
CS350 ABET Objective 10
Part 3 – Greedy Algorithms

Program greedy algorithms.

Textbook Section 9.1-9.3 and 6.4, ~10%.

A greedy algorithm constructs a solution to an 
optimization problem through a sequence of steps. 
Each step extends a partial solution with a 
feasible, locally optimal, and irrevocable choice 
until a complete solution is computed.
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Prim 1

Minimum spanning tree of a graph, stepwise. 
Start MST with any node; a step attaches the 
closest node not yet in the MST.

Performance depends on efficiency of loop 
body which depends on data structures used.
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Prim 2

Time efficiency of naive approach is O(∣V∣∣E∣) , 
since ∣V∣ times it accesses one among ∣E∣
edges.

 ∣E∣  can range from ≈∣V∣  to ≈∣V∣2
/2

Performance O(∣E∣log∣V∣) is achieved with a 
binary heap.
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Heap

Binary tree with two properties:

1. complete: full levels left-to-right except last

2. dominance: each node greater than children

Represented as array:

Efficient operations

1. finding an item with the highest priority

2. deleting an item with the highest priority

3. adding a new item to the multiset
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Construct heap bottom up, example:

Insert item in heap:

Delete item from heap, root because of priority:
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Kruskal

Minimum spanning tree of a graph, stepwise. 
(1) sort all edges; (2) a step adds the next 
smallest edge that does not create a cycle.

Time efficiency dominated by sorting edges: 
O(∣E∣log∣E∣) = O(∣E∣log∣V∣)

Note O(log∣E∣)=O(log∣V∣) since ∣E∣⩽∣V∣2 and
O(log∣V∣2

)=O(log∣V∣) .
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Dijkstra 1

Single-source shortest-path in a graph: For 
a given source node in the graph, the 
algorithm finds the path with lowest cost 
between that vertex and every other vertex.

Algorithm is stepwise. (1) start with source as 
current, rest as unvisited nodes with infinite 
distance; (2) at each step, current is closest 
unvisited node to source; update distance of 
each unvisited node adjacent to current; mark 
current as visited.

Use a priority queue for unvisited nodes. 
Efficiency is O(∣E∣log∣V∣) .

© 2012, S. Antoy Objective 10-3, page 7/11



Dijkstra 2

A graph search algorithm that solves the 
single-source shortest path problem for a 
graph with nonnegative edge path costs, 
producing a shortest path tree. 

Let the node at which we are starting be called the 
initial node. Let the distance of node Y be the distance 
from the initial node to Y.   Dijkstra's algorithm will 
assign some initial distance values and will try to 
improve them step by step.

1.Assign to every node a tentative distance value: set 
it to zero for our initial node and to infinity for all 
other nodes. 

2.Mark all nodes unvisited. Set the initial node as 
current. Create a set of the unvisited nodes called 
the unvisited set consisting of all the nodes except 
the initial node. 

3.For the current node, consider all of its unvisited 
neighbors and calculate their tentative distances. For 
example, if the current node A is marked with a 
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tentative distance of 6, and the edge connecting it 
with a neighbor B has length 2, then the distance to 
B (through A) will be 6+2=8. If this distance is less 
than the previously recorded tentative distance of B, 
then overwrite that distance. Even though a 
neighbor has been examined, it is not marked as 
"visited" at this time, and it remains in the unvisited 
set. 

4.When we are done considering all of the neighbors 
of the current node, mark the current node as visited 
and remove it from the unvisited set. A visited node 
will never be checked again; its distance recorded 
now is final and minimal. 

5.If the destination node has been marked visited 
(when planning a route between two specific nodes) 
or if the smallest tentative distance among the nodes 
in the unvisited set is infinity (when planning a 
complete traversal), then stop. The algorithm has 
finished. 

6.Set the unvisited node marked with the smallest 
tentative distance as the next "current node" and go 
back to step 3. 
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Dijkstra 3
Execution:
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Textbook Section 9.1-9.3 (for greedy)
Textbook Section 6.4 (for heap)
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