
PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 1

Introduction to Rewriting

Main concepts of this unit:

Signature
- variable
- symbol, arity

Term
- root, arguments
- ground

Position
Substitution

- domain, range
Rule
Rewrite System

- redex, normal form
- step
- constructor, many sorted

Confluence
Termination

- strong, weak
Orthogonality

- linearity, ambiguity

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 2

Signature

Rewriting is a model of computation. It has been used
in theorem proving and to abstract the execution of pro-
grams in declarative languages.

In this lecture, you will learn this model of computation.
Several preliminary concepts are necessary, in particular,
term and rewriting.

An alphabet or signature, denoted Σ, consists of:

- A denumerable set of variables x0, x1, x2, . . . also
denoted x, y, z, x′, y′, . . .

- A non-empty, finite set of symbols f, g, h, . . .
also denoted by expressive names such as
pop, push,+, 0, . . . Each symbol has an arity, a
natural number intended as the number of argu-
ments a symbol takes.

Example 2. The symbols of the signature and their
arities are:

z 0
s 1
a 2
m 2

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 3

Term

A term or expression over a signature Σ, denoted

Ter(Σ), is defined inductively as follows:

x0, x1, x2, . . . ∈ Ter(Σ)

If f is a symbol of arity n, n > 0,
and t1, t2, . . . , tn ∈ Ter(Σ),
then f(t1, t2, . . . , tn) ∈ Ter(Σ).

In the second case, f is called the root of t1, t2, . . . , tn
and t1, t2, . . . , tn are called the arguments of f .

Terms without variables are called ground terms.

Example 3. A few terms:

z
x
s(z)
a(s(z),m(s(z), s(z)))
a(z, z)

Exercise 3. Code a Curry program for representing
terms. Consider two options: (simple) represent only
ground terms of the signature implied by Example 2;
(harder) represent terms of any arbitrary signature.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 4

Position

Terms are naturally represented as, and sometimes called,
trees. The tree representation of the term a(s(z), z) is:

a

⑦⑦
⑦ ❅❅

❅

s z

z

A position is a sequence of natural numbers defining a
path in a tree, therefore identifying a subterm of a term.

Example 4. The position 〈1 · 1〉 identifies the leftmost
z in the above term, 〈2〉 identifies the rightmost z.

The positions in the above term are:

〈〉
②②②
②② ❄❄❄

❄

〈1〉 〈2〉

〈1 · 1〉

Brackets and dots separating the numbers in a position
are often omitted. The empty position is also denoted by
Λ.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 5

Position cont’d

The subterm of a term t at the position or occurrence

p, denoted t|p, is defined inductively as follows:

t|Λ = t,
for all t

f(t1, t2, . . . , tn)|iq = ti|q,
if 1 6 i 6 n and q is a position

Example 5. Trace of the computation of the subterm at
a given position:

a(s(z), z)|〈1·1〉 = s(z)|〈1〉 = z|〈〉 = z

Exercise 5a. Code a Curry function that takes a term
t and a position p of t and returns t|p. Hint: use the
representation of terms you chose for Exercise 2.

Exercise 5b. Code a Curry function that takes two
terms, t and u, and returns all the positions of u in t.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 6

Substitution

A substitution is a mapping from the set of variables
Var(Σ) to the set of terms Ter(Σ). The set of variables
“affected” by a substitution, σ, namely:

Dom(σ) = {x | σ(x) 6= x}

is called the domain of σ. The set:

Img(σ) = {y | y occurs in σ(x) for some x ∈ Dom(σ)}

is called the image or range of σ

Most often in logic programming it is required that
Dom(σ) is a finite set and that Dom(σ) ∩ Img(σ) = ∅.

A substitution is denoted by:

{v1 7→ t1, . . . vn 7→ tn}

A substitution σ is extended to terms as follows:

σ(f(t1, t2, . . . , tn)) = f(σ(t1), σ(t2), . . . , σ(tn))

Example 6. If σ = {x 7→ 0, y 7→ 1} and t = x+ y, then
σ(t) = 0 + 1.

Exercise 6. Define a substitution and code a Curry func-
tion that takes a substitution and a term and returns the
result of applying the substitution to the term.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 7

Rule

A rewrite rule for a signature Σ is a pair of terms of
Ter(Σ), denoted l → r, with the conditions:

l is not a variable,

every variable in r is also in l.

Later, the second condition will be dropped, but other
conditions will be added.

Example 7. The following rules refer to Example 2.
Variables are in upper case.

a(z, Y) → Y
a(s(X), Y) → s(a(X,Y))

m(z, Y) → z
m(s(X), Y) → a(Y,m(X,Y))

Rewrite rules compute by replacing in a term an instance
of a rule’s lhs with the corresponding instance of the rhs.

Example 7 con’t.

a(s(z), s(z)) → s(a(z, s(z))) → s(s(z))

The last element of the above sequence has no replace-
ments. It is called a normal form.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 8

Rewrite System

A rewrite system is a pair 〈Σ,R〉, where Σ is a signature
and R is a set of rewrite rules over Σ.

Let t be a term, l → r a rule, p a position of t, and σ a
substitution such that σ(l) = t|p, i.e., the subterm of t

at position p is a redex or an instance of l.

A rewrite (step) is a pair of terms t → t[σ(r)]p, where
the latter denotes the term obtained by replacing the
subterm of t at position p with σ(r). The rewrite relation,
denoted by “→,” of 〈Σ,R〉 is the set of all the rewrite

steps. “
∗→” denotes the reflexive transitive closure of

“→.”

A rewrite relation is:

Confluent if t
∗→ t1 and t

∗→ t2 imply the exis-

tence of a u such that t1
∗→ u and t2

∗→ u, for all
t, t1 and t2.

Strongly terminating if there is no infinite se-
quence of rewrite steps.

Weakly terminating if every term has a normal
form.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 9

Rewrite System cont’d

Example 9. The system of Example 7 is confluent and
strongly terminating. How can one become convinced of
this claim?

Exercise 9a. Discuss confluence and termination of:

a → b
f(a) → f(a)

Exercise 9b. Implementing rewriting for the system of
Example 7 in Curry is easy if one is not picky about
choosing steps. Code a small program to this aim. Hint:
for testing, code two functions as follows:

encd takes a natural number i and return
s(s(. . . s(z) . . .)), where there are exactly i appli-
cations of s,

decd is the inverse of encd, i.e., decd(encd(i)) = i
and vice versa.

and inspect the normal form of

decd(a(encd(i), encd(j)))

and likewise for m.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 10

Specialty Systems

Constructor systems: the signature is partitioned into

a set of constructors and a set of operations. The lhs

of each rewrite rule is of the form f(t1, . . . , tn), where
the root f is an operation and each argument ti contains
only constructors and variables.

Many sorted systems: there is a set of sorts (type

symbols). The type of a signature symbol f is a string
of sort symbols denoted s1 × · · · × sn → s, for n > 0.
The type of a term f(t1, . . . , tn) is s provided that the
sort of ti is si

Example 10.
Sorts: {Color, Stack}
Signature: {red, blue, green, empty, push, top, pop}
Types:

red : Color
blue : Color
green : Color
empty : Stack
push : Color × Stack → Stack
pop : Stack → Stack
top : Stack → Color

Rules:
pop(push(C, S)) → S
top(push(C, S)) → C

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 11

Orthogonality

Two key properties of rewrite systems are:

Left linearity: no repeated variables in the rules’ lhss.

Non ambiguity: let l1 → r1 and l2 → r2 be two rules
such that l1 unifies with a non-variable subterm of l2, i.e.,
there exists a substitution σ and a position p of l2 such
that σ(l2|p) = σ(l1). The term σ(l2) can be rewritten
in two ways, namely σ(r2) and σ(l2[r1]|p). These two

terms form a critical pair.

A system is orthogonal if it is left-linear and is non-

ambiguous (has no critical pairs). Orthogonal systems
are confluent.

Exercise 11. Consider the following Curry (and Haskell)
program as a rewrite system:

insert e xs = e:xs

insert e (x:xs) = x:insert e xs

Is the system confluent? Hint: this is a sneaky question!
You may get some insight by running the program in each
language.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 12

Abstract Systems

Modern treatments of rewrite systems consider abstract

reduction systems, structures 〈A,→〉, where A is a set

and → is a binary relation (or family of relations) on A.

Many key concepts of rewriting, e.g., step, redex, termi-
nation, confluence, etc., are independent of terms, hence
can be defined for abstract systems.

Many fundamental theorems of rewriting can be proved
for abstract systems.

We focus on term rewriting systems because they are
more interesting for programming.

PSU 510FLP F17 Rewriting c© Sergio Antoy 2003-2017 13

Graph Rewriting

Formalism similar to term rewriting, but expressions are
graphs rather than trees . Consider the system:

coin → 0
coin → 1
flip 0 → 1
flip 1 → 0

and the expressions :

(,)

⑥⑥
⑥⑥
⑥

❆❆
❆❆

❆

flip

❇❇
❇❇

❇ flip

⑤⑤
⑤⑤
⑤

coin

(,)

��
��
�

❃❃
❃❃

❃

flip flip

coin coin

The Curry (textual) representations are:

(flip x, flip x) where x = coin

(flip coin, flip coin)

The first one has 2 values only: (0, 0) and (1, 1).
The second has 4, also: (0, 1) and (1, 0).

In Curry, variables are always shared, multiple occur-
rences of the same variable refer to the same object.

Thu Aug 31 11:22:30 PDT 2017

