
CS350 ABET Objective 10
Part 1 - Divide-and-Conquer

Design divide and conquer algorithms.

Textbook Section 5, ~15%.

Divide and conquer is an important algorithm 
design paradigm based on multi-branched 
recursion.  This paradigm is the basis of efficient 
algorithms for problems such as sorting (e.g., 
quicksort, merge sort), multiplying large numbers 
and matrices, and several geometric problems.

The correctness of a divide and conquer algorithm 
is usually proved by mathematical induction 
(Objective 5), and its computational cost is often 
determined by solving recurrence relations 
(Objective 4).
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Divide-and-Conquer

1. Divide a problem P into subproblems of 
same kind and size.

2. Solve each subproblem (typically 
recursively)

3. Combine the solutions of the 
subproblems into the solution for P.

Example:

 
a0+a1+…an−1  =
    (a0+a1+…a⌊n/2⌋−1)+(a⌊n/2⌋+…an−1)

Compare with decrease-and-conquer:

 a0+a1+…an−1=a0+(a1+…an−1)

Which is better? (round-off errors)
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Efficiency of Div-and-Conq

Assume a ≥ 1, b > 1, n power of b

T (n)=aT (n /b)+f (n)

Master Theorem: if f (n)∈Θ(nd) , d ≥ 0, then:

T (n)={
Θ(nd

)

Θ(nd logn)

Θ(nlogba)

if a<bd ,
if a=bd ,
if a>bd.

Same for O and Ω.

Example: addition above, a=2, b=2, and d=0:

A (n)∈Θ(nlogb a)=Θ(nlog2 2
)=Θ(n)
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Mergesort

Sort an array by divide-and-conquer.

1. Split it in the middle. 

2. Sort the two halfs.

3. Merge them.
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Merge

Merge 2 sorted arrays:

Transfer the smaller of the first elements
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Efficiency of Mergesort

Assume n is a power of 2.

C (n)=2C (n /2)+Cmerge(n)

C (1)=0
for n>1

Worst case of merge: Cmerge(n)=n−1

Cworst (n)=2Cworst (n /2)+n−1
Cworst (1)=0

for n>1

From Master Th.: Cworst (n)∈Θ(n log n)

From recurrence: Cworst (n)=n log2 n−n+1

Average: ~0.25n less than worst.
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Quicksort

Divide-and-Conquer like Mergesort, but 
divides on value rather than position.

Most of the work is done by Partition, the rest 
is mainly recursion.

Note that l and r in the formal argument A[l..r] 
must be considered as variables.
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Partition

A partition is an arrangement of an array such 
that all the elements before A[s] come before 
A[s] and similarly all the elements after.
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Efficiency of Quicksort

Assume n is a power of 2.

Cbest (n)=2Cbest (n /2)+n
Cbest (1)=0

for n>1

From Master Th.: Cbest (n)∈Θ(n log n)

From recurrence: Cbest (n)=n log2 n

Worst case (array sorted): Cworst (n)∈Θ(n2
)

Aver case: Caver(n)≈2n ln n≈1.39n log2n
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Quicksort notes

“Usually” runs faster than mergesort and 
heapsort.

Weaknesses:

1. Worst case: O(n2
)

2. Stack for recursion: O(logn)

Improvements:

1. Median-of-three pivot

2. Switch to insert sort for small arrays

3. Three-way partition
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Binary Trees

A binary tree is either of two values: a leaf or a 
branch consisting of a root and two binary 
trees called left and right.

Efficiency: size is number of branches 
(decorations), operation is addition (same as 
comparison of max). 

A (n(T ))=A (n(T l))+A (n(T r))+1
A (0)=0

for n(T )>0
 

Height makes one addition for each branch.

A (n)=n
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Traversals

Recur on left and right, visit the root before or 
after or in between.

Pre-order: root, left right

In-order: left, root, right

Post-order: left, right, root

Example:
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Multiplications

How many digit * digit for two n-digit numbers?

By hand is n * n.  It can be less.

Example:

 
23∗14=(2⋅101

+3⋅100
)∗(1⋅101

+4⋅100
)

     (2∗1)102+(2∗4+3∗1)101+(3∗4)100

Then:
2∗4+3∗1=(2+3)∗(1+4)−2∗1−3∗4

where the last 2 are already computed.

It generalizes to a number of 2n digits:

1234∗5678=(12⋅102+34)∗(56⋅102+78)

© 2012, S. Antoy Objective 10-1, page 13/19



Efficiency

A multiplication of n-digit numbers requires 3 
multiplications of n/2-digit numbers:

M (n)=3 M (n/2)

M (1)=1
for n>1

Solve for n=2k :

M (2k)=3M(2k−1)=…3k M (2k−k)=3k

since k=log2n :

M (n)=3log2n=nlog23
≈n1.585

What about additions?

A (n)=3 A (n /2)+c n
A (1)=1

for n>1

Master Th. gives: 

A (n)∈Θ(nlog23
)
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Strassen's MM

Multiply two 2*2 matrices with 7 * and 18 + instead 
of 8 * and 4 + by brute force.

Scales to larger sizes.
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Strassen's Efficiency

Number of * assuming n=2k :

M (2k
)=7M(2k−1

)=…7k M (2k−k
)=7k

M (n)=7log2n=nlog2 7
≈n2.807

Recurrence relation:

A (n)=7 A (n/2)+18(n /2)
2

A (1)=1
for n>1

Master Th. Gives:

A (n)∈Θ(nlog27
)

There are tighter bounds by algorithms that 
are not practical.
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Closest-Pair

Find two closest points in a set of n points.

Brute-force algorithm is O(n2
)

Idea: divide (and conq) points into two subsets 
of n/2 points each by drawing a separating line 
“in the middle”; recur on each subset; check 
pairs of point that cross the separating line.
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Closest-Pair (2)

Let d be the distance of closest pair so far. 
Have 2 sorted lists of points according to their 
x and y coordinates.

Only points with x within d of the separating 
line must be checked.

For any such point p with given y, only points 
with y within d of  p must be checked.

The number of such points is small (6) no 
matter what. Thus recurrence is:

T (n)=2T (n/2)+f (n)

where f (n)∈Θ(n) . Thus by Master Th:

T (n)∈Θ(n log2n)
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References

Textbook Section 5

Web: http://en.wikipedia.org/wiki/
has pages for all the problems/algorithms and 
the Master Theorem.
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