
PSU 510FLP W’06 IO c© Sergio Antoy 2006 1

Input and Output

Main concepts of this unit:

The World
- IO t

Actions
Composition

- >>
- >>=
- return

Do notation
- <-
- let

An example

PSU 510FLP W’06 IO c© Sergio Antoy 2006 2

The World

Referential transparency requires that the same ex-
pression evaluates always to the same value. Suppose
that a programming language has a function, say
getChar, to read a character from a stream. How can
this be consistent with the requirement of referential
transparency?

bad = (getChar,getChar)

An option is that getChar takes an argument, re-
ferred to as the World, and returns the character read
from the stream plus a new World.

The next time getChar is called, the World has changed,
thus returning a different character does not violate the
requirement of referential transparency?

The type World is hidden. There is a type IO t which
is an abbreviation for

World -> (t,World)

The initial World is supplied automagically by
the run-time environment.

PSU 510FLP W’06 IO c© Sergio Antoy 2006 3

Actions

An expression that “changes” the World is called an
action. The following actions read a character or a line
from standard input:

getChar :: IO Char

getLine :: IO String

The following actions take an argument and put it
on standard output:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

Contrary to all other expressions, the order in
which actions are executed is relevant. E.g., consider
bad in the previous page. The operation >> composes
actions so that they occur in the right order, e.g.,

putStr "Hello"

>> putChar ’ ’

>> putStrLn "world."

PSU 510FLP W’06 IO c© Sergio Antoy 2006 4

Composition

The type of the operation >> is:

>> :: IO a -> IO b -> IO b

The value returned by the first action is ignored
by the second action. When the value returned by
the first action is to be used by the second action, a
different composition is available:

>>= :: IO a -> (a -> IO b) -> IO b

For example:

getChar >>= putChar

getLine >>= putLine

copy a character and a line from standard input to
standard output, respectively.

There is one last operation to constructs IO values
from ordinary values:

return :: a -> IO a

e.g.:

return "hello world" >>= putLine



PSU 510FLP W’06 IO c© Sergio Antoy 2006 5

Do notation

Values read by actions can be used by computations,
e.g.,

getLine >>=

\line -> putStr "Your input: " >>

putStrLn line

A special notation is available to ease the above:

do line <- getLine

putStr "Your input: "

putStrLn line

The indentation must follow the off-side rule. There is
also an abbreviated let construct for ordinary binding:

do line <- getLine

let prefix = "Your input: "

putStrLn (prefix ++ line)

PSU 510FLP W’06 IO c© Sergio Antoy 2006 6

An example

The following program, similar to Unix’s wc, counts the
number of lines, words, and character in a file. The
efficiency of the program is not an issue in this example.

import IO -- readFile

main fileName = do

content <- readFile fileName

let (c,w,l) = process content

putStrLn (show l ++ " " ++

show w ++ " " ++

show c ++ " " ++

fileName)

process content = (c,w,l)

where c = length content

w = length (words content)

l = length (lines content)

Sun Feb 26 15:31:11 PST 2006


