PSU 510FLP F17 Compiling © Sergio Antoy 2017
Compiling FL Programs

Main concepts of this unit:

PSU 510FLP F17 Compiling © Sergio Antoy 2017
The problem

Consider the program:

Source language loop = loop
- data snd (L,y) =y
- functions
Target language and evaluate the expression
- data
- functions snd (loop,0)
Order of evaluation
- call-by-need Applying the first rule, “makes no progress.”
- call-by-value If only the first rule is applied, no result is ever found.
Compilation))

- abstract Applying the second rule, gives the result.

- low level A compiler must generate code that applies the right
rule to the right redex so that if an expression has a value,
that value is eventually produced.

The generated code represents expressions/graphs as
linked structures. It encodes procedures that traverse
these graphs and replace subgraphs in a graph until no
more replacements are possible.

PSU 510FLP F17 Compiling © Sergio Antoy 2017 PSU 510FLP F17 Compiling © Sergio Antoy 2017

Source language

The source language being compiled consists of a defini-
tional tree of each operation and the arity of each symbol,
in particular the constructors

Example in Curry:

[O++y =y
(x:x8)++y = x:(xs++y)

Corresponding source language:

arity of [1 =0
arityof : =2
tree of ++ =

++y

N

] ++y (x:xs)++y

| |

y x: (xs++y)

Target language

e The target language consists of two functions: H
and N.

e Each function takes and returns an expression.

e These expressions are made up by all the symbols
of the source language.

e Each function performs case analysis of its argu-
ment and selection of subarguments. Hence, they
can be conveniently defined by rules with pattern
matching. Hence, the target language is a rewrite
system!

e The evaluation in the target system is eager/by-
value.

e The rules of the target system are tried in textual
order, the first one that is applicable is the only one
being applied.

e Hence, the control (execution) is simple.

PSU 510FLP F17 Compiling © Sergio Antoy 2017

Function H (1)

Let S and T denote the source and target systems.

Function H takes an expression e of S and returns a
head constructor form of e (a constructor application),
or aborts if this form doesn't exist.

The rules of H are generated piecemeal for each opera-
tion f of S by a post-order traversal, let's call it compile,
of a definitional tree of f. We define compile by exam-
ples.

Let NV be a branch node with pattern 7, some induc-
tive variable, and a few children. First compile each child
(post-order traversal). Then produce the rule:

H(r) = H(7")
where 7’ is like 7 with the inductive variable wrapped by
H.
Example using the root of the tree of ++:

H(x++y) = H(H(x)++y)

Rationale: z is needed and matches a function applica-
tion or a textually preceeding rule would have been fired.

PSU 510FLP F17 Compiling © Sergio Antoy 2017
Function H (2)

Let N be a leaf node with rule [— r. We distinguish
3 exhaustive and mutually exclusive cases for r.

1. r is a constructor application. Produce the rule:

H(l)=r
2. ris a function application. Produce the rule:
H(l) = H(r)

3. ris a variable, say z. Produce the rules:
H(ll) = Ci(.’lfl, e Jk)

where [" is like [with = replaced by ¢;(z1, ... x}) for every
constructor symbol ¢; of arity k.

Example, compile the left leaf of the tree of ++:
H([O++01) = [
H(O++(y:ys)) = y:ys
H([1++y) = H(y)
Note, the right-hand side of the rule of ++ is a variable.
In the 3rd rule of H, y matches a function application.

Exercise 6.A Compile the right leaft of ++.

Exercise 6.B Compile operation take defined at page 5
of the "Strategies” unit.

PSU 510FLP F17 Compiling © Sergio Antoy 2017
Function H (3)

Let N be an exempt node with pattern 7. compile pro-
duces:

H(7) = abort
where “abort” is a directive to abort the computation
since the expression being evaluated has no value.
Optimization.

An effective optimization is often available. Consider
the previously discussed rule:

H(x++y) = H(H(x)++y)

We know that the recursive outermost call to H will al-
ways match ++ at the root. We can specialize this call
and avoid first constructing and later matching the root:

H(x++y) = Het (H(x),)

Non-determinism.

This compilation scheme is for deterministic func-
tions. Various approaches to non-determinism, e.g.,
backtracking could be integrated

Higher order.

Not discussed at this time. Maybe later.

PSU 510FLP F17 Compiling © Sergio Antoy 2017
Function N

Function N takes an expression ¢ of S and returns the
value of e (in S) or it “aborts” if ¢ has no value.

It invokes function H that takes an expression ¢ of S and
evaluates it to a head constructor form, or aborts if it
doesn't exist.

Operation N is defined by one rule for each symbol of S.
In the following metarules, ¢ stands for a constructor of
S of arity m, f stands for an operation of S of arity n,
and z; is a fresh variable for every i.

¢(N(z1),...N(zpm))
NH(f(z1,...2,)))

N(c(z1,...2m))
N(f(:L’l, ce fL'n))

Examples:
N([1) =10

N(x:xs) = N(x):N(xs)
N(x++y) = N(H(x++y))

The 3rd rule can be optimized as discussed earlier.

After execution of the 3rd rule, the recursive call executes
either the 1st or the 2nd.

PSU 510FLP F17 Compiling © Sergio Antoy 2017 9
Low level implementation

The target system can be implemented relatively easily
in a low-level language such as C.

The graphs abstracting the expressions have nodes and
arcs. A node is a struct containing a label/symbol and
pointers to the node successors.

Functions H and N are ordinary C functions.

Pattern matching is implemented by case analysis
through a traversal of (the top portion of) the argument.

A working system must accommodate built-in types, like
the integers, and provide some library functions that can-
not be coded in Curry.

Exercise 9. Sketch the case analysis required to dispatch
the rule of H in the target system for an argument rooted
by ++. Hint: start with writing all the rules of H.

Thu Aug 31 11:22:30 PDT 2017

