
CS350 ABET Objective 7

Describe the notions of P, NP, NPC, and NP-hard.

Textbook Section 11.3, ~5%.

Some problems can be solved by relatively efficiently,
e.g., sorting a sequence of 1,000,000 numbers. Some
problems cannot be solved in practice, e.g., printing all
the permutations of a sequence of 1,000,000 numbers.
Some problems cannot be solved in theory, e.g., telling
whether a program terminates for some input.

There are also gray areas. We do not know how to
solve some problem efficiently, and we do not know
whether solving them efficiently is impossible or we
have not yet found an efficient algorithm.

This objective introduces some concepts and examples
to help understanding and reasoning about these
issues.

© 2012, S. Antoy Objective 7, page 1/9

P Problems

Problems that can't be solved in polynomial
time are called intractable.

Can solve these problems only for small
inputs.

E.g.: Minimum number of colors necessary to
color a map.

Decision problem, answer is yes/no.

Are m colors sufficient to color a map, for
m=1,2,...

Class P: decision problems solvable in
polynomial time (with deterministic algorithm).

Field called computational complexity.

© 2012, S. Antoy Objective 7, page 2/9

Undecidable Problems

Some problems have no algorithm to solve
them. E.g.: Halting Problem.

A algorithm
P program
I input

A (P , I)={10 if P halts on I
otherwise

Q(P)={haltsloops
if A (P , P)=0
if A (P ,P)=1

(P loops onP)

(Phalts on P)

Next is a contradiction.

Q(Q)={haltsloops
if A (Q,Q)=0
if A (Q ,Q)=1

(Qloops onQ)

(Qhalts onQ)

Therefore, A does not exist.

© 2012, S. Antoy Objective 7, page 3/9

Difficult Problems

No polynomial time algorithm is known (but
might exist) for the following:

1.Hamiltonian circuit: a closed path through each
node of a graph once

2.Traveling salesman: shortest tour through n cities
with positive integers distances (shortest
Hamiltonian circuit)

3.Knapsack: most valuable subset of n items that fit
into knapsack

4.Partition: partition n positive integers into subsets
with same sum

5.Bin-packing: Put n values in (0..1] into fewest bins
of size 1

6.Graph-coloring: chromatic number of a map/graph
(adjacent node have different colors)

7.Integer linear programming: min or max of linear
function of several integer variables with finite set of
eq and neq constraints

They all have exponential number of choices

Eulerian circuit: graph traverse all edges exactly once
(exponential number of choices, but O(n^2) algorithm).

© 2012, S. Antoy Objective 7, page 4/9

NP problems

2-step non-deterministic algorithm: (1) guess
solution, (2) verify solution.

Non-det polynomial if (2) is polynomial time.

Class NP is the set of all problems solved by
non-deterministic polynomial time algorithm.

P is contained in NP.

NP contains Hamiltonian circuit, traveling
saleman, etc.

Halting problem is not in NP

Question: is P = NP ? Probably not.

© 2012, S. Antoy Objective 7, page 5/9

NP-Complete problems

Problem D1 is polynomially reducible to D2 if
exists function t that maps instances of D1 to
instances of D2 with:

1. t maps a yes/no instance to same answer
instance;

2. t is computable in polynomial time.

Problem D is NP-complete if it is in NP and
every problem in NP is polynomially reducible
to D.

E.g., map Hamiltonian circuit to Traveling
Salesman.

1. if (n1,n2) is an edge in HC, then
weight(n1,n2)=1 in TS.

2. Connect all pairs of other node in TS with
weight=2.

© 2012, S. Antoy Objective 7, page 6/9

CNF-SAT

First NP-complete problem, e.g.:

(x∨¬ y)∧(¬x∨ y∨z)∧(x∨z)

Many other problem known to be NP-
complete: HC, TS, etc., see above.

Primality was thought be NP-complete, but it is
not [2002].

Not yet efficient algorithm for factoring
integers.

How to prove that some X is NP-complete:

1. X is in NP;
2. every (one is enough) NP-complete

problem Y maps to X in poly time.

© 2012, S. Antoy Objective 7, page 7/9

NP-hard

A problem P is NP-hard if there is an NP-
complete problem Q poly time reducible to P.
P may or may not be in NP.

P can be used to solve Q.

P is at least as difficult as any NP-problem.

If there is a polynomial algorithm for any NP-
hard problem, then there are polynomial
algorithms for all problems in NP, and
consequently P = NP.

If P ≠ NP, then NP-hard problems have no
solutions in polynomial time, while P = NP
does not resolve whether the NP-hard
problems can be solved in polynomial time.

© 2012, S. Antoy Objective 7, page 8/9

References

Textbook Section 11.3

Web:

http://mathworld.wolfram.com/Complexity
Theory.html

http://en.wikipedia.org/wiki/Computatio
nal_complexity_theory

© 2012, S. Antoy Objective 7, page 9/9

http://mathworld.wolfram.com/ComplexityTheory.html
http://mathworld.wolfram.com/ComplexityTheory.html
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory

