CS350 ABET Objective 10 Part 3 – Greedy Algorithms

Program greedy algorithms.

Textbook Section 9.1-9.3 and 6.4, ~10%.

A greedy algorithm constructs a solution to an optimization problem through a sequence of steps. Each step extends a partial solution with a <u>feasible</u>, <u>locally optimal</u>, and <u>irrevocable</u> choice until a complete solution is computed.

Prim 1

Minimum spanning tree of a graph, stepwise. Start MST with any node; a step attaches the closest node not yet in the MST.

ALGORITHM *Prim*(*G*)

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \emptyset$ for $i \leftarrow 1$ to |V| - 1 do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u)such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return E_T

Performance depends on efficiency of loop body which depends on data structures used.

Prim 2

Time efficiency of naive approach is O(|V||E|), since |V| times it accesses one among |E| edges.

|E| can range from $\approx |V|$ to $\approx |V|^2/2$

Performance $O(|E|\log|V|)$ is achieved with a binary heap.

Неар

Binary tree with two properties:

- 1. *complete*: full levels left-to-right except last
- 2. *dominance*: each node greater than children

Represented as array:

Efficient operations

- 1. finding an item with the highest priority
- 2. deleting an item with the highest priority
- 3. adding a new item to the multiset

Construct heap bottom up, example:

Insert item in heap:

Delete item from heap, root because of priority:

Kruskal

Minimum spanning tree of a graph, stepwise. (1) sort all edges; (2) a step adds the next smallest edge that does not create a cycle.

ALGORITHM Kruskal(G)

//Kruskal's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G sort E in nondecreasing order of the edge weights $w(e_{i_1}) \leq \cdots \leq w(e_{i_{|E|}})$ $E_T \leftarrow \varnothing$; ecounter $\leftarrow 0$ //initialize the set of tree edges and its size $k \leftarrow 0$ //initialize the number of processed edges while ecounter < |V| - 1 do $k \leftarrow k + 1$ if $E_T \cup \{e_{i_k}\}$ is acyclic $E_T \leftarrow E_T \cup \{e_{i_k}\}$; ecounter \leftarrow ecounter + 1return E_T

Time efficiency dominated by sorting edges: $O(|E|\log|E|) = O(|E|\log|V|)$

Note $O(\log |E|) = O(\log |V|)$ since $|E| \le |V|^2$ and $O(\log |V|^2) = O(\log |V|)$.

Dijkstra 1

Single-source shortest-path in a graph: For a given source node in the graph, the algorithm finds the path with lowest cost between that vertex and every other vertex.

Algorithm is stepwise. (1) start with source as <u>current</u>, rest as <u>unvisited</u> nodes with infinite distance; (2) at each step, current is closest unvisited node to source; update distance of each unvisited node adjacent to current; mark current as visited.

Use a priority queue for unvisited nodes. Efficiency is $O(|E|\log|V|)$.

Dijkstra 2

A graph search algorithm that solves the single-source shortest path problem for a graph with nonnegative edge path costs, producing a shortest path tree.

Let the node at which we are starting be called the initial node. Let the distance of node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some initial distance values and will try to improve them step by step.

- 1.Assign to every node a tentative distance value: set it to zero for our initial node and to infinity for all other nodes.
- 2.Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited nodes called the *unvisited set* consisting of all the nodes except the initial node.
- 3.For the current node, consider all of its unvisited neighbors and calculate their *tentative* distances. For example, if the current node A is marked with a

© 2012, S. Antoy

tentative distance of 6, and the edge connecting it with a neighbor B has length 2, then the distance to B (through A) will be 6+2=8. If this distance is less than the previously recorded tentative distance of B, then overwrite that distance. Even though a neighbor has been examined, it is not marked as "visited" at this time, and it remains in the *unvisited set*.

- 4.When we are done considering all of the neighbors of the current node, mark the current node as visited and remove it from the *unvisited set*. A visited node will never be checked again; its distance recorded now is final and minimal.
- 5.If the destination node has been marked visited (when planning a route between two specific nodes) or if the smallest tentative distance among the nodes in the *unvisited set* is infinity (when planning a complete traversal), then stop. The algorithm has finished.
- 6.Set the unvisited node marked with the smallest tentative distance as the next "current node" and go back to step 3.

Dijkstra 3

Execution:

Tree vertices	Remaining vertices	Illustration
a(-, 0)	$\bm{b}(\bm{a},\bm{3}) \ c(-,\infty) \ d(a,7) \ e(-,\infty)$	3 2 d 4 c 6 d
b(a, 3)	$c(b, 3+4) \ d(b, 3+2) \ e(-, \infty)$	3 2 d 4 c 6 d
d(b, 5)	c (b , 7) e(d, 5 + 4)	3 2 d 4 c 6 d
c(b, 7)	e(d, 9)	a b 4 c 6 6 6 7 d 4 e

e(d, 9)

References

Textbook Section 9.1-9.3 (for greedy) Textbook Section 6.4 (for heap)

Web:

http://en.wikipedia.org/wiki/Prim
%27s_algorithm

http://en.wikipedia.org/wiki/Kruskal %27s_algorithm

<u>http://en.wikipedia.org/wiki/Dijkstra</u> <u>%27s_algorithm</u>