
CS350 ABET Objective 2

Use the Big Oh notation.

Textbook Section 2.2, ~5%.

The efficiency analysis of algorithms focuses on 
the order of growth of the basic operation count.

Introduce three notations that express the order of 
growth of functions and relate the efficiency of an
algorithm being investigated to the efficiency of 
other algorithms that are known to be either 
feasible or unfeasible.
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Big Oh 

A function t (n)  is in O(g(n)) if there exist a 
positive constant c and non-negative integer 
n0 such that:

t (n)⩽c g(n) for n⩾n0

Question/example: is 100n+5∈O(n2) ?

Yes: verify for c=100 and n0=5 .

Often t (n)∈O (g(n)) is instead written as 
t (n)=O(g(n)) which is confusing!
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Understanding Big Oh 

Intuition: t (n) grows no faster than g(n)
except perhaps for small values of the 
argument and apart from a constant multiplier.

If we run a g(n) algorithm, most likely we can 
run a t (n) algorithm as well.
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Big Omega 

A very similar to Big Oh, but now the function 
t (n) grows no slower than g(n) .

A function t (n)  is in Ω(g(n)) if there exist a 
positive constant c and non-negative integer 
n0 such that:

t (n)⩾c g(n) for n⩾n0

Question/example: is n3∈O(n2) ?

Yes: verify for c=1 and n0=0 .

If we cannot run a g(n) algorithm, most likely 
we cannot run a t (n) algorithm as well. 
Negative result, but useful to know.
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Big Theta 

Combines Big Oh and Big Omega together.

A function t (n)  is in Θ(g(n)) if there exist 
positive constants c1 and c2 and a non-
negative integer n0 such that:

c2 g(n)⩾t (n)⩾c1 g(n) for n⩾n0
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Understanding Big Theta 

Intuition: t (n) grows as g(n) except perhaps 
for small values of the argument and apart 
from constant multipliers.

Most likely, we run a t (n)  algorithm iff we run 
a g(n) algorithm.

Question/example: is 
n(n−1)

2
∈Θ(n2

) ?

Yes: verify for c1=1 /2 and c2=1/4 and
n0=2 .

Hint: let n⩾2  then:
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A property of Big Oh 

Intuition: an algorithm is made of two 
consecutive parts of which we know the 
growth rate. What is the growth rate of the 
whole algorithm?

Theorem. If t1(n)∈O(g1(n)) and 
t2(n)∈O(g2(n))  then 
t1(n)+t2(n)∈O(max (g1(n), g2(n)))

Example.  Tell whether an array contains a 
duplicated element.  

Hint. There is an obvious O(n2)  algorithm. 
There is also a two-part, more efficient 
algorithm whose analysis uses the theorem.

Theorem is adapted to Ω  and Θ .
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Limits and Growth 

Let t (n) and g(n) be functions:

lim
n→∞

t (n)
g(n)

={
0
c
∞

t (n)grows slower than g(n) ,
t (n)growsas g(n) ,
t (n)grows faster than g(n).

Using limits is convenient for the following 
reasons:

lim
n→∞

t (n)
g(n)

=lim
n→∞

t ' (n)
g' (n)

and

n !≈√2πn ( ne )
n

for large n

Example: compare growth of n ! and 2n
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