
PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 1

Introduction

Concepts addressed/touched in this unit:

Curry interpreter Pakcs
Predefined Types
Defining Functions
Defining Types
Using Lists
Higher-order Functions
Conditions and Cases
Non-determinism
Variables
Functional Patterns
Default Rules
List comprehensions

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 2

Curry interpreter

Functional logic programs are often executed by an in-
teractive interpreter. Currently, a popular interpreter for
Curry is Pakcs. The trace of an invocation of Pakcs
follows:

[antoy@localhost INTRO]$ pakcs

some omitted lines

Type ":h" for help

Prelude>

The user can issue commands, such as :quit to termi-

nate, or expressions to evaluate, such as 2+2.

Prelude> 2+2

Result: 4 ? ;

No more solutions.

Prelude> :quit

[antoy@localhost INTRO]$

The semicolon after the question mark asks for additional
results. Functional computations always have one result
only.

Several types and functions are available to the user in
the interpreter. See the Prelude.curry file in the lib

directory of the Pakcs distribution.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 3

Predefined Types

Several types are predefined or built-in.

Int integers: ...-2,-1,0,1,2,...

Bool booleans: True,False

Char characters: ’h’,’i’,’\n’

(α,β) tuples: (1,True), (’J’,"Doe")

[α] lists: [],1:2:[],[’a’,’b’,’c’]

String strings: "hello","word"

Success Success: no visible values
Unit Unit: ()

Int is the builtin integer numeric type in Pakcs,
it has unlimited precision.

String is a synonym of [Char].

Success is now deprecated,
it may appear in old code as the type of constrains.

Unit is a type whose only value is ().

Both α and β stand for an arbitrary type.
Tuples and lists are polymorphic.

Several common operations are available on these types.
See the Prelude.curry file in the lib directory.

The programmer can define other types referred to as
algebraic.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 4

Defining Functions

The programmer can define functions in a file, say
myfile.curry, and load them in the interpreter with the
command :load myfile. E.g.:

square i = i * i

average (x,y) = (x+y) ‘div‘ 2

swap (x,y) = (y,x)

mylen l = if l==[]

then 0

else 1 + mylen (tail l)

nine = 9

The application of a function (symbol) to its argument(s)

is denoted by juxtaposition. E.g., the function square

takes one argument and returns its square.

No type declaration is necessary for the argument(s).

The argument of the function average is a pair.

The function div, integer division, is optionally used as
an infix operation by enclosing it in backquotes.

The function swap is polymorphic, it swaps pairs of any
types.

The if · then · else · construct has the usual meaning.

Functions can have zero arguments, see nine. They are
constants.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 5

Defining Types

User-defined types are introduced by a data type
declaration.

data Color = Red | Green | Blue

data MyBool = MyFalse | MyTrue

data Natural = Zero | Succ Natural

data MyList a = Nil | Cons a (MyList a)

data BinTree a

= Leaf

| Branch a (BinTree a) (BinTree a)

Functions on user-defined types (and predefined as well)

are conveniently coded by pattern matching.

myNot MyFalse = MyTrue

myNot MyTrue = MyFalse

leq Zero = True

leq (Succ) Zero = False

leq (Succ n) (Succ m) = leq n m

lookup Leaf = False

lookup a (Branch b left right) =

a == b ||

lookup a if a < b then left else right

The underscore symbol “ ” denotes an anonymous
variable. A variable that is not used in the result of a
function.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 6

Using Lists

Lists are ubiquitous for programming. Here are some
simple examples of notations and techniques.

[2..] → [2,3,4,· · · infinite
[2..5] → [2,3,4,5]

[2,4..12] → [2,4,6,8,10,12]

[2,4..] → [2,4,6,· · · infinite

The following example shows nested functions and

lazy evaluation.

fibseq = fsaux 0 1

where fsaux x y = x : fsaux y (x+y)

fibo n = fibseq !! n

test = take 20 fibseq

The function (constant) fibseq is the sequence of all
Fibonacci numbers. It can’t be printed (it is infinite),
but it can be used.

It uses a nested function defined within a where. A
nested function can be referenced only by the imme-
diately nesting function and the functions in its block.
The variables of the nesting functions can be referenced
by the recursively nested functions.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 7

More on Functions (1)

Functions can take other functions as arguments. This
is a powerful feature to parameterize a computation with
another computation.

map [] = []

map f (x:xs) = f x : map f xs

foldr z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

The following equations explain what the above functions
compute. In both cases, f is the function parameter.

map f [x1,x2,...,xn] = [f x1, f x2, ... f xn]

foldr f z [x1,x2,...,xn] = (x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...))

A function can be defined by an expression, like the
expression 2+3 defines a number. A function defined
by an expression, referred to as lambda abstraction, is
called anonymous. For example:

sumList l = foldr (+) 0 l

maxList (x:xs) =

foldr (\u v -> if u>v then u else v) x xs

atoi str = num

where

digits = map (\x -> ord x - ord ’0’) str

num = foldl (\x y -> 10*x+y) 0 digits

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 8

More on Functions (2)

Functions can have optional conditions:

max x y | x < y = y

| otherwise = x

lookup Leaf = False

lookup a (Branch b left right)

| a < b = lookup a left

| a > b = lookup a right

| otherwise = True

Case expressions are allowed in the returned value. This
is somewhat equivalent the the earlier example.

mylen l =

case l of

[] -> 0

(:xs) -> 1 + mylen (tail l)

Both conditions and cases are tested sequentially, from
top to bottom. The arm of the first that succeeds is
evaluated. Otherwise the evalution fails.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 9

More on Types

The user can optionally declare the type of a symbol
and/or ask the interpreter to show the type of a symbol.

Functions take “one argument only at the time.” The
type of a function that takes an argument of type α and
returns an argument of type β is α -> β.

Referring to previous examples:

myNot :: MyBool -> MyBool

leq :: Natural -> Natural -> Bool

lookup :: Int -> BinTree Int -> Bool

The operator -> is right-associative which means that
function lookup takes an Int and returns a function of
type BinTree Int -> Bool. Thus, this function takes
a BinTree Int and returns a Bool.

This style of function definition is called curried. By
contrast:

average :: (Int,Int) -> Int

i.e., the function average takes a pair of Int and returns
an Int.

To get the interpreter tell you the type of a symbol, say s,
load the file defining s and input the command :type s.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 10

Non-Determinism (1)

Function (and constants) may return more than one
value. E.g., in file sample4.curry:

coin = 0

coin = 1

The constant coin has two values, 0 and 1. If it appears
in a computation, one of its values is choosen (don’t
count on it as a random bit generator).

sample4> coin+6

Result: 6 ? ;

Result: 7 ? ;

No more solutions.

sample4> coin==coin

Result: True ? ;

Result: False ?

sample4>

Non-deterministic computations are convenient when
the programmer does not have a better algorithm for
making a choice, e.g., which move to make in a puzzle.

Or when the programmer does not want to put the effort
and time to learn, code, and test an algorithm for making
a choice.

It is intended that a non-deterministic choice is later
constrained to filter out “bad” choices.

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 11

Non-Determinism (2)

Compute a permutation of a list.
Every permutation should be produced.
Use the testing properties tool to verify the code.

import Test.Prop

perm [] = []

perm (xs++x:ys) = x : perm (xs++ys)

sample = [1,2,3,4]

-- the reverse of the input is produced

prop 1 = perm sample ~> reverse sample

-- some random permutation is produced

prop 2 = perm sample ~> [2,4,1,3]

-- the number of perms is the factorial

prop 3 = perm sample # 4*3*2*1

To understand the code, draw a diagram of input and
output.

Execute with curry check filename .

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 12

Variables

A variable in the left-hand side of a rule matches a
subexpression of an argument.

A variable in the right-hand of a rule is shared :

coin = 0 ? 1

double x = x + x

t = coin + coin

u = double coin

A bound (left-hand side) variable stands for any

expression. A free variable stands for some expression
that produces a result.

data Color = Red | Green | Blue

f Red = 1

f Green = 2

t = (f x, x) where x free

Variables in the left-hand side of a where equation are
names of subexpressions.

f x = y * y

where y = x - 1

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 13

List comprehensions

A special notation is available to transform lists. Here
are some examples:

triangNumbers =

[x * (x+1) ‘div‘ 2 | x <- [0..]]

primeNumbers =

[x | x <- [2..], isPrime x]

isPrime x =

and [x ‘mod‘ y /= 0 | y <- [2..x ‘div‘ 2]]

lexPairs =

[(x,y) | x <- [0..3], y <- [x..3]]

The part of the form var <- list is called a generator.

A condition following generators is called a guard and
it acts as a filter.

Multiple generators are allowed and lexcally scoped.

qsort :: [Int] -> [Int]

qsort [] = []

qsort (x:l) = qsort [y | y <- l, y<x] ++

x:qsort [z | z <- l, z>=x]

PSU 510FLP F17 Introduction c© Sergio Antoy 2004-2017 14

Exercises (optional/proposals)

Exercise I1. Define the absolute value function.

Exercise I2. Define a function that counts how many
integers in a list are even, and run it on a few test
samples. Hint: the remainder function is mod (similar to
div).

Exercise I3. Define a function that counts how many
integers in a list are positive, and run it on a few test
samples. Observe the similarities with the previous
function.

Exercise I4. Define a function, say gencount, that
counts how many elements in a list have a certain prop-
erty. Redefine the previous functions using gencount.

Exercise I5. Define a type to represent a tree. A tree
has a root and zero or more children which are trees.
Most often, the root has a decoration.

Exercise I6. Build a trie from a list of words and use
it to find whether a word is in a dictionary. Use the
previous exercise.

