
CS350 ABET Objective 10
Part 2 – Dynamic Programming

Design dynamic programming algorithms.

Textbook Section 8, ~15%.

Dynamic programming is a technique for solving
problems with overlapping subproblems. Typically,
these subproblems arise from a recurrence relating
a solution to a given problem with solutions to its
smaller subproblems of the same type. Rather
than solving overlapping subproblems again and
again, dynamic programming suggests solving
each of the smaller subproblems only once and
recording the results in a table from which we can
then obtain a solution to the original problem
[Levitin 2012].

The technique is presented by a set of examples.

© 2012, S. Antoy Objective 10-2, page 1/13

Example 1

Coin-row: pick maximum amount from a row
of coins, but no adjacent coins.

c1

5
c2

1
c3

2
c4

10
c5

6
c6

2

F (n) is the maximum amount that can be
picked from the first n coins with F (0)=0 and
F (1)=c1 .

Should I pick coin cn ?

YES: F (n)=cn+F (n−2)

can't pick cn−1

NO: F (n)=F (n−1)

forget cn , do best with the rest

Choose the maximum.

© 2012, S. Antoy Objective 10-2, page 2/13

Trace 1

F(0): 0 by definition

F(1): 5 by definition

F(2): choose F(1)=5 or 1+F(0)=1, take 5

F(3): choose F(2)=5 or 2+F(1)=7, take 7

F(4): choose F(3)=7 or 10+F(2)=15, take 15

F(5): choose F(4)=15 or 6+F(3)=13, take 15

F(6): choose F(5)=15 or 2+F(4)=17, take 17

The maximum amount that can be picked from
the first 6 coins, without using adjacent coins,
is 17.

© 2012, S. Antoy Objective 10-2, page 3/13

Example 2

Change-making: give change with minimum
number of coins of given denominations.

d1

1
d2

3
d3

4

Instance: change is 6 coins are 3 and 3.

F (n) is the minimum number of coin that add
up to n ; F (0)=0 .

Should I put a coin of denomination d j ?

1. look at F (n−d j) for all acceptable d j ;

2. choose the minimum;

3. add 1 to obtain F (n) .

© 2012, S. Antoy Objective 10-2, page 4/13

Trace 2
change goal 1
use denomination 1
subproblem change 0 coins []
accept denomination 1 number of coins 1
solve goal 1 coins [1]

change goal 2
use denomination 1 #

subproblem change 1 coins [1]
accept denomination 1 number of coins 2
solve goal 2 coins [1,1]

change goal 3
use denomination 1
subproblem change 2 coins [1,1]
accept denomination 1 number of coins 3
use denomination 3 #

subproblem change 0 coins []
accept denomination 3 number of coins 1
solve goal 3 coins [3]

change goal 4
...

© 2012, S. Antoy Objective 10-2, page 5/13

Example 3

Coin-collection: collect the most coins, each
one in the cell of board, by moving over the
cell in a right-down path from the top-left
corner to the bottom-right corner of the board.

© 2012, S. Antoy Objective 10-2, page 6/13

A board cell, C (i , j) , is either 0 or 1.
F (i , j) is the maximum number of coins that

can be collected from cell (i , j) , with

F (1,1)=C (1,1)

F (1, j)=F (1, j−1)+C (1, j)
F (i ,1)=F (i−1,1)+C (i ,1)
F (i , j)=max (F (i−1, j) ,F (i , j−1))+C (i , j)

The above equations hold with i>1, j>1 .

The result is in the bottom-right entry of F .

If the computation looks “reversed” to you,
consider moving up and left from the lowest-
rightmost cell of the board.

© 2012, S. Antoy Objective 10-2, page 7/13

Example 4

Knapsack: given n items (w1,v1)…(wn , vn)

where wi is a weight and v i is a value, find a
most valuable combination of items that fit into
a knapsack of capacity W .

The smaller instance is the problem for the
first i items, 1⩽i⩽n , and a knapsack of
capacity j , 1⩽ j⩽W . Let F (i , j) be the value
of this instance.

Should item i go into the knapsack?

No: F (i , j)=F (i−1, j)

Yes: F (i , j)=vi+F (i−1, j−w i) , w i⩽ j

Choose the largest.

© 2012, S. Antoy Objective 10-2, page 8/13

Memory Functions

The examples so far produced bigger subproblems
from smaller ones ── a bottom-up approach. We
can solve a problem top-down by remembering
(memoization) computed instances of subproblems
(to avoid recomputation).

© 2012, S. Antoy Objective 10-2, page 9/13

Warshall 1

Compute the transitive closure of a directed graph
(binary relation).

Input: adjacency matrix of graph,entry 0/1.

Output: adjacency matrix of transitive closure.

Vertices (nodes) are numbered 1,2,…

Compute matrices R(0) ,…R(k−1) , R(k) ,…R(n) .

Element rij
(k)=1 iff exists path from i to j with

intermediate nodes no higher than k .

© 2012, S. Antoy Objective 10-2, page 10/13

Warshall 2

Compute the transitive closure of a directed graph

Running time is Θ(n3
) .

© 2012, S. Antoy Objective 10-2, page 11/13

Floyd

Compute the shortest path of every pair of nodes
in a directed graph (binary relation). Similar to
Warshall. Adjacency matrix contains ∞ for no
edge.

Running time is Θ(n3) .

A variation with a second matrix of equal size
computes also the shortest path in addition to its
cost.

© 2012, S. Antoy Objective 10-2, page 12/13

References

Textbook Section 8

Web:
http://en.wikipedia.org/wiki/Floyd–
Warshall_algorithm

© 2012, S. Antoy Objective 10-2, page 13/13

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

