
CS350 ABET Objective 2

Use the Big Oh notation.

Textbook Section 2.2, ~5%.

The efficiency analysis of algorithms focuses on
the order of growth of the basic operation count.

Introduce three notations that express the order of
growth of functions and relate the efficiency of an
algorithm being investigated to the efficiency of
other algorithms that are known to be either
feasible or unfeasible.

© 2012, S. Antoy Objective 2, page 1/9

Big Oh

A function t (n) is in O(g(n)) if there exist a
positive constant c and non-negative integer
n0 such that:

t (n)⩽c g(n) for n⩾n0

Question/example: is 100n+5∈O(n2) ?

Yes: verify for c=100 and n0=5 .

Often t (n)∈O (g(n)) is instead written as
t (n)=O(g(n)) which is confusing!

© 2012, S. Antoy Objective 2, page 2/9

Understanding Big Oh

Intuition: t (n) grows no faster than g(n)
except perhaps for small values of the
argument and apart from a constant multiplier.

If we run a g(n) algorithm, most likely we can
run a t (n) algorithm as well.

© 2012, S. Antoy Objective 2, page 3/9

Big Omega

A very similar to Big Oh, but now the function
t (n) grows no slower than g(n) .

A function t (n) is in Ω(g(n)) if there exist a
positive constant c and non-negative integer
n0 such that:

t (n)⩾c g(n) for n⩾n0

Question/example: is n3∈O(n2) ?

Yes: verify for c=1 and n0=0 .

If we cannot run a g(n) algorithm, most likely
we cannot run a t (n) algorithm as well.
Negative result, but useful to know.

© 2012, S. Antoy Objective 2, page 4/9

Big Theta

Combines Big Oh and Big Omega together.

A function t (n) is in Θ(g(n)) if there exist
positive constants c1 and c2 and a non-
negative integer n0 such that:

c2 g(n)⩾t (n)⩾c1 g(n) for n⩾n0

© 2012, S. Antoy Objective 2, page 5/9

Understanding Big Theta

Intuition: t (n) grows as g(n) except perhaps
for small values of the argument and apart
from constant multipliers.

Most likely, we run a t (n) algorithm iff we run
a g(n) algorithm.

Question/example: is
n(n−1)

2
∈Θ(n2

) ?

Yes: verify for c1=1 /2 and c2=1/4 and
n0=2 .

Hint: let n⩾2 then:

n(n−1)

2
=

n2

2
−

n
2
⩾

n2

2
−

n
2

n
2
=

n2

4

© 2012, S. Antoy Objective 2, page 6/9

A property of Big Oh

Intuition: an algorithm is made of two
consecutive parts of which we know the
growth rate. What is the growth rate of the
whole algorithm?

Theorem. If t1(n)∈O(g1(n)) and
t2(n)∈O(g2(n)) then
t1(n)+t2(n)∈O(max (g1(n), g2(n)))

Example. Tell whether an array contains a
duplicated element.

Hint. There is an obvious O(n2) algorithm.
There is also a two-part, more efficient
algorithm whose analysis uses the theorem.

Theorem is adapted to Ω and Θ .

© 2012, S. Antoy Objective 2, page 7/9

Limits and Growth

Let t (n) and g(n) be functions:

lim
n→∞

t (n)
g(n)

={
0
c
∞

t (n)grows slower than g(n) ,
t (n)growsas g(n) ,
t (n)grows faster than g(n).

Using limits is convenient for the following
reasons:

lim
n→∞

t (n)
g(n)

=lim
n→∞

t ' (n)
g' (n)

and

n !≈√2πn (ne)
n

for large n

Example: compare growth of n ! and 2n

© 2012, S. Antoy Objective 2, page 8/9

References

Textbook Section 2.2

Web:

http://en.wikipedia.org/wiki/Big_O_nota
tion

© 2012, S. Antoy Objective 2, page 9/9

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

