
CS350 ABET Objective 10
Part 3 – Greedy Algorithms

Program greedy algorithms.

Textbook Section 9.1-9.3 and 6.4, ~10%.

A greedy algorithm constructs a solution to an
optimization problem through a sequence of steps.
Each step extends a partial solution with a
feasible, locally optimal, and irrevocable choice
until a complete solution is computed.

© 2012, S. Antoy Objective 10-3, page 1/11

Prim 1

Minimum spanning tree of a graph, stepwise.
Start MST with any node; a step attaches the
closest node not yet in the MST.

Performance depends on efficiency of loop
body which depends on data structures used.

© 2012, S. Antoy Objective 10-3, page 2/11

Prim 2

Time efficiency of naive approach is O(∣V∣∣E∣) ,
since ∣V∣ times it accesses one among ∣E∣
edges.

 ∣E∣ can range from ≈∣V∣ to ≈∣V∣2
/2

Performance O(∣E∣log∣V∣) is achieved with a
binary heap.

© 2012, S. Antoy Objective 10-3, page 3/11

Heap

Binary tree with two properties:

1. complete: full levels left-to-right except last

2. dominance: each node greater than children

Represented as array:

Efficient operations

1. finding an item with the highest priority

2. deleting an item with the highest priority

3. adding a new item to the multiset

© 2012, S. Antoy Objective 10-3, page 4/11

Construct heap bottom up, example:

Insert item in heap:

Delete item from heap, root because of priority:

© 2012, S. Antoy Objective 10-3, page 5/11

Kruskal

Minimum spanning tree of a graph, stepwise.
(1) sort all edges; (2) a step adds the next
smallest edge that does not create a cycle.

Time efficiency dominated by sorting edges:
O(∣E∣log∣E∣) = O(∣E∣log∣V∣)

Note O(log∣E∣)=O(log∣V∣) since ∣E∣⩽∣V∣2 and
O(log∣V∣2

)=O(log∣V∣) .

© 2012, S. Antoy Objective 10-3, page 6/11

Dijkstra 1

Single-source shortest-path in a graph: For
a given source node in the graph, the
algorithm finds the path with lowest cost
between that vertex and every other vertex.

Algorithm is stepwise. (1) start with source as
current, rest as unvisited nodes with infinite
distance; (2) at each step, current is closest
unvisited node to source; update distance of
each unvisited node adjacent to current; mark
current as visited.

Use a priority queue for unvisited nodes.
Efficiency is O(∣E∣log∣V∣) .

© 2012, S. Antoy Objective 10-3, page 7/11

Dijkstra 2

A graph search algorithm that solves the
single-source shortest path problem for a
graph with nonnegative edge path costs,
producing a shortest path tree.

Let the node at which we are starting be called the
initial node. Let the distance of node Y be the distance
from the initial node to Y. Dijkstra's algorithm will
assign some initial distance values and will try to
improve them step by step.

1.Assign to every node a tentative distance value: set
it to zero for our initial node and to infinity for all
other nodes.

2.Mark all nodes unvisited. Set the initial node as
current. Create a set of the unvisited nodes called
the unvisited set consisting of all the nodes except
the initial node.

3.For the current node, consider all of its unvisited
neighbors and calculate their tentative distances. For
example, if the current node A is marked with a

© 2012, S. Antoy Objective 10-3, page 8/11

tentative distance of 6, and the edge connecting it
with a neighbor B has length 2, then the distance to
B (through A) will be 6+2=8. If this distance is less
than the previously recorded tentative distance of B,
then overwrite that distance. Even though a
neighbor has been examined, it is not marked as
"visited" at this time, and it remains in the unvisited
set.

4.When we are done considering all of the neighbors
of the current node, mark the current node as visited
and remove it from the unvisited set. A visited node
will never be checked again; its distance recorded
now is final and minimal.

5.If the destination node has been marked visited
(when planning a route between two specific nodes)
or if the smallest tentative distance among the nodes
in the unvisited set is infinity (when planning a
complete traversal), then stop. The algorithm has
finished.

6.Set the unvisited node marked with the smallest
tentative distance as the next "current node" and go
back to step 3.

© 2012, S. Antoy Objective 10-3, page 9/11

Dijkstra 3
Execution:

© 2012, S. Antoy Objective 10-3, page 10/11

References

Textbook Section 9.1-9.3 (for greedy)
Textbook Section 6.4 (for heap)

Web:

http://en.wikipedia.org/wiki/Prim
%27s_algorithm

http://en.wikipedia.org/wiki/Kruskal
%27s_algorithm

http://en.wikipedia.org/wiki/Dijkstra
%27s_algorithm

© 2012, S. Antoy Objective 10-3, page 11/11

http://en.wikipedia.org/wiki/Prim's_algorithm
http://en.wikipedia.org/wiki/Prim's_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Kruskal's_algorithm
http://en.wikipedia.org/wiki/Kruskal's_algorithm

