
CS350 ABET Objective 10
Part 2 – Dynamic Programming

Design dynamic programming algorithms.

Textbook Section 8, ~15%.

Dynamic programming is a technique for solving 
problems with overlapping subproblems. Typically, 
these subproblems arise from a recurrence relating 
a solution to a given problem with solutions to its 
smaller subproblems of the same type. Rather 
than solving overlapping subproblems again and 
again, dynamic programming suggests solving 
each of the smaller subproblems only once and
recording the results in a table from which we can 
then obtain a solution to the original problem 
[Levitin 2012].

The technique is presented by a set of examples.

© 2012, S. Antoy Objective 10-2, page 1/13



Example 1

Coin-row: pick maximum amount from a row 
of coins, but no adjacent coins.

c1

5
c2

1
c3

2
c4

10
c5

6
c6

2

F (n) is the maximum amount that can be 
picked from the first n coins with F (0)=0  and
F (1)=c1  .

Should I pick coin cn ?

YES: F (n)=cn+F (n−2)

can't pick cn−1

NO: F (n)=F (n−1)

forget cn , do best with the rest

Choose the maximum.
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Trace 1

F(0): 0 by definition

F(1): 5 by definition

F(2): choose F(1)=5 or 1+F(0)=1, take 5

F(3): choose F(2)=5 or 2+F(1)=7, take 7

F(4): choose F(3)=7 or 10+F(2)=15, take 15

F(5): choose F(4)=15 or 6+F(3)=13, take 15

F(6): choose F(5)=15 or 2+F(4)=17, take 17

The maximum amount that can be picked from 
the first 6 coins, without using adjacent coins, 
is 17.
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Example 2

Change-making: give change with minimum 
number of coins of given denominations.

d1

1
d2

3
d3

4

Instance: change is 6 coins are 3 and 3.

F (n) is the minimum number of coin that add 
up to n ; F (0)=0 .

Should I put a coin of denomination d j ?

1. look at F (n−d j) for all acceptable d j ;

2. choose the minimum;

3. add 1 to obtain F (n) .
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Trace 2
change goal 1
use denomination 1
subproblem change 0 coins []
accept denomination 1 number of coins 1
solve goal 1 coins [1]

change goal 2
use denomination 1  #

subproblem change 1 coins [1]
accept denomination 1 number of coins 2
solve goal 2 coins [1,1]

change goal 3
use denomination 1
subproblem change 2 coins [1,1]
accept denomination 1 number of coins 3
use denomination 3  #

subproblem change 0 coins []
accept denomination 3 number of coins 1
solve goal 3 coins [3]

change goal 4
...
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Example 3

Coin-collection: collect the most coins, each 
one in the cell of board, by moving over the 
cell in a right-down path from the top-left 
corner to the bottom-right corner of the board.
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A board cell, C (i , j) , is either 0 or 1.
F (i , j) is the maximum number of coins that 

can be collected from cell (i , j) , with

F (1,1)=C (1,1)

F (1, j)=F (1, j−1)+C (1, j)
F (i ,1)=F (i−1,1)+C (i ,1)
F (i , j)=max (F (i−1, j) ,F (i , j−1))+C (i , j)

The above equations hold with i>1, j>1 .

The result is in the bottom-right entry of F .

If the computation looks “reversed” to you, 
consider moving up and left from the lowest-
rightmost cell of the board.
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Example 4

Knapsack: given n items (w1,v1)…(wn , vn)

where wi is a weight and v i is a value, find a 
most valuable combination of items that fit into 
a knapsack of capacity W . 

The smaller instance is the  problem for the 
first i items, 1⩽i⩽n , and a knapsack of 
capacity j , 1⩽ j⩽W . Let F (i , j) be the value 
of this instance.

Should item i go into the knapsack?

No: F (i , j)=F (i−1, j)

Yes: F (i , j)=vi+F (i−1, j−w i) , w i⩽ j

Choose the largest.
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Memory Functions

The examples so far produced bigger subproblems 
from smaller ones ── a bottom-up approach.  We 
can solve a problem top-down by remembering 
(memoization) computed instances of subproblems 
(to avoid recomputation).
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Warshall 1

Compute the transitive closure of a directed graph 
(binary relation).

Input: adjacency matrix of graph,entry 0/1.

Output: adjacency matrix of transitive closure.

Vertices (nodes) are numbered 1,2,…

Compute matrices R(0) ,…R(k−1) , R(k) ,…R(n) .

Element rij
(k)=1 iff exists path from i to j with 

intermediate nodes no higher than k .
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Warshall 2

Compute the transitive closure of a directed graph 

Running time is Θ(n3
) .
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Floyd

Compute the shortest path of every pair of nodes 
in a directed graph (binary relation). Similar to 
Warshall. Adjacency matrix contains ∞ for no 
edge.

Running time is Θ(n3) .

A variation with a second matrix of equal size 
computes also the shortest path in addition to its 
cost.
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