

ability to search for solutions, i.e., to compute values for the arguments of functions so that the

functions can be evaluated. For instance, consider the following definitions of some functions

on Boolean values contained in the prelude (note that Curry also allows functions defined as

infix operators, i.e., “x && y” denotes the application of function && to the arguments x and

y):

False && _ = False

True && x = x

False || x = x

True || _ = True

not False = True

not True = False

The underscore “_” occurring in the rules for && and || denotes an arbitrary value, i.e., such

7



an anonymous variable is used for argument variables that occur only once in a rule.

We can use these definitions to compute the value of a Boolean expression:

Prelude> True && (True || (not True))

True

However, we can do more and use the same functions to compute Boolean values for some

(initially unknown) arguments:

Prelude> x && (y || (not x)) where x,y free

{x=True, y=True} True

{x=True, y=False} False

{x=False, y=y} False

Note that the initial expression contains the free variables x and y as arguments. To support

the detection of typos, free variables in initial expressions must be explicitly declared by

a “where...free” clause at the end of the expression. Free variables denote “unknown”

values. They are instantiated (i.e., replaced by some concrete values) so that the instantiated

expression is evaluable. As we have seen above, replacing both x and y by True makes the

expression reducible to True. Therefore, the Curry system shows in the first result line True

together with the bindings (i.e., instantiations) of the free variables it has done to compute

this value.

In general, there is more than one possibility to instantiate the arguments, e.g., the

Boolean variables x and y can be instantiated to True or False. This leads to different

solutions which are printed one after the other as shown above: there is one instantiation for

x and y so that the instantiated expression evaluates to True, and there are two instantiations

so that the instantiated expression evaluates to False. The last result line shows that the

initial expression has the value False provided that x is instantiated to False but y can be

arbitrary (i.e., y is not instantiated).

As we have seen, PAKCS evaluates and shows all the values (also called solutions if

variables are instantiated) of an initial expression. This default mode can be changed by the

command “:set +interactive”. In the interactive mode, we are asked after each computed

value how to proceed: whether we want to see the next value (“yes”), no more values (“no”),

or all values without any further interaction (“all”). Thus, we can show the values of the

initial expression step-by-step as follows (note that it is sufficient to type the first letter of

the answer followed by the “enter” key):

Prelude> :set +interactive

Prelude> x && (y || (not x)) where x,y free

{x=True, y=True} True

More values? [Y(es)/n(o)/a(ll)] y

{x=True, y=False} False

More values? [Y(es)/n(o)/a(ll)] y

{x=False, y=y} False

More values? [Y(es)/n(o)/a(ll)] y

No more values.

The final line indicates that there are no more values to the initial expression. This situation

8



can also occur if functions are partially defined, i.e., there is a call to which no rule is

applicable. For instance, assume that we define the function pneg by the single rule [Browse

Program][Download Program]

pneg True = False

then there is no rule to evaluate the call “pneg False”:

bool> pneg False

*** No value found!

As we have seen in the Boolean example above, Curry can evaluate expressions containing free

variables by guessing values for the free variables so that the expression becomes evaluable

(the concrete strategy used by Curry will be explained later, but don’t worry: Curry is

based on an optimal evaluation strategy [3] that performs these instantiations in a goal-

oriented manner). However, we might not be interested to see all possible evaluations but

only those that lead to a required result. For instance, we might be only interested to compute

instantiations in a Boolean formula so that the formula becomes true, e.g., as in solving an

equation.

For this purpose, Curry offers constraints, i.e., formulas that are intended to be solved

(instead of computing an overall value). One of the basic constraints supported by Curry is

equality, i.e., “e1 =:= e2” denotes an equational constraint which is solvable whenever the

expressions e1 and e2 (which must be of the same type) can be instantiated so that they

are evaluable to the same value. For instance, the constraint “1+4=:=5” is solvable, and the

constraint “2+3=:=x” is solvable if the variable x is instantiated to 5. Now we can compute

positive solutions to a Boolean expression by solving a constraint containing True on one

side:

Prelude> (x && (y || (not x))) =:= True where x,y free

{x=True, y=True} True

Curry allows the definition of functions by several rules and is able to search for several

solutions. We can combine both features to define operations that yield more than one

result for a given input. Such operations are called non-deterministic operations. A simple

example for a non-deterministic operation is the following function choose which yields non-

deterministically one of its arguments as a result [Browse Program][Download Program]:

choose x y = x

choose x y = y

With this function we could have several results for a particular call:

choose> choose 1 3

1

3

We can use choose to define other non-deterministic operations:

one23 = choose 1 (choose 2 3)
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Thus, a call to one23 delivers one of the results 1, 2, or 3. Such a function might be useful to

specify the domain of values for which we want to solve a constraint. For instance, to search

for values x ∈ {1, 2, 3} satisfying the equation x + x = x ∗ x, we can solve this constraint

(c1 & c2 denotes the conjunction of the two constraints c1 and c2):

choose> x=:=one23 & x+x=:=x*x where x free

{x=2} True

The advantages of non-deterministic operations will become clear when we have discussed

the (demand-driven) evaluation strategy in more detail.

This chapter is intended to provide a broad overview of the main features of Curry and

the use of an interactive programming environment so that one can easily try the subsequent

examples. In the next chapter, we will discuss the features of Curry in more detail.
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Chapter 3

Main Features of Curry

3.1 Overview

The major elements declared in program are functions and data structures.

• A function or operation defines a computation similar to an expression. However, the

expression computed by a function has a name and is often parameterized. These

characteristics enable you to execute the same computation, possibly with different

parameters, over and over in the same program by simply invoking the computation’s

name and setting the values of its parameters. A function also provides a procedural

abstraction. Rather than coding a computation by means of a possibly complicated

expression, you can factor out portions of this computation and abstract them by their

names.

• A data structure is a way to organize data. For example, you can record the movements

of your bank account in a column in which deposits are positive numbers and with-

drawals are negative numbers. Or you can record the same movements in two columns,

one for deposits and another for withdrawals, in which all numbers are positive. With

the second option, the columns rather than the signs specialize the meaning of the

numbers. The way in which information is organized may ease some computations,

such as retrieving portions of information, and is intimately related, through pattern

matching, to the way in which functions are coded.

This section describes in some detail both of these features and a number of related concepts.

Curry has some additional features not described in this section. Since they are useful

to support particular programming tasks, we introduce them later when we discuss such

programming techniques.

3.2 Expressions

A function can be regarded as a parameterized expression with a name. Thus, we begin by

explaining what an expression is and how it is used. Most expressions are built from simpler

subexpressions, a situation that calls for a recursive, or inductive, definition.
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An expression is either a symbol or literal value or is the application of an ex-

pression to another expression.

A symbol or literal value is referred to as an atom. For example, numbers and the Boolean

symbols “True” and “False” are examples of atoms. Atoms constitute the most elementary

expressions. These elementary expressions can be combined to create more complex expres-

sions, e.g., “2 + 3” or “not True”. The combination is referred to as a function application.

Since a function application is a very common activity, it is convenient to denote it as simply

as possible. This convenience is obtained to the extreme by writing the two expressions one

near the other as in “not True”. This notation is referred to as juxtaposition.

In the above expressions, the symbols “+” and “not” are operations. Both are prede-

fined in the standard library Prelude. Although conceptually the symbols “+” and “not”

are alike, syntactically they differ. The symbol “+” is a infix operator as in the ordinary

mathematical notation. Infix operators have a precedence and an associativity so that the ex-

pression “2 + 3 * 4” is understood as “2 + (3 * 4)” and the expression “4 - 3 - 2” is understood

as “(4 - 3) - 2”. The precedence and associativity of an infix symbol are defined in a program

by a declaration. The following declarations, from the prelude, define these parameters for

some ordinary arithmetic operations:

infixl 7 *, ‘div‘, ‘mod‘

infixl 6 +, -

infix 4 <, >, <=, >=

For example, the precedence of the addition and subtraction operators is 6 and their asso-

ciativity is left. The relational operators have precedence 4 and are not associative. Opera-

tors with a higher precedence bind stronger, i.e., the expression “4 < 2 + 3” is interpreted as

“4 < (2 + 3)”.

Infix declarations must always occur at the beginning of a program. The prece-

dence of an operator is an integer between 0 and 9 inclusive. The associativity

of an operator is either left, denoted by the keyword “infixl” or right, denoted

by the keyword “infixr”. Non-associative infix operators are declared using the

keyword “infix”.

Most often, an infix operator is any user-defined sequence of characters taken from the set

“~!@#$%^&*+-=<>?./|\:”. Alphanumeric identifiers can be defined and used as infix opera-

tors if they are surrounded by backquotes, as “‘div‘” and “‘mod‘” in the previous declara-

tion. For example, for any integer value x, the following expression evaluates to x itself.

x ‘div‘ 2 * 2 + x ‘mod‘ 2

Non-infix symbols are prefix . They are applied by prefixing them to their arguments as in

“not True”.

Exercise 1 Define a predicate, read as “factors” and denoted by the infix operator “./.”,

that tells whether an integer is a factor of another integer. The predicate should work for every

input and 0 should not be a factor of any integer. The operator should be non-associative

and have precedence 7. [Browse Answer][Download Answer]
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A symbol, whether infix or prefix, can only be applied to values of an appropriate type.

As one would expect, the Boolean negation operator can be applied only to a Boolean value.

For example, the expression “not 2” is an error. The compiler/interpreter would report that

the expression is incorrectly typed. We will discuss types in more detail after presenting data

declarations.

The application of an expression to another is a binary operation. The expression that

is being applied is referred to as the function of the application. The other expression is

referred to as the argument. Thus, in “not True”, “not” is the function and “True” is the

argument. The situation is slightly more complicated for infix operations. The reading of

“2 + 3” is that the function “+” is applied to the expression “2”. The result is a function

which is further applied to the expression “3”.

Expressions can also be conditional, i.e., depend on the value of a Boolean expression.

Such conditional expressions have the form “if b then e1 else e2”. The value of this

expression is the value of e1 if b evaluates to True, or the value of e2 if b evaluates to False.

Thus, the value of “if 3>4 then 2*2 else 3*4” is 12.

3.3 Predefined Types

A type is a set of values. Ubiquitous types, such as integers or characters, are predefined

by most programming languages. Curry makes no exception. These types are referred to

as builtin and are denoted with a familiar, somewhat special, syntax. Both the availability

of builtin types and their characteristics may depend on a specific implementation of Curry.

The following table summarizes some types available in PAKCS.

Type Declaration Examples

Integer Int ...,-2,-1,0,1,2,...

Boolean Bool False, True

Character Char ’a’,’b’,’c’,...,’\n’,...

String String "hello", "world"

List of τ [τ] [], [0,1,2], 0:1:2:[]

Unit () ()

The details of these types are found in the PAKCS User Manual. Below, we only outline

a few crucial characteristics of the builtin types. The integers have arbitrary precision.

Some frequently used non-printable characters are denoted, as in other popular programming

languages, by escape sequences, e.g., newline is denoted by \n. The type List represents

sequences of values. This type is polymorphic, i.e., for any type τ , the type list of τ , denoted

by “[τ]”, is a type whose instances are sequences of instances of τ . The last two examples

in the List row of the table denote a list of integers, their type denoted by “[Int]”. The

notation of lists will be further discussed later. The symbol “()” denotes the unit type as

well as the only element of this type. The unit type is useful in situations where the return

value of a function is not important. Another useful type available in PAKCS, the tuple,

will be described later.
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3.4 Predefined Operations

Many frequently-used functions and infix operators, similar to frequently-used types, are

predefined in Curry. Some of these can be found in the “Prelude”, a Curry source program

automatically loaded when the compiler/interpreter starts. A few others are so fundamental

that they are built into the language. Some of these functions and operators are shown in

the following table.

Description Ident. Fix. Prec. Type

Boolean equality == 4 a -> a -> Bool

Constrained equality =:= 4 a -> a -> Bool

Boolean conjunction && R 3 Bool -> Bool -> Bool

Boolean disjunction || R 2 Bool -> Bool -> Bool

Parallel conjunction & R 0 Bool -> Bool -> Bool

Constrained expression &> R 0 Bool -> a -> a

Because of non-determinism and free variables, in the following discussion, different evalua-

tions of the same expression may produce different values.

The Boolean equality applied to expressions u and v, i.e., u == v, returns “True” when u and

v evaluate to the same value and “False” when they evaluate to different values—a more

precise definition will be given later. If the evaluation of u and/or v ends in an expression

that still contains functions, e.g., 1 ‘div‘ 0, the computation fails and no value is returned.

The constrained equality applied to expressions u and v, i.e., u =:= v returns “True” when

u and v evaluate to the same value—a precise definition will be given later. Otherwise, the

computation fails and no value is returned. A key difference between the Boolean and the

constrained equalities is how they evaluate expressions containing variables. This will be

discussed in some detail in Section 3.14.1.

The Boolean conjunction applied to expressions u and v, i.e., u && v, returns “True” when u

and v evaluate to “True”.

The Boolean disjunction applied to expressions u and v, i.e., u || v, returns “True” when u

or v evaluate to “True”.

The parallel conjunction applied to expressions u and v, i.e., u & v, evaluates u and v con-

currently. If both succeeds, the evaluation succeeds; otherwise it fails.

The constrained expression applied to a constraint c and an expression e, i.e., c &> e, evaluates

first c and, if c evaluates to “True”, then the result is the value of e, otherwise it fails.

Curry predefines many more functions and operations, e.g., the standard arithmetic and

relational operators on numbers. A complete list can be found both in the Report and the

“Prelude”.
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3.5 Functions

3.5.1 Basic Concepts

A program function abstracts a function in the mathematical sense. A function is a device

that takes arguments and returns a result. The result is obtained by evaluating an expression

which generally involves the function’s arguments. The following function computes the

square of a number.

square x = x * x

The symbols “square” is the name or identifier of the function. The symbol “x” is the

function’s argument . The above declaration is referred to as a rewrite rule, or simply a rule,

defining a function. The portion of the declaration to the left of the symbol “=” is the rule’s

left-hand side. The expression “x * x” is the rule’s right-hand side.

When the “square” symbol is applied to an expression, e.g., “2 + 3”, this expression is

bound to the argument “x”. The result of the application is “(2 + 3) * (2 + 3)”, i.e., the body

in which the argument is replaced by its binding. Thus:

Prelude> square (2+3)

25

Functions can be anonymous, i.e., without a name. An anonymous function is useful when

a function is referenced only once. In this case, the reference to the function can be replaced

by the expression defining the function. In the following example:

result = (\x -> x * x) (2+3)

the value of result is 25. It is obtained by applying the expression (\x -> x * x), an

anonymous function, to (2+3), its argument. An anonymous function definition has the

following structure:

\args -> right-hand side

A more motivating example of anonymous function is presented in Section 3.11

The evaluation of any expression, in particular of a function application, is lazy . This

means that the computation of any expression, including the subexpressions of a larger ex-

pression, is delayed until the expression’s value is actually needed. The exact meaning of

“actually needed” is quite technical, but the intuitive meaning suffices for our purposes.

Many programming languages, such as C and Java, adopt this evaluation strategy, under the

name of short circuit , only for Boolean expressions.

We will discuss this issue in more detail later. Although the lazy evaluation strategy

is conceptually simpler than any other strategy, many traditional programming languages

evaluate the arguments of a function call eagerly, i.e., before applying a function to its

arguments. This fact is sometimes a source of confusion for the beginner.
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3.5.2 Pattern Matching

The definition of a function can be broken into several rules. A single rule would suffice in

many cases. However, several rules allows a definition style, called pattern matching , which

is easier to code and understand. This feature allows a function to dispatch the expression

to be returned depending on the values of its arguments. The following example shows the

definition of the Boolean negation function “not”:

not True = False

not False = True

The above definition is equivalent to the following one which does not use pattern matching

but relies on a conditional expression:

not x = if x == True then False else True

Pattern matching is particularly convenient for functions that operate on algebraic datatypes.

We will further discuss this aspect after discussing data declarations.

3.5.3 Conditions

Each rule defining a function can include one or more conditions. For Boolean conditions, a

rule has the following general structure:

functId arg1 . . . argm | cond1 = expr1
| . . . = . . .

| condn = exprn

A condition is tested after binding the arguments of a call to the corresponding arguments in

the left-hand side of the rule. The function is applied to the arguments only if the condition

holds. Each condition condi is an expression of type Bool. The conditions are tested in their

textual order. Thus, the first right-hand side with a condition evaluable to True is taken.

Furthermore, the last condition can be “otherwise” which is equivalent to True, i.e., it holds

regardless of any value of the arguments. The following example shows a plausible definition

of the maximum of two numbers:

max x y | x < y = y

| otherwise = x

3.5.4 Non-determinism

Operations can be non-deterministic. Non-deterministic operations are not functions in the

mathematical sense because they can return different values for the same input. For example,

a hospital’s information system defines which days a doctor is on-call with a non-deterministic

function:

oncall Joan = Monday

oncall Joan = Wednesday
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oncall Richard = Monday

oncall Luc = Tuesday

...

The value of “oncall Joan” can be either “Monday” or “Wednesday”. The programmer

cannot select which of the two values will be computed. Non-deterministic operations support

a programming style similar to that of logic programs, while preserving some advantages of

functional programs such as expression nesting and lazy evaluation. In particular, some strong

properties concerning the evaluation of ordinary functions hold also for non-deterministic

operations [2]. For example, suppose that “today” holds which day of the week is today. A

predicate, “available”, telling whether its argument, a doctor, is available at the current

time is coded as:

available x | oncall x == today = True

| otherwise = False

Without non-determinism, coding “oncall” would require some data structure, e.g., the

list of days in which each doctor is on-call, and defining “available” would become more

complicated.

Non-determinism is a powerful feature. In programming, as in other aspects of life,

power must be exercised with some care. A non-deterministic program is appropriate only

if all its possible outputs are equally desirable. If some outputs are more desirable than

others, the program should be (more) deterministic. In this case, non-determinism could be

conveniently used internally by the program to generate plausible results which can then be

selected according to desirability.

Exercise 2 In a manufacturing plant two specialized tasks, cut and polish, are executed

only by specialized workers, Alex, Bert and Chuck. Not every worker can execute every task.

Only Alex and Bert are able to Cut, whereas only Bert and Chuck are able to Polish. Code

a non-deterministic operation, assign, that assigns to a task a worker that can execute it.

[Browse Answer][Download Answer]

3.5.5 Functional Patterns

Pattern matching, see Sect. 3.5.2, is a feature that provides in a compact and readable

form both case distinction and (sub)argument selection. The arguments in a rule defined by

pattern matching are expressions consisting of variables and/or data constructor symbols.

Curry amplifies this feature with functional patterns. In a functional pattern some argument

in a rule defining a function is an expression containing a function symbol. For example, the

function computing the last element of a non-empty list can be defined as:

last (_++[e]) = e

where “++” is an infix operator that concatenates two lists, see function conc in Sect. 3.7.

The intuition is that if a list l can be seen as the concatenation of some uninteresting list and

a list containing the single element e, then e is the last element of l.

The meaning of the above rule is the same as the infinite set of rules:
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last [e] = e

last [_,e] = e

last [_,_,e] = e

. . .

Code employing functional patterns should be preferred to similar code using conditions (see

below) because it is more readable and more efficient:

last xs | xs =:= _++[e] = e where e free

Exercise 3 Define a function that takes a list a of integers and computes a sublist l of a

such that the last element of l is twice the first element. E.g., given the list [3, 6, 2, 1, 4, 5] the

sublists satisfying the required constraint are [3, 6] and [2, 1, 4]. [Browse Answer][Download

Answer]

3.5.6 Default Rule

The Curry language specifies that the textual order of the rules defining a function is irrelevant

in the sense that every rule that is applicable to an expression should be applied. In practice,

the situation is more delicate. For example, in PAKCS when multiple rules are applicable

some rule is going to be applied before some other and if the application of the first rule does

not terminate the second rule is never applied.

When defining a function, Curry allows the programmer to define a rule, called a default

rule [7] that is applied only if all the other rules, that in this context we call standard, cannot

be applied. The processing of default rules require the Curry preprocessor. It is not part of

PAKCS but the preprocessor can easily be installed by the Curry package manager with the

following commands (see also Section 5.2):

> cypm update

> cypm install currypp

After the installation of the Curry preprocessor,1 one can use default rules in a program by

placing the following line at the beginning of the source program.

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

We recall that a standard rule r is applicable to an expression e iff e and the left-hand side of

r unify and the condition of r, if any exists, is satisfied by the instantiation of e. For example,

the operation zip is defined with a default rule as follows:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip’default _ _ = []

Since the standard rule is applicable to zip [1] [2], the default rule is ignored so that this

expression is solely reduced to (1,2):zip [] []. Since the standard rule is not applicable to

zip [] [], the default rule is applied and yields the value []. Altogether, the only value of

1The executable currypp of the preprocessor is stored in $HOME/.cpm/bin so that one should have this

directory in the load path.
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zip [1] [2] is [(1,2)]. However, if some argument has more than one value, we use the

evaluation principle above for each combination. Thus, the call zip ([1] ? []) [2] yields the

two values [(1,2)] and [].

Default rules are useful to regain control after a failed search. For example, consider

looking up the value of a key in a key-value pair list.

lookup (key, ++ [(key,value)] ++ ) = Just value

lookup’default _ = Nothing

If the key of a search is not in a list l, the call lookup l, returns Nothing instead of failing.

3.6 User-defined Types

A type is a set of values. Some common types, presented in Section 3.3, are built into the

language and the programmer does not declare them. All other types used in a program must

be declared by the programmer. The classification of some types as builtin vs. user-defined

is only a matter of convenience. Builtin and user-defined types are conceptually very similar.

In fact, the declaration of some builtin types could have been left to the programmer. For

example:

data Boolean = False | True

is exactly how the builtin “Boolean” type would be declared if it were not builtin. In this

declaration, the identifier “Boolean” is referred to as a type constructor , whereas the iden-

tifiers “False” and “True” are referred to as data constructors. The following declarations,

very similar to the previous one, define plausible types “WeekDay” and “PrimaryColor”.

data WeekDay = Monday | Tuesday | Wednesday | Thursday | Friday

data PrimaryColor = Red | Green | Blue

All these types are finite, i.e., they define a finite set of values, and resemble enumerated

types in the Pascal or C languages.

The declaration of an infinite type is similar, but as one should expect, must be (directly

or indirectly) recursive. The following declaration defines a binary tree of integers. We

recall that the typical definition of this type says that a binary tree is either a leaf or it is

a branch consisting of two binary trees. Not surprisingly, this definition is recursive which

accounts for an infinity of trees. The words “leaf” and “branch” are conventional names used

to distinguish the two kinds of trees and have no other implicit meaning. Often, branches

include a decoration, a value of some other arbitrary type. If a tree T is a branch, the two

trees in the branch are referred to as the left and right children of T . A declaration defining

binary trees where the decoration is an integer follows:

data IntTree = Leaf | Branch Int IntTree IntTree

All the following expressions are values of type “IntTree”:

Leaf

Branch 0 Leaf Leaf
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Branch 7 (Branch 5 Leaf Leaf) (Branch 9 Leaf Leaf)

The first tree is a leaf and therefore it contains no decoration. The second tree contains a

single decoration, “0”, and two children both of which are leaves. The third tree contains

three decorations. Binary trees are interesting because many efficient searching and sorting

algorithms are based on them.

User-defined types can be parameterized by means of other types similar to the builtin

type list introduced in Section 3.3. These types are called polymorphic. For example, if

the type of the decoration of a binary tree is made a parameter of the type of the tree, the

result is a polymorphic binary tree. This is achieved by the following declaration [Browse

Program][Download Program]:

data BinTree a = Leaf | Branch a (BinTree a) (BinTree a)

The identifier “a” is a type variable. Observe that the type variable not only defines the type

of the decoration, but also the type of the subtrees occurring in a branch. In other words, the

type that parameterizes a tree also parameterizes the children of a tree. The type variable

can be implicitly or explicitly bound to some type, e.g., “Int” or “WeekDay” defined earlier.

For example, a function that looks for the string “Curry” in a tree of strings is defined as

[Browse Program][Download Program]:

findCurry Leaf = False

findCurry (Branch x l r) = x == "Curry" || findCurry l || findCurry r

The type of the argument of function “findCurry” is “BinTree String”. The binding of

type “String” to the type variable of the definition of the polymorphic type “BinTree” is

automatically inferred from the definition of function “findCurry”.

A polymorphic type such as “BinTree” can be specialized by binding its variable to a

specific type by an explicit declaration as follows [Browse Program][Download Program]:

type IntTree = BinTree Int

where “type” is a reserved word of the language. This declaration defines “IntTree” as

a synonym of “BinTree Int”. The synonym can be used in type declarations to improve

readability. The following example defines a function that tallies all the decorations of a tree

of integers [Browse Program][Download Program]:

total :: IntTree -> Int

total Leaf = 0

total (Branch x l r) = x + total l + total r

Exercise 4 Pretend that list is not a builtin type, with special syntax, of the language.

Define your own type list. Define two functions on this type, one to count how many elements

are in a list, the other to find whether some element is in a list. [Browse Answer][Download

Answer]
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3.7 Lists

The type list is builtin or predefined by the language. This type could be easily defined by

the programmer, see Exercise 4, except that the language allows the representation of lists in

a special notation which is more agile than that that would be available to the programmer.

The following statement defines important concepts of a list:

A list is either nil or it is a cons consisting of an element, referred to as the head

of the list, and another list, referred to as the tail of the list.

The nil list is denoted by “[]”, which is read “nil”. A cons list, with head h and tail t

is denoted by “h:t”. The infix operator “:”, which is read “cons”, is right associative with

precedence 5. A list can also be denoted by enumerating its elements, e.g., “[u,v,w]” is a list

containing three elements, “u”, “v” and “w”, i.e., it is just another notation for “u:v:w:[]”.

The number of elements is arbitrary. The elements are enclosed in brackets and separated

by commas.

The following functions concatenate two lists and reverse a list, respectively. The

“Prelude” defines the first one as the infix operator “++” and the second one, much more

efficiently, as the operation “reverse”.

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

rev [] = []

rev (x:xs) = conc (rev xs) [x]

Several ad hoc notations available for lists are described in Sections 4.2.3 and 4.2.4.

A key advantage of these special notations for lists is a reduction of the number of paren-

theses needed to represent list expressions in a program. This claim can be easily verified by

comparing the builtin notation with the ordinary notation which was the subject of Exercise 4.

3.8 Strings

Although “String” is a predefined type (see Section 3.3), there are no special operations

on strings. The reason is that “String” is just another name for “[Char]”, i.e., strings are

considered as lists of characters. In addition, Curry provides a handy notation for string

constants, i.e., the string constant

"hello world"

is identical to the character list

[’h’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’]

Thus, any operation applicable to arbitrary lists can also be applied to strings. For instance,

the prelude defines an infix operator “++” to concatenate lists and the function “reverse”

to reverse the order of all lists elements (similarly to conc and rev in Section 3.7). Thus, we

can also use them to operate on strings:
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Prelude> "Hi"++"Hi"

"HiHi"

Prelude> reverse "hello"

"olleh"

3.9 Tuple

The word “tuple” is a generic name for a family of related types. A tuple in a program is

similar to a tuple in mathematics, i.e., a fixed length sequence of values of possibly different

types. Examples of tuples are pairs and triples. They could be defined by the programmer

as follows:

data Pair a b = Pair a b

data Triple a b c = Triple a b c

These types are polymorphic. Observe the two occurrences of the identifiers “Pair” and

“Triple” in the above declarations. The occurrence to the left names a type constructor,

whereas the occurrence to the right names a data constructor. These symbols are overloaded .

However, this kind of overloading causes no problems since type expressions are clearly sep-

arated from value expressions. The type variables “a”, “b”. . . can be bound to different

types.

For example, the information system of a “Big & Tall” shoe store declares a function that

defines the largest size and width of each model [Browse Program][Download Program]:

data Width = C | D | E | EE | EEE | EEEE

largest "New Balance 495" = Pair 13 EEE

largest "Adidas Comfort" = Pair 15 EE

...

The language predefines tuples and denotes them with a special notation similar to the

standard mathematical notation. Using predefined tuples, the above function is coded as:

largest "New Balance 495" = (13,EEE)

largest "Adidas Comfort" = (15,EE)

...

Tuples are denoted by a fixed-length sequence of comma-separated values between parenthe-

ses. There is no explicit data constructor identifier. The type of a tuple is represented as a

tuple as well, e.g., the type of “largest” can be defined as:

largest :: String -> (Int,Width)
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3.10 Type classes

A type class defines a generic interface abstracting some common feature over a variety of

types. For example, many numeric structures, such as integer, vectors and matrices, allow

the addition of elements in the structure. We capture the property of “being addable” as

follows:

class Addable a where

(+) :: a -> a -> a

The variable a is a type parameter. The identifier “+” is chosen because we are generalizing

addition, but it is not the usual addition of integers. Any symbols would acceptable:

To say that some structure is addable we use an instance declaration. For example, the

following declaration states that the integers are addable and the addition operation is the

addition function defined in the Prelude.

instance Addable Int where

x + y = x Prelude.+ y

Next, we represent vectors (without an explicit data declaration) as lists of addables and we

define the addition of vectors as the component-wise addition of their elements:

instance Addable a => Addable [a] where

xs + ys = zipWith (+) xs ys

The symbol “+” refers to the same symbol defined in the Addable type class and it is applied

to the vectors’ elements. With these definition we can add two vectors as follows:

testv :: [Int]

testv = [1,2,3] + [4,5,6]

Exercise 5 Define a matrix as follows:

data Matrix a = Matrix [[a]]

and make it addable using an instance declaration. [Browse Program][Download Program]

3.11 Higher-Order Computations

The arguments of a function can be functions themselves. This feature is banned or restricted

by many programming languages. E.g., in C only a pointer to a function can be passed as a

parameter to another function.

A function that takes an argument of function type is referred to as a higher-order func-

tion. Loosely speaking, a higher-order function is computation parameterized by another

computation. We show the power of this feature with a simple example. The function

“sort”, shown below, takes a list of numbers and sorts them in ascending order. On non-

empty arguments, the function “sort” recursively sorts the tail and inserts the head at the
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right place in the sorted tail. This algorithm becomes inefficient as lists grow longer, but it

is easy to understand [Browse Program][Download Program]:

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) | x <= y = x : y : ys

| otherwise = y : insert x ys

To sort a list in descending order or to sort a list of a different type, a new function must be

coded.

An alternative is to code a sort function where the ordering criterion is an argument.

The overall structure of the function is the same. The new argument, the first one of each

function, is denoted by “f”. This argument is a function that takes two arguments and

returns “True” if and only if the first argument must appear before the second argument in

the output list [Browse Program][Download Program]:

sort _ [] = []

sort f (x:xs) = insert f x (sort f xs)

insert _ x [] = [x]

insert f x (y:ys) | f x y = x : y : ys

| otherwise = y : insert f x ys

For example:

HOInsertionSort> sort (<=) [3,5,1,2,6,8,9,7]

[1,2,3,5,6,7,8,9]

HOInsertionSort> sort (>) [3,5,1,2,6,8,9,7]

[9,8,7,6,5,3,2,1]

In the above expressions, the operators “<=” and “>” are the functional arguments. The

parentheses around them are necessary, since these functions are identified by infix operators.

Without parentheses, the expression “sort <= [3,5,1,2,6,8,9,7]” would test whether the

left argument of “<=” is smaller than the right argument, which is meaningless.

Observe that the first version of the “sort” function constrains the elements of the input

list to be numbers, since these elements are arguments of “<=”. In the second, higher-order

version, the type of the elements of the input list is unconstrained. Thus, the function can

be applied to lists of any type as long as a suitable ordering criterion for the type of the list

elements is provided.

Higher-order computations involve a functional argument. Sometimes, the corresponding

argument in a call, which is a function, is referenced only in the call itself. In this case, it is

appropriate to use an anonymous function. For example, suppose that an elementary school

information system represents classes with a grade and a section. The grade is a number in

the range 1 through 5 and the section is a letter, a, b ... The following ordering criterion

sorts the classes in a “natural” (lexicographic) order [Browse Program][Download Program]:

sortClasses xs = sort lex xs

where lex (x,y) (u,v) = x<u || x==u && ord y <= ord v
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A more compact and informative formulation uses an anonymous function as follows [Browse

Program][Download Program]:

sortClasses xs = sort (\(x,y) (u,v) -> x<u || x==u && ord y <= ord v) xs

Observe that pattern matching is normally used in the definition of the above anonymous

function.

3.12 Lazy Evaluation

The evaluation of an expression t is the process of obtaining a value v from t.

A value is an expression consisting only of builtin literals and/or data constructors

and/or variables.

The value v is obtained from t by replacing an instance of the left-hand side of a rule with the

corresponding instance of the right-hand side. For example, referring to the function square

defined in Section 3.5.1:

square x = x * x

an instance of square x is replaced with the corresponding instance of x ∗ x. For example,

4 + square (2 + 3) is replaced by 4 + (2 + 3) ∗ (2 + 3).

The evaluation of an expression t proceeds replacement after replacement until an ex-

pression v in which no more replacements are possible is obtained. If v is not a value, the

evaluation fails, otherwise v is the result of a computation of t. For example, the following

function head computes the first element of a (non-null) list:

head (x:_) = x

An attempt to evaluate “head []” fails, since no replacement is possible and the expression

is not a value since it contains a function.

Often, an expression may contain several distinct replaceable subexpressions, e.g., from

(2 + 3) ∗ (2 + 3) we can obtain both 5 ∗ (2 + 3) and (2 + 3) ∗ 5. Even a single subexpression

may allow several distinct replacements when non-deterministic functions are involved. The

order in which different subexpressions of an expression are replaced is not determined by

a program. The choice is made by an evaluation strategy . The semantics of the language

guarantees that any value obtainable from an expression is eventually obtained. This property

is referred to as the completeness of the evaluation. To ensure this completeness, expressions

must be evaluated lazily. A lazy strategy is a strategy that evaluates a subexpression only if

its evaluation is unavoidable to obtain a result. The following example clarifies this delicate

point.

The following function computes the list of all the integers beginning with some initial

value n [Browse Program][Download Program]:

from n = n : from (n+1)

An attempt to evaluate “from 1” aborts with a memory overflow since the “result” would

be the infinite term:
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[1,2,3,...

However, the function “from” is perfectly legal. The following function returns the n-th

element of a list:

nth n (x:xs) = if n==1 then x else nth (n-1) xs

The expression “nth 3 (from 1)” evaluates to 3 despite the fact that “from 1” has no

(finite) value:

lazy> nth 3 (from 1)

3

The reason is that only the third element of “from 1” is needed for the result. All the other

elements, in particular the infinite sequence of elements past the third one, do not need to

be evaluated.

Infinite data structures are an asset in the conjunction with lazy evaluation. Programs

that use infinite structures are often simpler than programs for the same problem that use

finite structures. E.g., a function that computes a (finite) prefix of “[1,2,3,...” is more

complicated than “from”. Furthermore, the functions of the program are less interpedendent

and consequently more reusable. E.g., the following function, initially applied to 0 and 1,

computes the (infinite) sequence of the Fibonacci numbers:

fibolist x0 x1 = x0 : fibolist x1 (x0+x1)

The function “nth” can be reused to compute the n-th Fibonacci number through the eval-

uation of the expression “nth n (fibolist 0 1)”, e.g.:

lazy> nth 5 (fibolist 0 1)

3

The evaluation strategy of the PAKCS compiler/interpreter, which is used for all our exam-

ples, is lazy, but incomplete. The strategy evaluates non-deterministic choices sequentially

instead of concurrently.

All the occurrences of same variables are shared. This design decision has implications

both on the efficiency and the result of a computation. For example, consider again the

following definition:

square x = x * x

The evaluation of say square t goes through t * t. Without sharing, t would be evaluated

twice, each evaluation independent of the other. If t has only one value, the double eval-

uation would be a waste. If t has more then one value, this condition will be discussed in

Section 3.13.1, sharing produces the same value for both occurrences.

3.13 Local Definitions

The syntax of Curry implicitly associates a scope to each identifier, whether a function, a

type, a variable, etc. Roughly speaking the scope of an identifier is where in a program the

26

http://www.informatik.uni-kiel.de/~pakcs


identifier can be used. For example, the scope of a variable occurring in the left-hand side of

a rule is the rule itself, which includes the right-hand side and the condition, if any. In the

following code:

square x = x * x

cube x = x * square x

the variable identified by “x” in the definition of “square” is completely separated from the

variable identified by “x” as well in the definition of “cube”. Although these variables share

the same name, they are completely independent of each other.

Curry is statically scoped , which means that the scope of an identifier is a static property

of a program, i.e., the scope depends on the textual layout of a program rather than on an

execution of the program.

The scope of an identifier is the region of text of a program in which the identifier

can be referenced.

In most cases, the programmer has no control on the scope of an identifier—and this is

a good thing. The scope rules are designed to make the job of the programmer as easy

and safe as possible. The context in which an identifier occurs determines the identifier’s

scope. However, there are a couple of situations where the programmer can limit, by mean

of syntactical constructs provided by the language, the scope of an identifier. Limiting the

scope of an identifier is convenient in some situations. For example, it prevents potential

name clashes and/or it makes it clearer that a function is introduced only to simplify the

definition of another function. A limited scope, which is referred to as a local scope, is the

subject of this section.

Curry has two syntactic constructs for defining a local scope: the “where” clause and the

“let” clause. They are explained next.

3.13.1 Where Clauses

A “where” clause creates a scope nested within a rewrite rule. The following example defines

an infix operator, “**”, for integer exponentiation [Browse Program][Download Program]:

infixl 8 **

a ** b | b >= 0 = accum 1 a b

where accum x y z | z == 0 = x

| otherwise = accum aux (y * y) (z ‘div‘ 2)

where aux = if (z ‘mod‘ 2 == 1) then x * y else x

For example, 2 ** 5 = 25 = 32. There are several noteworthy points in the above code

fragment. The scope of the function “accum” is limited to the rewrite rule of “**”. This

is convenient since the purpose of the former is only to simplify the definition of the latter.

There would be no gain in making the function “accum” accessible from other portions of a

program. The function “accum” is nested inside the function “**”, which is nesting “accum”.

The rewrite rule defining “accum” is conditional. Pattern matching of the arguments and

non-determinism can occur as well in local scopes. Finally, there is yet another local scope
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nested within the rewrite rule of the function “accum”. The identifier “aux” is defined in this

scope and can be referenced from either condition or right-hand side of the rewrite rule of

the function “accum”.

The right-hand side of the rewrite rule defining “aux” references the variables “x”, “y”

and “z” that are arguments of “accum” rather than “aux” itself. This is not surprising since

the scope of these variables is the rewrite rule of “accum” and “aux” is defined within this

rule.

The identifier “aux” takes no arguments. Because it occurs in a local scope, “aux” is

considered a local variable instead of a nullary function. The language does not make this

distiction for non-local identifiers, i.e., identifiers defined at the top level. The evaluation of

local variables differs from that of local functions. All the occurrences of a variable, whether

or not local, share the same value. This policy may affect both the efficiency of a program

execution and the result of computations involving non-deterministic functions. The following

example clarifies this subtle point [Browse Program][Download Program]:

coin = 0

coin = 1

g = (x,x) where x = coin

f = (coin,coin)

The values of “g” are (0,0) and (1,1) only, whereas the values of “f” also include (0,1)

and (1,0). The reason of this difference is that the two occurrences of “coin” in the rule

of “f” are evaluated independently, hence they may have different values, whereas the two

occurrences of “x” in the rule of “g” are “shared,” hence they have the same value.

There is one final important aspect of local scoping. A local scope can declare an identifier

already declared in a nesting scope—a condition referred to as shadowing . An example of

showing is shown below:

f x = x where x = 0

The variable “x” introduced in the where clause shadows the variable with the same name

introduced in the rewrite rule left-hand side. The occurrence of “x” in the right-hand side is

bound to the former. Hence, the value “f 1” is 0. This situation may be a source of confusion

for the beginner. The PAKCS compiler/interpreter detects this situation and warns the

programmer as follows [Browse Program][Download Program]:

Prelude> :l shadow

...

shadow.curry, line 1.3: Warning:

Unused declaration of variable ‘x’

shadow.curry, line 1.15: Warning:

Shadowing symbol ‘x’, bound at: shadow.curry, line 1.3

The second warning reports that the identifier in line 1, column 15, the variable “x” in the

local scope, shadows some identifier(s) with the same name. The first warning reports that

the identifier in line 1, column 3, the variable “x” argument of “f”, is not used. This is

a consequence of its shadowing and gives an important clue that the occurrence of “x” in
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the right-hand side of the rewrite rule of “f” is bound to the local variable rather than the

argument.

3.13.2 Let Clauses

A “let” clause creates a scope nested within an expression. The concept is very similar to

a “where” clause, but the granularity of the scope is finer. For example, the program for

integer exponentiation presented earlier can be coded using “let” clauses as well [Browse

Program][Download Program]:

infixl 8 **

a ** b | b >= 0 =

let accum x y z | z == 0 = x

| otherwise =

let aux = if (z ‘mod‘ 2 == 1) then x * y else x

in accum aux (y * y) (z ‘div‘ 2)

in accum 1 a b

Using a “let” declaration is more appropriate than a “where” declaration for the definition of

operation “aux”. With a “let” declaration, the scope of the identifier “aux” is the right-hand

side of the second conditional rule of the function “accum” instead of the whole rule.

3.13.3 Layout

By contrast to most languages, Curry programs do not use a printable character to separate

syntactic constructs, e.g., one rewrite rule from the next. Similar to Haskell, Curry programs

use a combination of an end-of-line and the indentation of the next line, if any. A Curry

construct, e.g., a “data” declaration or a rewrite rule, terminates at the end of a line, unless

the following line is more indented. For example, consider the following layout:

f = g

h...

Since “f” starts in column 1 and “h” starts in column 2, the right-hand side of the rule defining

“f” consists in the application of “g” to “h” to “...” By contrast, with the following layout:

f = g

h...

the right-hand side of the rule defining “f” consists of “g” only. Since “h” starts in the same

column as “f”, this line is intended as a new declaration.

The layout style described above goes under the name “off-side rule”. The examples of

Sections 3.13.1 and 3.13.2 shows how the off-side rule applies to “where” and “let” clauses.

3.14 Variables

Most of the programs discussed so far are functional. They declare data and/or define

functions. An execution of the program is the functional-like evaluation of an expression.
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Curry is a functional logic programming language. It adds two crucial features to the model

outlined above: non-determinism, which was discussed in Section 3.5.4, and logic variables,

which are discussed in this section.

3.14.1 Logic Variables

A logic variable differs from the variables introduced by the left-hand side of a rewrite rule.

A variable introduced by the left-hand side of a rewrite rule, also called pattern variable,

stands for any expression (of an appropriate type). For example, the following definition:

head (x:xs) = x

is read as “for all expressions x and xs the head of (the list) (x:xs) is x.” Since Curry is

strongly typed, the type of xs must be list, otherwise the program would be invalid, but no

other conditions are imposed on xs.

A logic variable either is a variable occurring in an expression typed by the user at the

interpreter prompt or it is a variable in the condition and/or right-hand side of a rewrite rule

which does not occur in the left-hand side. We show an example of both. The operation

“==”, called Boolean equality , is predefined in Curry. Hence, one can (attempt to) evaluate:

Prelude> z==2+2 where z free

Every variable in a query, such as “z” in the above example, is a logic variable that initially

is not bound to any value. We will discuss shortly why queries with variables may be useful

and how variables are handled.

The second kind of logic variable is shown in the following example:

path a z = edge a b && path b z where b free

The intuition behind the names tells that in a graph there exists a path from a node a to a

node z if there exists an edge from the node a to some node b and a path from the node b

to the node z. In the definition, both “a” and “z” are ordinary (rule) variables, whereas “b”

is a logic variable. Variables, such as “b”, which occur in the condition and/or right-hand

side of a rule, but not in the left-hand side, are also called extra variables. Extra variables

are explicitly declared “free” in a “where” or “let” clause as shown in the example, or are

anonymous.

3.14.2 Evaluation

The evaluation of expressions containing logic variables is a delicate issue and the single most

important feature of functional logic languages. There are two approaches to deal with the

evaluation of expressions containing logic variables: residuation and narrowing .

Let e be an expression to evaluate and v a variable occurring in e. Suppose that e cannot

be evaluated because the value of v is not known. Residuation suspends the evaluation of e.

If it is possible, we will address this possibility shortly, some other expression f is evaluated

in hopes that the evaluation of f will bind a value to v. If and when this happens, the

evaluation of e resumes. If the expression f does not exists, e is said to flounder and the
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evaluation of e fails. For example, this is what would happen for the query we showed earlier:

Prelude> z == 2+2 where z free

*** Warning: there are suspended constraints (for details: ":set +suspend")

By contrast to residuation, if e cannot be evaluated because the value of v is not known,

narrowing guesses a value for v. The guessed value is uninformed except that only values

that make it possible to continue the computation are chosen.

The operation “=:=”, called constrained equality , is predefined in Curry. This operation

is similar to the Boolean equality discussed earlier except that it returns only True (if the

equality can be satisfied) or it fails, i.e., it does not return False if both sides are not evaluable

to identical values. Since this operation succeeds only if both sides have identical values, it

also binds logic variables if this is necessary to make the sides identical. Thus:

Prelude> z =:= 2+2 where z free

{z=4} True

Therefore, this operation can be used to express an equational constraint that must be

satisfied to compute some result.

3.14.3 Flexible vs. Rigid Operations

Operations that residuate are called rigid , whereas operations that narrow are called flexible.

All defined operations are flexible whereas most primitive operations, like arithmetic opera-

tions, are rigid since guessing is not a reasonable option for them. For example, the prelude

defines a list concatenation operation as follows:

infixr 5 ++

...

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys

Since the operation “++” is flexible, we can use it to search for a list satisfying a particular

property:

Prelude> xs ++ [3,4] =:= [1,2,3,4] where xs free

{xs=[1,2]} True

On the other hand, predefined arithmetic operations like the addition “+” are rigid. Thus, a

call to “+” with a logic variable as an argument flounders:

Prelude> x + 2 =:= 4 where x free

*** Warning: there are suspended constraints (for details: ":set +suspend")

For ground expressions, i.e., expressions without logic variables, the flex/rigid status of a

function makes no difference. In the context of concurrent/distributed object-oriented pro-

gramming, rigid user-defined functions can be useful. For this purpose, there is a primitive

operation ensureNotFree that evaluates its argument and suspends if it is a logic variable.
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3.14.4 Programming

Often, programming with variables leads to conceptually simple, terse and elegant code at

the cost of an acceptable loss of efficiency. The logic variables of a program and/or a query

are not much different from the variables that are typically used to solve algebra or geometry

problems. In both cases, some unknown entities of the problem are related to each other by

expressions involving functions. Narrowing allows us to evaluate these expressions—and in

the process to find values for the variables. The simplest application, and the most familiar

for those used to solve algebra and geometry problems with variables, is when the expression

to evaluate is an equation.

In later chapters, we will discuss some problems that are conveniently solved if one uses

variables in computations. Here we want to present a simple, but non-trivial, motivating

example. The problem is to parse a string that represents an expression. To keep the

example small, our expressions are functional terms whose syntax is defined by:

term ::= identifier

| identifier ’(’ args ’)’

args ::= term

| term ’,’ args

identifier ::= any non-null string of alphabetic characters

For example, "f(g(a,b))" is a term described by the above syntax. When a term is rep-

resented as a string, answering questions such as how many arguments “g” has, is more

complicated and less efficient than it needs to be. A parser converts a term from its string

representation into a data structure that makes easy and efficient answering questions of that

kind. Thus, the first step to build a parser is to design a suitable type to represent a term.

Our choice is: [Browse Program][Download Program]:

data Term = Term String [Term]

Note that the occurrence of “Term” to right of the “=” character is a data constructor, whereas

the two other occurrences are type constructors. The “Term” identifier is overloaded by the

declaration.

Using this data structure, we represent a function identifier with a string and the function’s

arguments with a list of terms. For example, the term "f(g(a,b))" would be represented

as “Term "f" [Term "g" [Term "a" [],Term "b" []]]”. The following operation parses

a term [Browse Program][Download Program]:

parseTerm (fun++"("++args++")") | all isAlpha fun = Term fun (parseArgs args)

parseTerm s | all isAlpha s = Term s []

The elements of the program relevant to our discussion are the variables “fun” and

“args”. The functional pattern in the first rule acts similarly to solving the equation

“s =:= fun++"("++args++")"” in which “s” is the argument of “parseTerm”. The first

condition of the first rule of the operation “parseTerm” instantiates these variables and en-

sures that “fun” is an alphabetic identifier. The operation “isAlpha”, defined in the library

“Char”, ensures that its argument, a character, is alphabetic. The operation “all” is defined
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in the “Prelude”. The combination “all isAlpha” ensures that all the characters of a string

are alphabetic.

If a term has arguments, these arguments are parsed by the operation “parseArgs”. The

overall design of this operation is very similar to that of “parseTerm”. In this case, though,

a string is decomposed according to different criteria [Browse Program][Download Program]:

parseArgs (term++","++terms) = parseTerm term : parseArgs terms

parseArgs s = [parseTerm s]

One could code more efficient versions of this parser. This version is very simple to understand

and it is the starting point for the design of more efficient versions that will be discussed later

in this book.

3.15 Input/Output

As we have seen up to now, a Curry program is a set of datatype and function declarations.

Functions associate result values to given input arguments. However, application programs

must also interact with the “outside” world, i.e., they must read user input, files etc. Tradi-

tional programming languages addresses this problem by procedures with side effects, e.g., a

procedure read that returns a user input when it is evaluated. Such procedures are problem-

atic in the context of Curry. Firstly, the evaluation time of a function is difficult to control

due to the lazy evaluation strategy (see Section 3.12). Secondly, the meaning of functions

with side effects is unclear. For instance, if the function readFirstNum returns the first num-

ber in a particular file, the evaluation of the expression “2*readFirstNum” yields different

values at different points of time (if the contents of the file changes).

Curry solves this problem with the “monadic I/O” concept much like that seen in the

functional language Haskell [20]. In the monadic approach to I/O, a program interacting with

the outside world is considered as a sequence of actions that change the state of the outside

world. Thus, an interactive program computes actions which are applied to a given state

of the world (this application is finally done by the operating system that executes a Curry

program). As a consequence, the outside world is not directly accessible but can be only

manipulated through actions that change the world. Conceptually, the world is encapsulated

in an abstract datatype which provides actions to change the world. The type of such actions

is “IO t” which is an abbreviation for

World -> (t,World)

where “World” denotes the type of all states of the outside world. If an action of type “IO t”

is applied to a particular world, it yields a value of type t and a new (changed) world.

For instance, getChar of type “IO Char” is an action which reads a character from the

standard input whenever it is executed, i.e., applied to a world. Similarly, putChar of type

“Char -> IO ()” is an action which takes a character and returns an action which, when

applied to a world, puts this character to the standard output (and returns nothing, i.e.,

the unit type). The important point is that values of type World are not accessible to the

programmer — she/he can only create and compose actions on the world.
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Actions can only be sequentially composed, i.e., one can built a new action that consists

of the sequential evaluation of two other actions. The predefined function

(>>) :: IO a -> IO b -> IO b

takes two actions as input and yields an action as the result. The resulting action consists of

performing the first action followed by the second action, where the produced value of the first

action is ignored. For instance, the value of the expression “putChar ’a’ >> putChar ’b’”

is an action which prints “ab” whenever it is executed. Using this composition operator, we

can define a function putStrLn (which is actually predefined in the prelude) that takes a

string and produces an action to print this string:

putStrLn [] = putChar ’\n’

putStrLn (c:cs) = putChar c >> putStrLn cs

If two actions should be composed and the value of the first action should be taken into account

before performing the second action, the actions can be also composed by the predefined

function

(>>=) :: IO a -> (a -> IO b) -> IO b

where the second argument is a function taking the value produced by the first action as

input and performs another action. For instance, the action

getChar >>= putChar

is of type “IO ()” and copies, when executed, a character from standard input to standard

output. Actually, this composition operator is the only elementary one since the operator

“>>” can be defined in terms of “>>=”:

a1 >> a2 = a1 >>= \_ -> a2

There is also a primitive “empty” action

return :: a -> IO a

that only returns the argument without changing the world. The prelude also defines the

“empty” action which returns nothing (i.e., the unit type):

done :: IO ()

done = return ()

Using these primitives, we can define more complex interactive programs. For instance, an

I/O action that copies all characters from the standard input to the standard output up to

the first period can be defined as follows [Browse Program][Download Program]:

echo = getChar >>= \c -> if c==’.’ then done else putChar c >> echo

Obviously, such a definition is not well readable. Therefore, Curry provides a special syntax

extension for writing sequences of I/O actions, called the do notation. The do notation follows

the layout style (see Section 3.13.3), i.e., a sequence of actions is vertically aligned so that
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do putChar ’a’

putChar ’b’

is the same as “putChar ’a’ >> putChar ’b’”, and

do c <- getChar

putChar c

is just another notation for “getChar >>= \c -> putChar c”. Thus, the do notation allows

a more traditional style of writing interactive programs. For instance, the function echo

defined above can be written in the do notation as follows:

echo = do c <- getChar

if c==’.’

then done

else do putChar c

echo

As a further example, we show the definition of the I/O action getLine as defined in the

prelude. getLine as an action that reads a line from the standard input and returns it:

getLine :: IO String

getLine = do c <- getChar

if c==’\n’

then return []

else do cs <- getLine

return (c:cs)

Curry also provides predefined I/O actions for reading files and accessing other parts of the

environment. For instance, “readFile f” is an action which returns the contents of file f

and “writeFile f s” is an action writing string s into the file f. This allows us to define a

function that copies a file with transforming all letters into uppercase ones in a very concise

way (toUpper is defined in the standard character library Char and converts lowercase into

uppercase letters) [Browse Program][Download Program]:

convertFile input output = do

s <- readFile input

writeFile output (map toUpper s)

The function toUpper, defined in the library “Char”, takes a character. If the character is

lower case and alphabetic, then it returns it in upper case, otherwise it returns it unchanged.

The operation “map” is defined in the “Prelude” and discussed in detail in Section 4.2.6.

The combination “map toUpper” transforms all the characters of a string to upper case.

The monadic approach to input/output has the advantage that there are no “hidden”

side effects—any interaction with the outside world can be recognized by the IO type of

the function. Thus, functions can be evaluated in any order and the only way to combine

I/O actions is a sequential one, as one would expect also in other programming languages.

However, there is one subtle point. If a function computes non-deterministically different I/O

actions, like in the expression “putStrLn (show coin)” (see Section 3.13.1 for the definition
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of the non-deterministic function coin; show is a predefined function that converts any value

into a string), then it is not clear which of the alternative actions should be applied to the

world. Therefore, Curry requires that non-determinism in I/O actions must not occur. For

instance, we get a run-time error if we evaluate the above expression:

localvar> putStr (show coin)

ERROR: non-determinism in I/O actions occurred!

One way to ensure the absence of such errors is the encapsulation of all search between I/O

operations, e.g., by using set functions.

Exercise 6 Define an I/O action fileLength that reads the name of a file from the user

and prints the length of the file, i.e., the number of characters contained in this file. [Browse

Answer][Download Answer]
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Part II

Programming with Curry

37



Chapter 4

Programming in Curry

4.1 Overview

Lists and trees are datatypes frequently used in programming.

• A list abstracts a sequence of elements. The elements of a list are implicitly ordered by

the list structure. Therefore, a list is a convenient representation for queues, stacks and

other linear structures. As list can also be used for representing collections, typically

unordered, such as a set, by ignoring or hiding the implicit order of the elements.

• A tree is a multibranching data structure that abstracts a hierarchy of values or con-

ditions. It naturally represents taxonomies or classifications and therefore it is useful

for problems involving search. Trees come in many variants, but all consists of a value

called root and some subtrees called children. Similar to lists, trees can be used for

representing collections.

This section describes in some detail both these datatypes and how they help solve some typ-

ical problems, e.g., sorting a collection of elements or searching for an element in a collection.

4.2 Lists

4.2.1 Notation

A List is a simple algebraic polymorphic datatype defined by two constructors conventionally

referred to as Nil and Cons. Within the Curry language, the datatype “List of a” would be

declared as:

data List a = Nil | Cons a (List a)

Because lists are one of the most frequently used types in functional, logic and functional logic

programs, many languages offer several special notations for lists. In Curry, the type “List

of a”, where a is a type variable that stands for any type, is predefined and denoted by [a].

Likewise, [] denotes the constructor Nil, the empty list, and “:” denotes the constructor

Cons, which takes an element of type a and a list of a’s. Thus, with a syntax that is not

legal in Curry, but is quite expressive, the above declaration would look like:
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data [a] = [] | a : [a]

The expression (u:v) denotes the list with the first element u followed by the list v. The

infix operator “:”, which read “cons”, is predefined, right associative and has precedence 5.

This implies that u:v:w is parsed as u:(v:w).

A list can also be denoted by enumerating its elements, e.g., “[u,v,w]” is a list contain-

ing three elements, “u”, “v” and “w”, i.e., it is just another notation for “u:v:w:[]”. This

notation can be used with any number of elements. The elements are enclosed in brackets

and separated by commas. This notation has several advantages over the standard algebraic

notation: lists stand out in a program and references to lists are textually shorter. In par-

ticular, the number of parentheses occurring in the text is reduced. This claim can be easily

verified by comparing the built-in notation with the ordinary notation.

The type list is polymorphic, which means that different lists can have elements of different

types. However, all the elements of a particular list must have the same type. The following

annotated examples show this point [Browse Program][Download Program]:

-- list of integers

digits = [0,1,2,3,4,5,6,7,8,9]

-- list of characters, equivalent to "Pakcs", print with putStr

string = [’P’,’a’,’k’,’c’,’s’]

-- list of list of integers

matrix = [[1,0,2],[3,7,2],[2,8,1],[3,3,4]]

Other special notations available for lists are described in Sections 4.2.3 and 4.2.4.

4.2.2 Inductive Definitions

Many elementary functions on lists are defined by an induction similar to that available for

the naturals. The cases of the induction are conveniently defined by different rules using

pattern matching. For lists, the base case involves defining a function for [] whereas the

inductive case involves defining the function for a list (u:v) under the assumption that the

value of the function for v is available. In a program, this is expressed by a recursive call.

The function that counts the number of elements of a list is emblematic in this respect:

len [] = 0

len (u:v) = 1 + len v

For computing the length of a list, the value of u is irrelevant and u should be replaced by

an anonymous variable in the above definition.

Exercise 7 Code an inductively defined function that takes a list of integers and returns

the sum of all the integers in the list. Hint: the function should return 0 for an empty list.

[Browse Answer][Download Answer]

The prelude defines many useful functions on lists, e.g., “++” for concatenation, “!!” for

indexing, i.e., (l!!i) is the i-th (starting from 0) element of l, etc. We will use some of these

functions, after providing a brief explanation, in this section. We might also re-define some
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functions already available in the prelude or other libraries when they make good examples.

E.g., the function len discussed above is equivalent to the function length of the prelude.

In Section 4.2.5, we will present the most important list functions available in the prelude.

Functions inductively defined are easy to code, understand and evaluate. Sometimes they

may be inefficient. Below are two definitions of a function to reverse a list. For long lists, the

second one is much more efficient.

slowRev [] = []

slowRev (u:v) = slowRev v ++ [u]

fastRev l = aux l []

where aux [] r = r

aux (u:v) r = aux v (u:r)

A function inductively defined performs a “traversal” of its argument. During this traversal

some computation is performed on each element of the list—this is referred to visiting a

cons—and the result combined with a recursive invocation of the function. Loosely speaking,

the visit can be performed either before the recursive call, or after, or both. The following

example shows how to subtract the minimum element of a list of integers from all the elements

of the list. The function performs a single traversal of its argument. The minimum of the list

is computed (as much as feasible) before the recursive call. The subtraction is computed after

the recursive calls (otherwise the minimum could not be known) [Browse Program][Download

Program]:

submin [] = []

submin (x:xs) = fst (aux (x:xs) x)

where aux [] m = ([],m)

aux (y:ys) m = let (zs,n) = aux ys (min y m)

in (y-n:zs,n)

The function fst, which returns the first element of a pair, is defined in the prelude. The

function min, which returns the minimum of two integers, is defined in the Integer library.

More complicated computations may lead to more complicated inductive definitions. A

discussion on the structure and the design of inductively defined function is in [1].

Exercise 8 Code an inductively defined function that transposes a matrix represented by a

list of lists (all of the same length). [Browse Answer][Download Answer]

There are a couple of noteworthy alternatives to directly defining inductive functions. One

involves higher-order list functions. Some of these functions are presented in Section 4.2.6.

The other involves narrowing. Lists are a particularly fertile ground for narrowing. Below are

two definitions of the function that computes the last element of a list. The first definition

is inductive, whereas the second is narrowing-based.

inductLast [x] = x

inductLast (x:y:z) = inductLast (y:z)

narrowLast (_++[e]) = e

Observe that narrowLast computes the result by solving the equation “l == ++[e]” in
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which “l” is the argument of the call.

4.2.3 Ranges

A special notation is available to define lists containing ranges of integers. The most com-

mon of this notation is “[e1 .. e2]” which denotes the list “[e1, e1 + 1, e1 + 2, · · · , e2]”. For

example:

Prelude> [2 .. 5]

Result: [2,3,4,5] ?

Prelude>

Similarly, the expression “[e ..]” denotes the infinite list of all the integers starting from e.

This list cannot be printed in its entirety, but it can be used in a program if only a finite

portion of the list is needed, because the evaluation strategy is lazy.

The elements in the lists defined by the above expressions are consecutive, i.e., the distance

between adjacent elements is one. The above expressions can be generalized to produce lists

where the distance between adjacent elements is a constant greater than one. This distance

is inferred from the first two elements of the expression. For example:

Prelude> [2, 6 .. 20]

Result: [2,6,10,14,18] ?

Prelude>

Likewise, “[2, 6 ..]” generates the infinite list “[2,6,10,14,. . .]”.

Ranges can be defined using ordinary functions. The prelude defines four functions whose

names start with enumFrom. These functions define in the ordinary syntax the notations for

ranges.

4.2.4 Comprehensions

Another useful notation involving lists goes under the name of list comprehension. A list

comprehension is a notation to construct a list from one or more other lists called generators.

It goes without saying that ranges are simple generators. For example, the infinite sequence of

square and triangular numbers are obtained as follows [Browse Program][Download Program]:

squares = [x * x | x <- [0 ..]]

triangles = [x * (x+1) ‘div‘ 2 | x <- [0 ..]]

A generator is an expression of the form var <- list. Generators can be nested and/or com-

bined with guards. A guard is a Boolean expression that filters the elements produced by the

generator. For example, if isPrime is a predicate telling whether an integer greater than 2 is

a prime number, the following comprehension is the sequence of the prime numbers [Browse

Program][Download Program]:

primes = [x | x <- [2 ..], isPrime x]

In this example, the guard is the Boolean expression (isPrime x). The elements produced

by the generator are passed to the comprehension if and only if the guard holds.
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Generators are considered to be nested from left to right. The following example shows

how to compute pairs where the second component is not greater than the first [Browse

Program][Download Program]:

lexPairs = [(x,y) | x <- [0..3], y <- [x .. 3]]

This simple example shows that the second generator (y<-[x .. 3]) is nested within the first

one, since it references the generated elements.

Exercise 9 Compute the Fibonacci sequence using a list comprehension. Hint: compute a

list of pairs of numbers where each pair contains two consecutive Fibonacci numbers. [Browse

Answer][Download Answer]

4.2.5 Basic Functions

The PAKCS compiler/interpreter of Curry is distributed with the prelude, a collection of

primitive and fundamental types and functions, and with several libraries. The prelude and

some of these libraries contain useful list functions. In this section, we informally discuss some

of these functions. The currydoc documentation utility, which is distributed with PAKCS,

should be used for an exhaustive up-to-date consultation of the content of these libraries.

Name Description Example(s)

head First element of a list head [1,2] = 1; head [] fails

tail All the elements but the first tail [1,2] = [2]; tail [] fails

length Length length [1,2] = 2

null Tell whether it is nil null [1,2] = False

++ Concatenate two lists [1,2]++[3] = [1,2,3]

!! n-th element of a list [1,2]!!1 = [2]; [1,2]!!4 fails

reverse Reverse the order of the elements reverse [1,2] = [2,1]

concat Concatenate all the lists of a list concat [[1,2],[3]] = [1,2,3]

take List of the first n elements take 2 [1,2,3] = [1,2]

drop All elements but the first n drop 2 [1,2,3] = [3]

and Boolean conjunction and [True,False,True] = False

or Boolean disjunction or [True,False,True] = True

elem Whether a value is in a list elem 2 [1,3,5] = False

nub Remove duplicates nub [1,2,2] = [1,2]

delete Remove the first occurrence of a value delete 2 [2,1,2] = [1,2];

delete 2 [1] = [1]

Many more functions that operate on lists are defined in the libraries of the PAKCS distri-

bution (e.g., see the library List which contains the definition of nub and delete discussed

above). The above table is intended to give only a feeling of what is available.

4.2.6 Higher-order Functions

Lists are commonly used to represent collections of elements. Some computations of a list

can be expressed by repeatedly applying another, somewhat simpler, computation to all the
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elements of the collection. This section discusses some frequently occurring situations of this

kind.

The simplest case is when a list, which we refer to as the result list, is obtained from

another list, which we refer to as the argument list, by applying the same function, say f, to

all the elements of the argument list. This is easily accomplished by defining a new function,

say flist since its analogy to f, as follows:

flist [] = []

flist (x:xs) = f x : flist xs

Although trivial, the definition of flist can be avoided altogether using the function map,

provided by the prelude. The function map is higher-order in that it takes as an argument

the function, in this example f, that is applied to all the arguments of the list. Thus, the

function flist defined above is the same as map f.

The following code, taken from the prelude, shows the type and the definition of map:

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

It can be seen that the first argument of map is a function from any type a to any type

b. The second argument of map is a list whose elements must have, of course, type a.

The result is a list of type b. For example, suppose that isEven is a function telling

whether an integer is even. Then, the expression (map isEven [0,1,2,3]) evaluates to

[True,False,True,False].

A second frequently used higher-order function on lists is filter. As the name suggests,

filter is used to filter the elements of a list that satisfy some criterion expressed by a

predicate.

The following code, taken from the prelude, shows the type and the definition of filter:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs) = if p x then x : filter p xs else filter p xs

It can be seen that the first argument of filter is a function from any type a to Bool, i.e., a

predicate. The second argument of map is a list whose elements must have, of course, type a.

The result is again a list of type a. The elements of the result are the elements of the second

argument that satisfy the predicate. For example, as before, suppose that isEven is a func-

tion telling whether an integer is even. Then, the expression (filter isEven [0,1,2,3])

evaluates to [0,2].

The last higher-order function operating on lists that we describe in this section is used

to “combine together” all the elements of a list. For example, a function that adds all the

elements of a list of integers can be defined using a higher-order function and the ordinary

addition on integers. Several options should be considered, e.g., whether the elements of a list

are composed starting with the first or the last one, whether the list can be empty and thus

a default value must be supplied, etc. The prelude contains a family of functions, referred to
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as folds for this purpose. The names of these functions starts with “fold”.

The following code, taken from the prelude, shows the type and the definition of foldr:

foldr :: (a->b->b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

For example, functions that compute the sum, product and maximum of all the elements

of a list of integers are easily defined through foldr as follows [Browse Program][Download

Program]:

sumList = foldr (+) 0

prodList = foldr (*) 1

maxList = \l -> foldr max (head l) (tail l)

The last function is more complicated than the previous two, because it is meaningful only for

non-empty lists. The function foldr1, defined in the prelude, would simplify our definition

of maxList.

4.2.7 Set Functions

A non-deterministic function f may return different results for some combination of argu-

ments. The programmer has no control over which of these results an invocation of f returns.

Any result returned by f is completely unrelated to any other result. For some problems,

it may be convenient to consider all the results returned by f as a whole. The device that

returns all the results returned by f for some combination of arguments is called the set

function of f and is typically denoted fS . For example, given:

f x = x ? x+1

the value of fS x is the set {x,x+1} where the details of the representation of this set are

irrelevant to our discussion.

The definition of the set function of a function f separates the non-determinism of f

from any non-determinism of the arguments to which fS is applied [5]. In particular, fS is

deterministic for any f . Referring to the example above, fS (2 ? 4) evaluates to {2,3} and

{4,5} in which the non-determinism originates entirely from the argument.

To ease the definition of set functions, there is a library Control.SetFunctions.1 This

library defines both a suitable abstraction of a type set to represent the results of a set

function application, and a family of functions set0, set1, . . . Gives a function f of arity n,

the set function of f is provided by the expression setn f . The first argument of setn must

be the identifier of a function of arity n.

For example, consider the problem of computing all the subsets of a set S. This is called

the powerset of S. Let us represent a set with a list. This representation requires some care

to ensure that duplicate elements in a list and the order of the elements in a list are not

observable. We ignore these issues since they are irrelevant to our discussion. The following

1Since this library is part of the package setfunctions, this package must be installed as a dependency

with the Curry package manager, e.g., by the command “cypm add setfunctions”, see also Section 5.1.
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non-deterministic function returns a subset of its argument, a set represented as a list [Browse

Program][Download Program]:

subset [] = []

subset (x:xs) = x:subset xs

subset (_:xs) = subset xs

In PAKCS, with the help of the SetFunctions library, we define the power set of a set as

follows:

powerset s = set1 subset s -- powerset is the set function of subset

For example, the prerequisites for the undergraduate Computer Science courses at Portland

State are abstracted by 16 rules as follows [Browse Program][Download Program]:

isPrereqOf 162 = 161

isPrereqOf 163 = 162

isPrereqOf 200 = 162

...

isPrereqOf 303 = 252

isPrereqOf 303 = 300

isPrereqOf 350 = 252

The meaning is that, e.g., 162 is a direct prerequisite of both 163 and 200 and that, e.g., both

252 and 300 are direct prerequisites of 303. Observe that IsPrereqOf is a many-to-many

relation.

The function to compute all the direct prerequisites of a course is shown below [Browse

Program][Download Program]:

isPrereqOfS course = set1 IsPrereqOf course

4.2.8 Narrowing

Narrowing is a convenient programming feature when dealing with lists. Lists are frequently

used to represent collections of elements. Sometimes the problem is to find in a list either

elements or sublists that satisfy certain relationships. The programmer can either code

functions to compute these elements or express the relationships using variables for these

elements and let narrowing compute the elements by instantiating the variables. Generally,

the latter leads to simpler and more declarative programs.

For example, consider a program that plays the game of poker. A hand is represented by

a list of 5 cards. Suppose that the problem is to find whether 4 out of the 5 cards have the

same rank, i.e., the hand is a four-of-a-kind. A narrowing-based solution removes one card

from the hand so that the remaining 4 cards have the same rank. The following function

takes a hand and returns a Maybe type. If the hand is a four-of-a-kind, the function returns

just the rank of the four cards, otherwise it returns nothing. [Browse Program][Download

Program]:
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isFour (x++[_]++z) | map rank (x++z) == [r,r,r,r] = Just r where r free

isFour’default _ = Nothing

The card removed from the hand is represented by the anonymous variable in the functional

pattern. This card is non-deterministically selected. The remaining cards are represented by

x and z. Additionally, the condition of the first rule imposes that all the cards in x and z have

the same rank, r. The rank, too, is non-deterministically selected by solving the equation

“map rank (x++z) == [r,r,r,r]”. If the condition succeeds, there is obviously a unique

value for all these variables. If the first rule cannot be applied, it must be that there are no

four cards of the same rank in the hand. The default rule reports this condition

The advantage of the narrowing-based approach over more conventional approaches is

that no instructions need to be coded both to isolate the card that does not contribute to

the four-of-a-kind nor to find the rank of the four-of-a-kind when it exists.

The above example is typical of situations in which a collection contains elements that

must satisfy a certain conditions. Since lists are implicitly ordered, conditions involving the

position of elements in a collection can also be conveniently expressed using narrowing.

Exercise 10 Similar to the example just discussed, code a function that tells whether a hand

in a game of poker is a full house. Hint: [Browse Cards.curry][Download Cards.curry]

defines suits, ranks, etc. [Browse Answer][Download Answer].

4.3 Trees

We discuss two common variants of trees and show some typical functions of each variant.

4.3.1 Binary Search Trees

A binary tree is either of the following: a singleton value called empty (also null or leaf ) or a

pair, called a branch, consisting of two binary trees called the left and the right child. Most

often, a branch is a triple rather than a pair which in addition to the children also stores a

value of some generic set. This value is called the root or decoration of the tree.

A (decorated) binary tree is declared in Curry as:

data BinTree a = Leaf | Branch a (BinTree a) (BinTree a)

where BinTree is a type constructor and a is its parameter and stands for the type of the

decorations. A popular variant of binary trees is called a binary search tree. The set of

decorations is totally ordered and the decoration of a non-empty binary search tree is greater

than all the decorations in the left child and smaller than all the decorations in the right

child. This condition prevents repeated decorations in a binary search tree. The following

function inserts a value in a binary search tree in such a way that the result is again a binary

search tree [Browse Program][Download Program]:

insert x Leaf = Branch x Leaf Leaf

insert x (Branch d l r)

| x < d = Branch d (insert x l) r
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http://www.informatik.uni-kiel.de/~curry/tutorial/PROGRAMS/chapter4/binsearchtree.curry


| x > d = Branch d l (insert x r)

| otherwise = Branch d l r

An in-order traversal of any binary search tree produces the sorted list of the decorations of

the tree.

inorder Leaf = []

inorder (Branch d l r) = inorder l ++ [d] ++ inorder r

Exercise 11 Sort a list without repeated values by constructing a binary search tree from

the list and then traversing the tree [Browse Answer][Download Answer].

4.3.2 Trie Trees

An ordered tree is a pair in which the first component is an element of a set, called the set of

decorations, and the second component is a sequence of ordered trees.

An ordered tree is declared in Curry as:

data Tree a = Tree a [Tree a]

where a is a parameter that stands for the type of the decorations and the identifier “Tree” is

overloaded to denote both a type constructor (1st and 3rd occurrences) and a data constructor

(2nd occurrence).

A trie is a tree that stores a mapping from keys, typically strings, to values and is

characterized by sharing key prefixes. We present a simple variant where only keys are

stored. This variant is useful to efficiently represent a dictionary and tell whether a string is

in the dictionary. For example, a trie storing the strings “car”, “care” and “carton” stores

the letter ‘c’, ‘a’, and ‘r’, only once as shown below. The distinguished symbol ‘•’ terminates

a string.

c
a
r

• e t

• o
n
•

We declare the type of a trie as follows:

type Trie = [Tree Char]

The following function inserts a string in a trie sharing whatever prefix of the string might

already be present in the trie. The distinguished symbol that terminates a string is a period.

[Browse Program][Download Program]

insert :: String -> Trie -> Trie

insert [] t = (Tree ’.’ [] : t)
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insert (w:ws) [] = [Tree w (insert ws [])]

insert (w:ws) (Tree c cs : ts)

| ord w < ord c = insert (w:ws) [] ++ (Tree c cs : ts)

| ord w > ord c = Tree c cs : insert (w:ws) ts

| otherwise = Tree c (insert ws cs) : ts

Exercise 12 Code functions to build a trie from a list of words and to print all the words

in the trie [Browse Answer][Download Answer].

Exercise 13 Code a function that takes a word and a trie and tells whether or not the word

is in the trie [Browse Answer][Download Answer].
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Chapter 5

Managing Curry Packages

There are many libraries and tools for Curry that are not distributed with an available Curry

system but can be accessed via the Curry package system. Currently, more than one hundred

packages are available. Some of them contain small libraries, others contain quite complex

tools, like the Curry preprocessor. The Curry Package Manager (CPM), which is part of

the Curry systems PAKCS and KiCS2, eases the access and use of these packages. In the

following, the basic use of CPM is explained. A detailed description of all features of CPM

can be found in its user manual.

The executable of the Curry Package Manager is named cypm and located in the bin

directory of PAKCS or KiCS2. When you use CPM for the first time, execute

> cypm update

to download a local copy of the index of all available packages. A list of all packages in this

index can be shown by the list command:

> cypm list

Name Synopsis Version

---- -------- -------

abstract-curry Libraries to deal with AbstractCurry programs 2.0.0

abstract-haskell Libraries to represent Haskell programs in Curry 2.0.0

addtypes A tool to add missing type signatures in a Curry 2.0.0

program

base Base libraries for Curry systems 1.0.0

. . .

The command

> cypm info PACKAGE

can be used to show more information about the package with name PACKAGE.

5.1 Importing Existing Packages

To implement a larger application with Curry, one probably needs many libraries from other

packages. In this case, one should write the application as a Curry package so that all required
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dependencies can be specified so that CPM can manage them. This is explained in more detail

in Section 5.3. If one wants to execute a smaller Curry program which uses a library from

some Curry package, then one can use CPM’s add command to add this package as a global

dependency and download and install it globally (i.e., in your user-home environment). For

instance, the package pflp supports probabilistic functional logic programming [8]. It can

be installed as a global dependency by the command

> cypm add pflp

The command

> cypm info pflp --all

shows all information about this package. In particular, one can see that the module PFLP

is exported by this package. Thus, one can use this module in a program using probabilistic

functional logic programming by adding the line

import PFLP

in the header of the program. When this program is loaded with PAKCS, the load path is

set in such a way so that the module PFLP from package pflp can be imported.

Note that this method to use packages should be used only for small programs or to

try some package, since a specific appropriate version of the package is globally installed.

Actually, each version of each Curry system has its own global package cache.1 For larger

applications, one should install the required packages locally (which is described in Section 5.3

below).

5.2 Installing Tools

Many tools for Curry are available as packages. Actually, more than thirty tools are available

as packages, e.g., to analyze, test, or verify Curry programs, generate documentation, web

frameworks, etc. Such packages provide an “executable” (its name is shown by CPM’s info

command). In order to install a tool provided by PACKAGE, one can use the command

> cypm install PACKAGE

This command downloads the package into some internal directory ($HOME/.cpm/apps_...),

compiles the tool, and installs the binary of the tool provided by the package in

$HOME/.cpm/bin. Hence it is recommended to add this directory to your path.

For instance, the most recent version of CPM can be installed by the commands

> cypm update

. . .

> cypm install cpm

. . . Package ’cpm-xxx’ checked out . . .

. . .

1Use the command cypm config and look at HOME_PACKAGE_PATH to see the directory of this global cache.

If it is no longer needed or should be initialized, one can simple delete this directory.
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INFO Installing executable ’cypm’ into ’/home/joe/.cpm/bin’

Now, the binary cypm of the most recent CPM version can be used if $HOME/.cpm/bin is in

your path (before the bin directory of the Curry system!).

5.3 Developing Applications and Packages

If one wants to implement an application in Curry which uses other Curry packages, one

should create a package for this application in order to specify all dependencies so that they

can be managed by CPM. The easiest way to create a new package is to use CPM’s new

command with the name of the new package:

> cypm new myproject

This creates a new directory myproject in which the application can be developed. The

generated file structure is as follows:

myproject

|-- LICENSE

|-- package.json

|-- README.md

|-- src

|-- Main.curry

This represents the minimal structure of a reasonable package (so that it could later be

published). The file README.md should contain a description of the package in plain text or

markdown syntax. The LICENSE file is BSD-3 but could be changed. The source code of

the package must be stored in directory src and might of consist of an arbitrary number of

modules.

The file package.json is the most important one for managing packages. It is a JSON

file containing the metadata of the package, like its name, version, author, synopsis, etc. The

detailed description of all possible metadata fields can be found in CPM’s user manual. One

has to modify this file according to the requirements of the new application. In particular,

one has to specify dependencies on other packages by modifying the field dependencies in

the package.json file,2 e.g.:

{

...,

"dependencies": {

"base": ">= 1.0.0, < 2.0.0",

"json": "~> 1.1.0"

}

}

After modifying the metadata, one can run

2One could also use the command “cypm add -d PACKAGE” to add new dependencies in this file.
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> cypm install

(inside the package directory myproject) to resolve, download, and install all dependencies

of the current package. Then one can invoke PAKCS and use the modules of all specified

packages.

When the development of the application is completed, one can specify the name of the

main module and the executable to be generated in the file package.json as field executable:

{

...,

"executable": {

"name": "myexec",

"main": "Start"

}

}

The name of the executable must be defined (with key name) whereas the name of the main

module (key main) is optional (if it is missing, the name Main is taken). The main module

must export a function

main :: IO ()

which starts the application. If a package contains an executable specification, the command

> cypm install

also compiles the main module and installs the executable in the default directory

$HOME/.cpm/bin (see Section 5.2).
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Chapter 6

Design Patterns

6.1 Overview

A design pattern is a proven solution to a recurring problem in software design and devel-

opment. A typical pattern is not reusable code, as a library function would be, but consists

of problems, motivations, and design decisions related to the elements of a software arti-

fact. Many functional logic design patterns are centered on the characteristic features of the

paradigm, non-determinism and logic variables.

Patterns originated for object-oriented programming languages and became an important

disciple in computer science after [9]. Design patterns for functional logic programming were

introduced and further developed in [4, 6]. We present a pattern using tags, typically a one-

line description of some key element of a problem or its solution. In this tutorial, we use only

four simple tags: name, intent , solution, and structure with self-explaining meaning.

6.1.1 Deep selection

Name Deep selection

Intent pattern matching at arbitrary depth in recursive types

Applicability select an element with given properties in a structure

Structure combine a type generator with a functional pattern

Recursively defined types, such as lists and trees, have components at arbitrary depths that

cannot be selected by pattern matching because pattern matching selects components only

at predetermined positions. For recursively defined types, the selection of some element with

a given property in a data structure typically requires code for the traversal of the structure

which is intertwined with the code for using the element. The combination of functional

patterns with type generators allows us to select elements arbitrarily nested in a structure

in a pattern matching-like fashion without explicit traversal of the structure and mingling of

different functionalities of a problem.

We show the application of this pattern in one example. Consider a simple type for

representing arithmetic expressions:

data Exp = Lit Int

| Var [Char]

54



| Add Exp Exp

| Mul Exp Exp

For example, the expression x + 1 is encoded as e = Add (Var "x") (Lit 1). Suppose

that we want to match an expression with some property, e.g., the expression is a variable,

regardless of whether it occurs. First, we define a function, withSub, that takes an expression

t and non-deterministically generates some expression with t as subexpression.

withSub exp = exp

? op (withSub exp) unknown

? op unknown (withSub exp)

where op = Add ? Mul

For example, if t = Var "x", then withSub t evaluates, among other possibilities, to an

expression matching the expression e discussed earlier. Thus, using functional patterns,

Sect. 3.5.5, we can pattern match a subexpression t anywhere in an expression e.

To see this in action, consider the function varOf defined below. This function takes an

expression e and returns the identifier of a variable occurring anywhere in e. With ordinary

pattern matching, only a variable at a fixed position, e.g., the root or the left argument of

an expression, can be matched. With withSub we match any variable anywhere:

varOf :: Exp -> String

varOf (withSub (Var v)) = v

For example, the set of the identifiers of all the variables of occurring in an expression e is

simply obtained with the set function of varOf, i.e., varOfS e [Browse Program][Download

Program].

6.1.2 Constrained Constructor

Name Constrained Constructor

Intent prevent invoking a constructor that might create invalid data

Applicability a type is too general for a problem

Structure define a function that either invokes a constructor or fails

The signature of a functional logic program is partitioned into defined operations and data

constructors. They differ in that operations manipulate data by means of rewrite rules,

whereas constructors create data and have no associated rewrite rules. Therefore, a con-

structor symbol cannot perform any checks on the arguments to which it is applied. If a

constructor is invoked with arguments of the correct types, but inappropriate values, concep-

tually invalid data is created. We use an example to clarify this point.

The Missionaries and Cannibals puzzle is stated as follows. Three missionaries and three

cannibals want to cross a river with a boat that holds up to two people. Furthermore, the

missionaries, if any, on either bank of the river cannot be outnumbered by the cannibals

(otherwise, as the intuition hints, they would be eaten by the cannibals).

A state of this puzzle is represented by the number of missionaries and cannibals and the

presence of the boat on an arbitrarily chosen bank of the river, by convention the initial one:

55

http://www-ps.informatik.uni-kiel.de/smap/smap.cgi?upload?lang=curry&program=%2D%2D+Package+%60setfunctions%60+required%2C+i%2Ee%2E%2C+install+this+dependency+by%0A%2D%2D+++++%3E+cypm+add+setfunctions%0Aimport+Control%2ESetFunctions%0A%0A%2D%2D+the+type+of+simple+symbolic+arithmetic+expressions%0Adata+Exp+%3D+Lit+Int%0A+++++++++%7C+Var+%5BChar%5D%0A+++++++++%7C+Add+Exp+Exp%0A+++++++++%7C+Mul+Exp+Exp%0A%0A%2D%2D+generate+an+expression+containing+the+argument+as+a+subexpression%0AwithSub+%3A%3A+Exp+%2D%3E+Exp%0AwithSub+exp+%3D+exp%0A++++++++++++%3F+op+%28withSub+exp%29+unknown%0A++++++++++++%3F+op+unknown+%28withSub+exp%29%0A+++where+op+%3D+Add+%3F+Mul++%0A%0A%2D%2D+get+the+identifier+of+a+variable+occurring+in+the+argument%0AvarOf+%3A%3A+Exp+%2D%3E+String%0AvarOf+%28withSub+%28Var+v%29%29+%3D+v%0A%0A%2D%2D+sample+expression%0Asample+%3A%3A+Exp%0Asample+%3D+Add+%28Var+%22x%22%29+%28Mul+%28Lit+1%29+%28Var+%22y%22%29%29%0A%0A%2D%2D+get+the+set+of+the+idenfiers+occurring+in+the+argument%0Amain+%3A%3A+%5BString%5D%0Amain+%3D+sortValues+%28set1+varOf+sample%29%0A
http://www.informatik.uni-kiel.de/~curry/tutorial/PROGRAMS/chapter6/expr.curry
http://www.informatik.uni-kiel.de/~curry/tutorial/PROGRAMS/chapter6/expr.curry


data State = State Int Int Bool

For example, with suitable conventions, (State 3 3 True) represents the initial state. The

simplicity of this representation has the drawback that invalid states, e.g., those with more

than 6 people, can be created as well. Unless complex and possibly inefficient types for the

state are defined, it is not possible to avoid the creation of invalid states using constructors

alone.

The Constrained Constructor pattern avoids the creation of invalid states. The program-

mer invokes the constructor indirectly through the following function:

makeState m c b | valid && safe = State m c b

where valid = 0<=m && m<=3 && 0<=c && c<=3

safe = m==3 || m==0 || m==c

Function makeState invokes the constructor only after checking that only states that are

consistent with the physical conditions of the puzzle and are safe for the missionaries will

be created. For example, (State 2 1 -) is not safe since on one bank of the river the

cannibals outnumber the missionaries and therefore should not be created. In fact, the

call makeState 2 1 fails because the rule’s condition is not satisfied. In a suitable non-

deterministic program, this failure can be simply and silently ignored.

Operation makeState eases the definition of an operation, say move, to move people and

boat across the river:

move (State m c True)

= makeState (m-2) c False -- move 2 missionaries

? makeState (m-1) c False -- move 1 missionary

? makeState m (c-2) False -- move 2 cannibals

? ...

since “undesirable” states are never produced [Browse Program][Download Program].
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Chapter 7

Web Programming

7.1 Overview

Due to the ubiquity of the world wide web (WWW or “web” for short), many applications

offer web-based interfaces in order to support convenient access to them. This chapter de-

scribes how one can implement web-based interfaces in Curry. We will see that the functional

and logic programming features of Curry are quite useful in providing a high-level program-

ming interface for such applications so that Curry can also be used as a language for “web

scripting,” i.e., for writing web interfaces in a concise manner.

This chapter requires some basic knowledge about the structure of HTML, the “Hypertext

Markup Language” for describing the general form and layout of documents presented by

web browsers. Up-to-date information about HTML is available from the World Wide Web

Consortium (W3C).

The approach to web programming described in this chapter is based on the library “HTML”

contained in the PAKCS distribution. Details about the ideas and the implementation of

this library can also be found in [14].

7.2 Representing HTML Documents in Curry

HTML is a language for specifying the structure and layout of web documents. We also say

“HTML document” for a text written in the syntax of HTML. Basically, an HTML document

consists of the following elements:

• elementary text

• tags with other HTML elements as contents, like headers (h1, h2,. . . ), lists (ul, ol,. . . ),

etc.

• tags without contents, like line breaks (br), images (img), etc.

The plain syntax of HTML, which is interpreted by a web browser when displaying HTML

documents, requires tags be enclosed in pointed brackets (<· · ·>). The contents of a tag is

written between an opening and a closing tag where the closing tag has the same name as

the opening tag but is preceded by a slash. Tags can also contain attributes to attach specific
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information to tags. If present, attributes are written in the form “name=value” after the

opening tag’s name and before its right bracket.

For instance, “i” and “b” are tags to specify that their contents should be set using an

italic and bold font, respectively. Thus, the HTML text

This is the <i>italic</i> and the <b>bold</b> font.

would be displayed by a web browser as this:

This is the italic and the bold font.

Tags without contents have no closing tag. An example is the tag for including images in

web documents, where the attribute “src” specifies the file containing the picture and “alt”

specifies a text to be displayed as an alternative to the picture:

<img src="picture.jpg" alt="Picture">

A program with a web interface must generate HTML documents that are displayed in the

client’s browser. In principle, we can do this in Curry by printing the text of the HTML

document directly, as in:

writeHTML = do

putStrLn "This is the "

putStrLn "<i>italic</i> and the "

putStrLn "<b>bold</b> font."

If the program becomes more complex and generates the HTML text by various functions,

there is the risk that the generated HTML text is syntactically not correct. For instance,

the tags with contents must be properly nested, i.e., the following text is not valid in HTML

(although browser can display it but may become confused by illegal HTML documents):

This is <b>bold and also <i>italic</b></i>.

To avoid such problems in applications programs, one can introduce an abstraction layer

where HTML documents are modeled as terms of a specific datatype. Thus, a web application

program generates such abstract HTML documents instead of the concrete HTML text.

This has the advantage that ill-formed web documents correspond to ill-formed expressions

in Curry which would immediately be rejected by the compiler. The actual printing of

the concrete HTML text is done by a wrapper function that translates an abstract HTML

document into a string.

For representing abstract HTML documents in Curry, we define the following datatype

of HTML expressions:

data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

The constructor HtmlText corresponds to elementary text in an HTML document, whereas

the constructor HtmlStruct correspond to HTML elements with a tag and attributes. Thus,

the parameter of type “[(String,String)]” is the list of attributes, i.e., name/value pairs.
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For instance, our first HTML document above is represented with this datatype as the

following list of HTML expressions:

[HtmlText "This is the ",

HtmlStruct "i" [] [HtmlText "italic"],

HtmlText " and the ",

HtmlStruct "b" [] [HtmlText "bold"],

HtmlText " font."]

Similarly, the image tag above is represented as follows:

HtmlStruct "img" [("src","picture.jpg"),("alt","Picture")] []

Obviously, we can specify any HTML document in this form but this becomes very tedious for

a programmer. To avoid this, we define several functions as useful abbreviations of common

HTML tags:

h1 hexps = HtmlStruct "h1" [] hexps -- header 1

h2 hexps = HtmlStruct "h2" [] hexps -- header 2
...

bold hexps = HtmlStruct "b" [] hexps -- bold font

italic hexps = HtmlStruct "i" [] hexps -- italic font

hrule = HtmlStruct "hr" [] [] -- horizontal rule

breakline = HtmlStruct "br" [] [] -- line break

image src alt = HtmlStruct "img" [("src",src),("alt",alt)] [] -- image

...

Characters that have a special meaning in HTML, like “<”, “>”, “&”, “"”, should be quoted

in elementary HTML texts to avoid ill-formed HTML documents. Thus, we define a function

“htxt” for writing strings as elementary HTML texts where the special characters are quoted

by the function “htmlQuote”:

htxt :: String -> HtmlExp

htxt s = HtmlText (htmlQuote s)

htmlQuote :: String -> String

htmlQuote [] = []

htmlQuote (c:cs) | c==’<’ = "&lt;" ++ htmlQuote cs

| c==’>’ = "&gt;" ++ htmlQuote cs

| c==’&’ = "&amp;" ++ htmlQuote cs

| c==’"’ = "&quot;" ++ htmlQuote cs

| otherwise = c : htmlQuote cs

Now we can represent our first HTML document above as follows:

[htxt "This is the ", italic [htxt "italic"],

htxt " and the ", bold [htxt "bold"], htxt " font."]

All the definitions we have introduced so far are contained in the library “HTML” of the

PAKCS distribution. Thus, to define abstract HTML documents in a program, one has to

60

http://www.informatik.uni-kiel.de/~pakcs


write the import declaration

import HTML

in the header of the Curry program. The HTML library defines also a wrapper function

showHtmlExps to generate the concrete textual representation of an abstract HTML expres-

sion. For instance, the value of

showHtmlExps [h1 [htxt "Hello World"], italic [htxt "Hello"], htxt " world!"]

is the string

<h1>Hello World</h1>

<i>Hello</i> world!

In order to generate a complete HTML page with header information, the HTML library

contains the following definition of HTML pages:

data HtmlPage = HtmlPage String [PageParam] [HtmlExp]

The first argument is the title of the page and the third argument is the contents of the page.

The second argument is a list of optional parameters, like encoding scheme, style sheets etc.

Since they are seldom used in standard pages, the HTML library contains also the following

function to specify HTML pages without optional parameters:

page :: String -> [HtmlExp] -> HtmlForm

page title hexps = HtmlPage title [] hexps

Furthermore, the HTML library defines a wrapper function

showHtmlPage :: HtmlPage -> String

to generate the concrete textual representation of a complete HTML page with head and

body parts. For instance, the value of

showHtmlPage (page "Hello" [h1 [htxt "Hello World"],

italic [htxt "Hello"], htxt " world!"])

is the string

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Hello</title>

</head>

<body bgcolor="#ffffff">

<h1>Hello World</h1>

<i>Hello</i> world!

</body>

</html>
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We can use these functions to write Curry programs that generate HTML documents. For

instance, consider the generation of an HTML document that contains a list of all multipli-

cations of digits, i.e., a line in this document should look as follows:

The product of 7 and 6 is 42

First, we define a list of all triples containing such multiplications by the use of list compre-

hensions (compare Section 4.2.4):

multiplications = [ (x,y,x*y) | x <- [1..10], y <- [1..x] ]

Each triple is translated into a list of HTML expressions specifying the layout of a line:

mult2html :: (Int,Int,Int) -> [HtmlExp]

mult2html (x,y,z) =

[htxt "The product of ", bold [htxt (show x)],

htxt " and ", bold [htxt (show y)],

htxt " is ", bold [htxt (show z)], breakline]

Now can use these definitions to define the complete HTML document (the prelude func-

tion concatMap applies a function that maps elements to lists to each element of a list and

concatenates the result into a single list) [Browse Program][Download Program]:

htmlMultiplications =

[h1 [htxt "Multiplication of Digits"]] ++ concatMap mult2html multiplications

For instance, we can use the latter function to store the HTML page in a file named

“multtable.html” by evaluating the expression:

writeFile "multtable.html"

(showHtmlPage (page "Multiplication" htmlMultiplications))

Exercise 14 Define a function boldItalic to translate text files into HTML documents.

The function has two arguments: the name of the input text file and the name of the file

where the HTML page should be stored. The HTML document should have the same line

structure as the input but the lines should be formatted in bold and italic, i.e, first line in

bold, second in italic, third in bold, fourth in italic, etc. Hint: use the prelude function lines

to split a string into a list of lines. [Browse Answer][Download Answer]

7.3 Server-Side Web Scripts

We have seen so far how to write programs that create HTML documents. Such programs

could be useful to transform existing data into a static set of HTML pages. However, this

is not sufficient to create dynamic web pages, i.e., web pages whose contents is computed at

the time they are requested by a client. The creation of dynamic web pages is supported by

most web servers by so-called CGI (Common Gateway Interface) programs. If a web server is

asked for a document with the suffix “.cgi” instead of “.html” (the exact behavior is defined
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in the configuration of the web server; see also Section 7.4 below), then the server does not

return the contents of the corresponding file but executes the file (the “CGI program”) and

returns the standard output produced by this program. Thus, a CGI program must write an

HTML document on its standard output. The CGI program can also take user input in an

HTML form into account; this is described in Section 7.5.

To support the creation of dynamic HTML documents, the HTML library has a definition

for HTML forms as follows:

data HtmlForm = HtmlForm String [FormParam] [HtmlExp]

The first argument is the title of the form (as in HTML documents) and the third argument

is the contents of the form which can also contain elements for user input, as we will see

later (see Section 7.5). The second argument is a list of optional parameters to extend the

functionality of forms, like cookies, style sheets etc (see Section 7.8). Since they are seldom

used in standard forms, the HTML library contains also the following function to specify forms

without optional parameters:

form :: String -> [HtmlExp] -> HtmlForm

form title hexps = HtmlForm title [] hexps

Usually, the contents of dynamic HTML documents depend on the environment of the web

server, e.g., information stored in the file system or databases. Thus, a dynamic web page

is allowed to perform some I/O operations in order to compute the requested HTML doc-

ument. As a consequence, a function to compute a dynamic web page must have the type

“IO HtmlForm”. For instance, if we want to write a CGI program that computes the above

multiplications of digits on demand, we define the following function multForm (the right-

associate operator “$” is defined with a low precedence in the prelude and denotes function

application; it is often used to avoid brackets, e.g., the expression “f $ g $ 3+4” is equivalent

to “f (g (3+4))”) [Browse Program][Download Program]:

multForm :: IO HtmlForm

multForm = return $ form "Multiplication of Digits" htmlMultiplications

To see an application of accessing the server environment, we define a form that shows

the current date and time of the server (the IO action “getLocalTime”, defined in the

standard library Time, returns the local date and time in some internal representation which

can be converted into a readable string by the function “calendarTimeToString”) [Browse

Program][Download Program]:

timeForm :: IO HtmlForm

timeForm = do

time <- getLocalTime

return $ form "Current Server Time"

[h1 [htxt $ "Current date and time: " ++ calendarTimeToString time]]

The installation of such web programs on a web server is described in the following section.
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7.4 Installing Web Programs

Although the installation of CGI programs highly depends on the web server, in this section

we will provide some hints so that you can execute the programs described in this chapter

on your web server. Clearly, your web server must be configured to enable the execution of

CGI programs. Fortunately, most web servers support CGI programs, though they will likely

require special configuring by the system administrator. A web server can be configured

to interpret any file ending with “.cgi” and execute it when requested, or it can be also

configured to execute only CGI programs stored in a particular directory, e.g., “cgi-bin”.

Ask your system administrator for the instructions on CGI execution that are specific to your

system.

If you have installed PAKCS on your system (i.e., the web server), the installation of a

CGI program is quite simple. Assume you have written a Curry program “myscript.curry”

containing a definition of a form function “main” of type “IO HtmlForm” (see previous sec-

tion). Then you can compile it into an executable CGI program by the shell command

makecurrycgi myscript

(makecurrycgi is a shell script stored in the “bin” directory of PAKCS). This creates (after

successful compilation) an executable program “myscript.cgi”. If your main form function

has a name different from the default main, you can provide it with option “-m”. For instance,

the command

makecurrycgi -m myForm myscript

creates a CGI program with form function “myForm”. In general, the parameter following

“-m” can be any Curry expression of type “IO HtmlForm”.1

Similarly, the option “-o” can be used to install the CGI program under a different name.

For instance, the command

makecurrycgi -o ~/cgi-bin/myscript.cgi myscript

installs the executable CGI program in the file “~/cgi-bin/myscript.cgi”. Depending on

the configuration of your web server, you can execute the CGI program by requesting the

document with a URL like “http://your.server.name/cgi-bin/myscript.cgi” in your

web browser.

7.5 Forms with User Input

In many applications, dynamic web pages should not only depend on the environment of the

web server but also on the input provided by the client (i.e., the user contacting the server via

its browser). In principle, this is possible since HTML includes also elements for user input

(text fields, buttons, etc) which is sent to the web server when requesting a document. How

can we access the user input in to a CGI program running on the server? The whole purpose

1Since this expression is executed as the main program, all symbols of this expression must be exported

from the Curry program.
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of the Common Gateway Interface is to create a way to send information to the server and

from the browswer, hence the name Common Gateway. Fortunately, it is not necessary to

know all the details of CGI since the HTML library defines an abstraction layer to provide a

comfortable access to user inputs. This abstraction layer exploits the functional and logic

features of Curry and will be explained in this section.

The HTML library contains definitions of various input elements for HTML forms. For

instance, the element “textfield” defines an HTML input element where the user can type

a line of text:

textfield :: CgiRef -> String -> HtmlExp

The second argument is the initial contents and the first argument is the reference to this

element (CGI reference). The reference is used in the CGI program to access the user’s actual

input when computing an answer to this form. Now, how is the type CgiRef defined? The

surprising answer is: the type is abstract (i.e., its constructors are not exported by the HTML

library) since it is not necessary to know any constructor! It is sufficient to use a logic variable

when using a text field in an HTML form. For instance, we can define a form containing a

string and an input field as follows:

rdForm = return $ form "Question"

[htxt "Enter a string: ", textfield tref ""]

where tref free

A CgiRef variable serves as a reference to the corresponding input field to access the user’s

input. Raw CGI requires concrete strings as references (attribute “name” of “input” tags)

which is error-prone (since typos in these strings lead to run-time errors). However, the con-

crete strings are not important, and so the logic variables are sufficient. It is only important

to use them when computing the answer to the client. For this purpose, the HTML library

defines a CGI environment as a mapping from CGI references to strings:

type CgiEnv = CgiRef -> String

A CGI environment is used to collect the input of the user when computing the response.

The computation of the response is done by an event handler that is attached to each button

for submitting a form to the web server. For this purpose, the HTML library defines the type

of event handlers as

type HtmlHandler = CgiEnv -> IO HtmlForm

i.e., an event handler is called with the current CGI environment and yields an I/O action

that returns a form to be sent back to the client. Thus, the HTML library contains the following

type definition for a button to submit forms:

button :: String -> HtmlHandler -> HtmlExp

The first argument is the text shown on the button and the second argument is the event

handler called when the user clicks this submit button.

The actual event handlers can simply be defined as local functions attached to forms so
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Figure 7.1: A simple string reverse/duplication form

that the CgiRef variables are in scope and need not be passed. To see a simple but complete

example, we show the specification of a form where the user can enter a string and choose

between two actions (reverse or duplicate the string) by two submit buttons (see Figure 7.1)

[Browse Program][Download Program]:

rdForm :: IO HtmlForm

rdForm = return $ form "Question"

[htxt "Enter a string: ", textfield tref "", hrule,

button "Reverse string" revhandler,

button "Duplicate string" duphandler]

where

tref free

revhandler env = return $ form "Answer"

[h1 [htxt $ "Reversed input: " ++ reverse (env tref)]]

duphandler env = return $ form "Answer"

[h1 [htxt $ "Duplicated input: " ++ env tref ++ env tref]]

Note the simplicity of retrieving values entered into the form: since the event handlers are

called with the appropriate environment containing these values (parameter “env”), they can

easily access these values by applying the environment to the appropriate CGI reference, like

“(env tref)”.

7.6 Further Examples for Web Server Programming

Now we have seen all elements for writing CGI programs in Curry. In this section we will

show by various examples how to use this programming interface. We will see that this pro-
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gramming model (i.e., logic variables for CGI references, associated event handlers depending

on CGI environments) is sufficient to solve typical problems in web server programming in

an appropriate way, like handling sequences of interactions or holding intermediate states

between interactions.

7.6.1 Interaction Sequences

In the previous example, the interaction between the client and the web server is quite simple:

the client sends a request by filling a form which is answered by the server with an HTML

document containing the requested information. In realistic applications, it is often the case

that the interaction is not finished by sending back the requested information but the client

requests further (e.g., more detailed) information based on the received results. Thus, one

has to deal with sequences of longer interactions between the client and the server.

Our programming model provides a direct support for interaction sequences. Since the

answer provided by the event handler is an HTML form rather than an HTML expression, this

answer can also contain further input elements and associated event handlers. By nesting

event handlers, it is straightforward to implement bounded sequences of interactions. An

example for this technique is shown in the next section.

A more interesting question is how to implement other control abstractions like arbitrary

loops. For this purpose, we show the implementation of a simple number guessing game: the

client has to guess a number known by the server (here: 42), and for each number entered by

the client the server responds whether this number is right, smaller or larger than the number

to be guessed. If the guess is not right, the answer form contains an input field where the

client can enter the next guess. Moreover, the number of guesses should also be counted and

shown at the end.

As the typical approach in declarative languages, we implement looping constructs by

recursion. Thus, the event handler computing the answer for the client contains a recursive

call to the initial form which implements the interaction loop. The entire implementation of

this number guessing game is as follows [Browse Program][Download Program]:

guessForm :: IO HtmlForm

guessForm = return $ form "Number Guessing" (guessInput 1)

guessInput :: Int -> [HtmlExp]

guessInput n =

[htxt "Guess a natural number: ", textfield nref "",

button "Check" (guessHandler n nref)] where nref free

guessHandler :: Int -> CgiRef -> (CgiRef -> String) -> IO HtmlForm

guessHandler n nref env =

let nr = readInt (env nref) in

return $ form "Answer"

(if nr==42

then [h1 [htxt $ "Right! You needed "++show n++" guesses!"]]

else [h1 [htxt $ if nr<42 then "Too small!"

else "Too large!"],
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hrule] ++ guessInput (n+1))

“guessInput n” is an HTML expression corresponding to the initial form which contains an

input field for entering the client’s guess. “guessHandler” is the associated event handler

where the number of guesses and the CGI reference to the input field are the first and the

second argument of the handler, respectively. It checks the number entered by the client

(readInt is defined in the standard library Read and converts a string into a number) and

returns the different answers depending on the client’s guess. If the guess is not right, the

guessInput is appended to the answer which implements the recursive call.

7.6.2 Handling Intermediate States

A nasty problem in many CGI applications is the handling of intermediate states due to the

fact that HTTP is a stateless protocol. For instance, in electronic commerce applications, the

clients have shopping baskets where the already selected items are stored, and the contents of

these baskets must be kept between the interactions. Storing this information on the server

side has several drawbacks. For instance, the client wants to identify himself only after he

really orders the items, i.e., during the selection phase the server cannot uniquely associate

the selections to a client. Furthermore, the client might not proceed with his selections so that

the server does not know whether the basket information can be deleted (which is necessary

at some point to avoid a memory overflow). Therefore, it is often better to store such client-

dependent information on the client side. For this purpose, one can have HTML forms with

input elements of type “hidden” which have no visual representation but can be used to pass

client-dependent information between interactions. “Raw” HTML/CGI programmers must

explicitly handle these fields which is awkward and a source of many programming problems.

Our programming model offers a much simpler solution to this problem. By nesting event

handlers (which is allowed in languages with lexical scoping like Curry), one can directly refer

to input elements in previous forms. As a concrete example, we consider a sequence of HTML

forms where the client enters his first name in the first form and his last name in the second

form. The complete name is returned in the third form. This example can be implemented

as follows [Browse Program][Download Program]:

nameForm = return $ form "First Name Form"

[htxt "Enter your first name: ", textfield firstref "",

button "Continue" fhandler]

where

firstref free

fhandler _ = return $ form "Last Name Form"

[htxt "Enter your last name: ", textfield lastref "",

button "Continue" lhandler]

where

lastref free

lhandler env = return $ form "Answer"

[htxt $ "Hi, " ++ env firstref ++ " " ++ env lastref]
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Due to lexical scoping, the variable “firstref” is visible in the event handler “lhandler”

without explicitly passing it as an argument.

7.6.3 Storing Information on the Server

We have seen how we can retrieve information from the server by CGI programs. This is

possible by performing I/O actions on the server before computing the HTML form as the

response to the client. In many applications, clients also want to store or update information

on the server, e.g., by putting orders for books, flight tickets, etc. In this section we will see a

small example that demonstrates how this can be done using the already known techniques.

Consider the implementation of a web form that counts and shows the number of visitors.

Thus, each visitor updates the current visitor counter on the server. This can be easily

implemented by storing the current visitor number in a file. For this purpose, we define an

I/O action “incVisitNumber” that reads the number stored in this file, increments it, stores

the incremented number in the file, and returns the incremented number (doesFileExist is

an action defined in the library Directory that checks the existence of a file):

incVisitNumber :: IO Int

incVisitNumber = do

existnumfile <- doesFileExist visitFile

if existnumfile

then do vfcont <- readFile visitFile

writeVisitFile (readInt vfcont +1)

else writeVisitFile 1

writeVisitFile n =

do writeFile (visitFile++".new") (show n)

system ("mv "++visitFile++".new "++visitFile)

return n

visitFile = "numvisit" -- file to store the current visitor number

Note the definition of writeVisitFile: it does not directly write the incremented number into

the visitFile but it writes it into another file that is subsequently moved to the visitFile.

This is necessary to avoid the overlapping of reading and writing actions on the same file due

to the lazy evaluation of readFile.

Now the visitor form is simply obtained by calling incVisitNumber before generating the

form [Browse Program][Download Program]:

visitorForm = do

visitnum <- incVisitNumber

return $ form "Access Count Form"

[h1 [htxt $ "You are the " ++ show visitnum ++ ". visitor!"]]
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7.6.4 Ensuring Exclusive Access

Since CGI programs are executed whenever a client accesses them, one has not much control

on the order of their execution. In particular, the same CGI program can be executed in

parallel if two clients accessing them simultaneously. This can cause a problem if both update

the same information. For instance, an access to the visitor form above reads the current

visitor number from the global visitFile and write the incremented number back. If the

script is simultaneously executed by two clients, it may be the case that one update is lost

(if both read the same number and write the same incremented number).

Multiple simultaneous accesses or updates can be avoided by ensuring the exclusive access

to a resource on the web server between different processes running on the server. Although

Curry has no direct features to support this,2 it can be implemented by the use of the under-

lying operating system. For instance, Unix/Linux systems offer the command “lockfile”

to ensure an exclusive access to a resource of the system. lockfile tries to create a given

file (the argument to lockfile). If the file cannot be created (since it has been already

created by another process), the lockfile command waits and retries after some time. Us-

ing lockfile, we can implement a generic function “exclusiveIO” that takes a name for a

global lock file and exclusively executes an I/O action (the second parameter), i.e., it ensures

that two processes using the same lock file do not execute the action at the same time:

exclusiveIO :: String -> IO a -> IO a

exclusiveIO lockfile action =

do system ("lockfile "++lockfile)

actionResult <- action

system ("rm -f "++lockfile)

return actionResult

Now it is straightforward to extend our visitor form in order to ensure the exclusive update of

the visitor counter. This is done by replacing the expression incVisitNumber in the definition

of visitorForm by the following expression [Browse Program][Download Program]:

exclusiveIO (visitFile++".lock") incVisitNumber

7.6.5 Example: A Web Questionnaire

This section shows an example for web programming where the formerly discussed techniques

are applied. Consider the implementation of a web-based questionnaire which allows the

clients to vote on a particular topic. Figure 7.2 shows an example of such a questionnaire.

The votes are stored on the web server. The current votings are shown after a client submits

a vote (see Figure 7.3).

In order to provide an implementation that is easy to maintain, we define the main

question and the choices for the answers as constants in our program so that they can be

easily adapted to other questionnaires:

2It could be implemented in Curry by the use of ports but this will be discussed later.
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Figure 7.2: A web questionnaire

question = "Who is your favorite actress?"

choices = ["Doris Day","Jodie Foster","Marilyn Monroe",

"Julia Roberts","Sharon Stone","Meryl Streep"]

The current votes are stored in a file on the web server. We define the name of this file as a

constant in our program:

voteFile = "votes.data"

For the sake of simplicity, this file is a simple text file. If there are n choices for voting, the

file has n lines where each line contains the textual representation of the number of votes for

the corresponding choice. Thus, the following function defines an action that reads the vote

file and returns the list of numbers in this file (the prelude function lines breaks a string

into a list of lines where lines are separated by newline characters; readNat is defined in the

standard library Read and interprets a string as a natural number):

readVoteFile :: IO [Int]

readVoteFile = do

vfcont <- readFile voteFile

return (map readNat (lines vfcont))
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Figure 7.3: Answer to the web questionnaire

Similarly, writeVoteFile is an action that write a list of numbers into the vote file. Similarly

to the definition of writeVisitFile in Section 7.6.3, the numbers are written into a new file

that is moved to the vote file in order to avoid an overlapping between reading and writing

the same file.

writeVoteFile :: [Int] -> IO ()

writeVoteFile nums = do

writeFile (voteFile++".new") (concatMap (\n->show n++"\n") nums)

system ("mv "++voteFile++".new "++voteFile)

done

Using writeVoteFile, we define an action initVoteFile that initializes the vote file with n

zeros if it does not exist:

initVoteFile :: Int -> IO ()

initVoteFile n = do

existnumfile <- doesFileExist voteFile

if existnumfile then done

else writeVoteFile (take n (repeat 0))

When a client submits a vote, we have to increment to corresponding number in the vote file.

This can be easily done by a sequence of actions that initialize the vote file (if necessary),
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read the current votes and write the votes that are incremented by the function incNth:

incNumberInFile :: Int -> IO ()

incNumberInFile n = do

initVoteFile (length choices)

nums <- readVoteFile

writeVoteFile (incNth nums n)

incNth :: [Int] -> Int -> [Int]

incNth [] _ = []

incNth (x:xs) n = if n==0 then (x+1):xs else x:incNth xs (n-1)

Now we have all auxiliary definitions that are necessary to define the web scripts. First,

we show the definition of the HTML form “evalForm” that shows the current votes (which

produces the result shown in Figure 7.3). Note that we ensure the exclusive access to the vote

file by the use of the function “exclusiveIO” defined in Section 7.6.4 (the prelude function

“zip” joins two lists into one list of pairs of corresponding elements):

evalForm :: IO HtmlForm

evalForm = do

votes <- exclusiveIO (voteFile++".lock") readVoteFile

return $ form "Evaluation"

[h1 [htxt "Current votes:"],

table (map (\(s,v)->[[htxt s],[htxt $ show v]])

(zip choices votes))]

Now we can define our main form that allows the user to submit a vote (see Figure 7.2).

It uses radio buttons as input elements. Radio buttons are lists of buttons where exactly

one button can be turned on. Thus, all buttons have the same CGI reference but different

values. When a form is submitted, the CGI environment maps the CGI reference to the value

of the selected radio button. A complete radio button suite consists always of a main button

(radio_main) which is initially on and some further buttons with the same CGI reference as

the main button (radio_others) that are initially off. In our example, we associate to each

button the index of the corresponding choice as a value. The event handler questHandler

increments he appropriate vote number and returns the current votes with the form evalForm

[Browse Program][Download Program]:

questForm = return $ form "Vote Form"

([h1 [htxt question],

radio_main vref "0", htxt (’ ’:head choices), breakline] ++

concatMap (\(i,s)->[radio_other vref (show i), htxt (’ ’:s), breakline])

(zip [1..] (tail choices)) ++

[hrule, button "submit" questHandler])

where

vref free

questHandler env = do

exclusiveIO (voteFile++".lock") (incNumberInFile (readNat (env vref)))

evalForm
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7.7 Finding Bugs

Since debugging of CGI programs can be quite tedious, here are some hints on how to debug

CGI programs.

If the execution of the CGI program produces some run-time error (e.g., access to a non-

existing files), the error messages are shown in the error log file of the web browser (ask your

system administrator for the actual location of this file). Each execution of a Curry CGI

program is also logged in this file. If you want to suppress the writing in the error log, you

can generate the CGI program with “makecurrycgi” with the option “-noerror”.

If the execution of the CGI program does not produce a run-time error but simply fails

(e.g., because of an incompletely defined function are a unification failure), you will probably

see the message “No more solutions” in the web browser instead of the expected HTML

document. For the purpose of debugging, it is often useful to see the subexpressions where

a reduction was not possible but failed. In this case, you can generate the CGI program by

“makecurrycgi” with the option “-debug”. This has the effect that some debugging code

is inserted in the CGI program so that you can see the trace of all failed subexpressions in

the browser (not formatted with HTML so that you should better view the source with your

browser). Note that the debug option produces less efficient CGI programs so that it is better

to use this option only when necessary.

The use of logic variables as references to input elements in HTML forms ensures that

typos in the name of references can be detected by the compiler (e.g., resulting in an “unde-

clared identifier” error message), in contrast to traditional approaches to CGI programming

using plain strings as references. However, if we use the same logic variable for two different

input elements, this is not detected by the compiler (which is not worse than traditional

approaches where this is also not detected) but results in a run-time error that is not easy

to understand due to the implementation of the HTML library in Curry. If the web script

fails, i.e., the execution produces the message “No more solutions”, compile it again with

the option “-debug” as described above. If the new execution shows a failure of an expres-

sion like “’1’=:=’2’” resulting in the subsequent failure of an equational constraint like

("FIELD_1" =:= . . .), then you have probably used the same logic variable as references to

two different input elements. Thus, you should check your source program for these possible

errors.

7.8 Advanced Web Programming

This section discusses some further features which are useful for writing web applications in

Curry. Cookies are useful to store information about the client between different web scripts.

URL parameters can be exploited to write generic web scripts. Style sheets can be used to

modify and add new presentation styles for web documents.
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7.8.1 Cookies

Cookies are small pieces of information (represented by strings) that are stored on the client’s

machine when a client communicates to a web server via his browser. The web server can

sent cookies to the client together with a requested web document. If the client wants to

retrieve the same or another document from the web server, the client’s browser sends the

stored cookies together with the request for a document to the browser. Thus, cookies can

be used to identify the client during a longer interaction with the web server (also across

various web scripts stored on the same web browser). Cookies are another approach to

handle intermediate state in web applications. The technique presented in Section 7.6.2 is

only useful inside the same web script whereas cookies can be used as a link between different

web scripts. However, cookies need special support on the browser’s side and the client must

enable cookies in his web browser. Fortunately, most web browsers support cookies since

they are used in many web sites.

Basically, a cookie has a name and a value. Both parameters are of type string. Cookies

can also have additional parameters to control their lifetime, validity for different web servers

or regions on a web server etc (see definition of datatype “CookieParam” in the HTML library)

which we will not describe here. As the default, a cookie is a valid during the client’s browser

session for all documents in the same directory or a subdirectory in which the cookie was set.

The HTML library provides two functions to set and retrieve cookies. As described above,

a cookie is set by sending it with some web document. For doing so, there is the function

cookieForm :: String -> [(String,String)] -> [HtmlExp] -> HtmlForm

which behaves similarly to the function “form” but takes an additional parameter: a list of

cookies, i.e., name/value pairs. These cookies are submitted with the form to the client’s

browser. To retrieve cookies (that are previously sent with a “cookieForm”), there is an I/O

action

getCookies :: IO [(String,String)]

that returns the list of all cookies (i.e., name/value pairs) sent from the browser for the

current CGI script.

As a simple example, we want to use cookies to write a web application where a user

must identify himself and this identification is used in another independent script. The

identification is done by setting a cookie of the form ("LOGINNAME",<name>) where <name>

is the user’s name. We implement a “login form” that sets this cookie as follows [Browse

Program][Download Program]:

loginForm = return $ form "Login"

[htxt "Enter your name: ", textfield tref "", hrule,

button "Login" handler

]

where

tref free

handler env =
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return $ cookieForm "Logged In" [("LOGINNAME",env tref)]

[h2 [htxt $ env tref ++ ": thank you for visiting us"]]

The first form asks the user for his name. The cookie is set together with the acknowledgment

form (function “handler”).

Now we can write another web script that uses this cookie. This script shows the user’s

name or the string "Not yet logged in" if the user has not used the login form to set

the cookie. Using the function getCookies, the implementation is quite simple (the function

lookup, defined in the prelude, searches for a name in a name/value list; it returns “Nothing”

of the name was not found and “Just v” if the first occurrence of the name in the list

has the associated value v; the prelude function maybe processes these two cases) [Browse

Program][Download Program]:

getNameForm =

do cookies <- getCookies

return $ form "Hello" $

maybe [h1 [htxt "Not yet logged in"]]

(\n->[h1 [htxt $ "Hello, " ++ n]])

(lookup "LOGINNAME" cookies)

As mentioned above, cookies need special support on the client’s side, i.e., the web browser

of the client must support cookies. If cookies are essential for an application, one should

check whether the client allows the setting of cookies. This can be done by trying to set a

cookie and by checking whether this was successful. For instance, one can modify the above

login script as folllows. The first form immediately sets a cookie with name “SETCOOKIE”.

Then the handler checks whether this cookie has been sent by the client’s browser. If this

cookie is not received, it returns a form with the message “Sorry, can’t set cookies.” instead

of the acknowledgment form which sets the cookie “LOGINNAME” [Browse Program][Download

Program]:

loginForm = return $ cookieForm "Login" [("SETCOOKIE","")]

[htxt "Enter your name: ", textfield tref "", hrule,

button "Login" handler

]

where

tref free

handler env = do

cookies <- getCookies

return $

if lookup "SETCOOKIE" cookies == Nothing

then form "No cookies" [h2 [htxt "Sorry, can’t set cookies."]]

else cookieForm "Logged In" [("LOGINNAME",env tref)]

[h2 [htxt $ env tref ++ ": thank you for visiting us"]]
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7.8.2 URL Parameters

In some situations it is preferable to have generic web scripts that can be applied in vari-

ous situations described by parameters. For instance, if we want to write a web application

that allows the navigation through a hierarchical structure, one does not want to write a

different script for each different level of the structure but it is preferable to write a sin-

gle script that can be applied to different points in the structure. This is possible by at-

taching a parameter (a string) to the URL of a script. For instance, a URL can have the

form “http://myhost/script.cgi?parameter” where “http://myhost/script.cgi” is the

URL of the web script and “parameter” is an optional parameter that is passed to the script.

A URL parameter can be retrieved inside a script by the I/O action

getUrlParameter :: IO String

which returns the part of the URL following the character “?”. Note that an URL parameter

should be “URL encoded” to avoid the appearance of characters with a special meaning.

The HTML library provides the functions “urlencoded2string” and “string2urlencoded”

to decode and encode such parameters, respectively.

As a simple example, we want to write a web script to navigate through a directory

structure. The current directory is the URL parameter for this script. The script extracts

this parameter by the use of getUrlParameter and shows all entries as a HTML list [Browse

Program][Download Program]:

showDirForm = do

param <- getUrlParameter

let dir = if param=="" then "." else urlencoded2string param

entries <- getDirectoryContents dir

hexps <- mapIO (entry2html dir) entries

return $ form "Browse Directory"

[h1 [htxt $ "Directory: " ++ dir], ulist hexps]

The I/O action “getDirectoryContents” is defined in the system library Directory and

returns the list of all entries in a directory. The function “entry2html” checks for an entry

whether it is a directory. If this is the case, it returns a link to the same web script but

with an extended parameter, otherwise it simply returns the entry name as an HTML text

(“doesDirectoryExist” is defined in the library Directory and returns True if the argument

is the name of a directory):

entry2html :: String -> String -> IO [HtmlExp]

entry2html dir e = do

direx <- doesDirectoryExist (dir++"/"++e)

if direx

then return [href ("browsedir.cgi?" ++ string2urlencoded (dir++"/"++e))

[htxt e]]

else return [htxt e]

Finally, the prelude function “mapIO” applies a mapping from elements into I/O actions to

all elements of a list and collect all results in a list:

77

http://www-ps.informatik.uni-kiel.de/smap/smap.cgi?upload?lang=curry&program=%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%0A%2D%2D+Example+for+CGI+programming+in+Curry%3A%0A%2D%2D+A+form+to+browse+the+structure+of+a+directory%2E%0A%2D%2D+The+form+is+parameterized+by+the+%28URL%2Dencoded%29+name+of+the+directory%2E%0A%2D%2D+Subdirectories+are+presented+as+links+to+browse+them%2E%0A%2D%2D%0A%2D%2D+Michael+Hanus%0A%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%0A%0Aimport+HTML%0Aimport+Directory%0A%0AshowDirForm+%3D+do%0A++param+%3C%2D+getUrlParameter%0A++let+dir+%3D+if+param%3D%3D%22%22+then+%22%2E%22+else+urlencoded2string+param%0A++entries+%3C%2D+getDirectoryContents+dir%0A++hexps+%3C%2D+mapIO+%28entry2html+dir%29+entries%0A++return+%24+form+%22Browse+Directory%22%0A++++++++++++++++%5Bh1+%5Bhtxt+%24+%22Directory%3A+%22+%2B%2B+dir%5D%2C+ulist+hexps%5D%0A%0A%2D%2D+Transform+directory+and+entry+in+this+directory+into+a+link+%28if+it+is%0A%2D%2D+a+directory%29+or+a+text%3A%0Aentry2html+%3A%3A+String+%2D%3E+String+%2D%3E+IO+%5BHtmlExp%5D%0Aentry2html+dir+e+%3D+do%0A++direx+%3C%2D+doesDirectoryExist+%28dir%2B%2B%22%2F%22%2B%2Be%29%0A++if+direx%0A+++then+return+%5Bhref+%28%22browsedir%2Ecgi%3F%22+%2B%2B+string2urlencoded+%28dir%2B%2B%22%2F%22%2B%2Be%29%29%0A+++++++++++++++++++++%5Bhtxt+e%5D%5D%0A+++else+return+%5Bhtxt+e%5D%0A%0A%0A%2D%2D+Install+with%3A%0A%2D%2D+makecurrycgi+%2Dm+showDirForm+browsedir%0A%2D%2D%0A%2D%2D+Call+with%3A+http%3A%2F%2F%2E%2E%2E%2Fbrowsedir%2Ecgi%3F%3Cdirectory+%28urlencoded%29%3E%0A
http://www-ps.informatik.uni-kiel.de/smap/smap.cgi?upload?lang=curry&program=%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%0A%2D%2D+Example+for+CGI+programming+in+Curry%3A%0A%2D%2D+A+form+to+browse+the+structure+of+a+directory%2E%0A%2D%2D+The+form+is+parameterized+by+the+%28URL%2Dencoded%29+name+of+the+directory%2E%0A%2D%2D+Subdirectories+are+presented+as+links+to+browse+them%2E%0A%2D%2D%0A%2D%2D+Michael+Hanus%0A%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%2D%0A%0Aimport+HTML%0Aimport+Directory%0A%0AshowDirForm+%3D+do%0A++param+%3C%2D+getUrlParameter%0A++let+dir+%3D+if+param%3D%3D%22%22+then+%22%2E%22+else+urlencoded2string+param%0A++entries+%3C%2D+getDirectoryContents+dir%0A++hexps+%3C%2D+mapIO+%28entry2html+dir%29+entries%0A++return+%24+form+%22Browse+Directory%22%0A++++++++++++++++%5Bh1+%5Bhtxt+%24+%22Directory%3A+%22+%2B%2B+dir%5D%2C+ulist+hexps%5D%0A%0A%2D%2D+Transform+directory+and+entry+in+this+directory+into+a+link+%28if+it+is%0A%2D%2D+a+directory%29+or+a+text%3A%0Aentry2html+%3A%3A+String+%2D%3E+String+%2D%3E+IO+%5BHtmlExp%5D%0Aentry2html+dir+e+%3D+do%0A++direx+%3C%2D+doesDirectoryExist+%28dir%2B%2B%22%2F%22%2B%2Be%29%0A++if+direx%0A+++then+return+%5Bhref+%28%22browsedir%2Ecgi%3F%22+%2B%2B+string2urlencoded+%28dir%2B%2B%22%2F%22%2B%2Be%29%29%0A+++++++++++++++++++++%5Bhtxt+e%5D%5D%0A+++else+return+%5Bhtxt+e%5D%0A%0A%0A%2D%2D+Install+with%3A%0A%2D%2D+makecurrycgi+%2Dm+showDirForm+browsedir%0A%2D%2D%0A%2D%2D+Call+with%3A+http%3A%2F%2F%2E%2E%2E%2Fbrowsedir%2Ecgi%3F%3Cdirectory+%28urlencoded%29%3E%0A
http://www.informatik.uni-kiel.de/~curry/tutorial/PROGRAMS/chapter7/browsedir.curry


mapIO :: (a -> IO b) -> [a] -> IO [b]

mapIO _ [] = return []

mapIO f (x:xs) = do

y <- f x

ys <- mapIO f xs

return (y:ys)

7.8.3 Style Sheets

[To be completed.]
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Chapter 8

Further Libraries for Application

Programming

• Databases [15]

• Constraints

• GUI [13]

• XML

• Distributed Programming, ports [12]

• Metaprogramming
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