
CS350 ABET Objective 7

Describe the notions of P, NP, NPC, and NP-hard.

Textbook Section 11.3, ~5%.

Some problems can be solved by relatively efficiently, 
e.g., sorting a sequence of 1,000,000 numbers. Some 
problems cannot  be solved in practice, e.g., printing all 
the permutations of a sequence of 1,000,000 numbers. 
Some problems cannot be solved in theory, e.g., telling 
whether a program terminates for some input.

There are also gray areas. We do not know how to 
solve some problem efficiently, and we do not know 
whether solving them efficiently is impossible or we 
have not yet found an efficient algorithm.

This objective introduces some concepts and examples 
to help understanding and reasoning about these 
issues.
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P Problems

Problems that can't be solved in polynomial 
time are called intractable.

Can solve these problems only for small 
inputs.

E.g.: Minimum number of colors necessary to 
color a map.

Decision problem, answer is yes/no.

Are m colors sufficient to color a map, for 
m=1,2,...

Class P: decision problems solvable in 
polynomial time (with deterministic algorithm).

Field called computational complexity.
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Undecidable Problems

Some problems have no algorithm to solve 
them. E.g.: Halting Problem.

A algorithm
P program
I input

A (P , I )={10 if P halts on I
otherwise

Q(P)={haltsloops
if A (P , P)=0
if A (P ,P)=1

(P loops onP)

(Phalts on P)

Next is a contradiction.

Q(Q)={haltsloops
if A (Q,Q)=0
if A (Q ,Q)=1

(Qloops onQ)

(Qhalts onQ)

Therefore, A does not exist.
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Difficult Problems

No polynomial time algorithm is known (but 
might exist) for the following:

1.Hamiltonian circuit: a closed path through each 
node of a graph once

2.Traveling salesman: shortest tour through n cities 
with positive integers distances (shortest 
Hamiltonian circuit)

3.Knapsack: most valuable subset of n items that fit 
into knapsack

4.Partition: partition n positive integers into subsets 
with same sum

5.Bin-packing: Put n values in (0..1] into fewest bins 
of size 1

6.Graph-coloring: chromatic number of a map/graph 
(adjacent node have different colors)

7.Integer linear programming: min or max of linear 
function of several integer variables with finite set of 
eq and neq constraints

They all have exponential number of choices

Eulerian circuit: graph traverse all edges exactly once
(exponential number of choices, but O(n^2) algorithm).
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NP problems

2-step non-deterministic algorithm: (1) guess 
solution, (2) verify solution.

Non-det polynomial if (2) is polynomial time.

Class NP is the set of all problems solved by 
non-deterministic polynomial time algorithm.

P is contained in NP.

NP contains Hamiltonian circuit, traveling 
saleman, etc.

Halting problem is not in NP

Question: is P = NP ?   Probably not.
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NP-Complete problems

Problem D1 is polynomially reducible to D2 if 
exists function t that maps instances of D1 to 
instances of D2 with:

1. t maps a yes/no instance to same answer 
instance;

2. t is computable in polynomial time.

Problem D is NP-complete if it is in NP and 
every problem in NP is polynomially reducible 
to D.

E.g., map Hamiltonian circuit to Traveling 
Salesman.

1. if (n1,n2) is an edge in HC, then 
weight(n1,n2)=1 in TS.

2. Connect all pairs of other node in TS with 
weight=2.
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CNF-SAT

First NP-complete problem, e.g.:

(x∨¬ y)∧(¬x∨ y∨z)∧(x∨z)

Many other problem known to be NP-
complete:  HC, TS, etc., see above.

Primality was thought be NP-complete, but it is 
not [2002].

Not yet efficient algorithm for factoring 
integers. 

How to prove that some X is NP-complete:

1. X is in NP;
2. every (one is enough) NP-complete 

problem Y maps to X in poly time.
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NP-hard

A problem P is NP-hard if there is an NP-
complete problem Q poly time reducible to P.
P may or may not be in NP.

P can be used to solve Q.

P is at least as difficult as any NP-problem.

If there is a polynomial algorithm for any NP-
hard problem, then there are polynomial 
algorithms for all problems in NP, and 
consequently P = NP.

If P ≠ NP, then NP-hard problems have no 
solutions in polynomial time, while P = NP 
does not resolve whether the NP-hard 
problems can be solved in polynomial time.
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