
CS350 ABET Objective 10
Part 1 - Divide-and-Conquer

Design divide and conquer algorithms.

Textbook Section 5, ~15%.

Divide and conquer is an important algorithm
design paradigm based on multi-branched
recursion. This paradigm is the basis of efficient
algorithms for problems such as sorting (e.g.,
quicksort, merge sort), multiplying large numbers
and matrices, and several geometric problems.

The correctness of a divide and conquer algorithm
is usually proved by mathematical induction
(Objective 5), and its computational cost is often
determined by solving recurrence relations
(Objective 4).

© 2012, S. Antoy Objective 10-1, page 1/19

Divide-and-Conquer

1. Divide a problem P into subproblems of
same kind and size.

2. Solve each subproblem (typically
recursively)

3. Combine the solutions of the
subproblems into the solution for P.

Example:

a0+a1+…an−1 =
 (a0+a1+…a⌊n/2⌋−1)+(a⌊n/2⌋+…an−1)

Compare with decrease-and-conquer:

 a0+a1+…an−1=a0+(a1+…an−1)

Which is better? (round-off errors)

© 2012, S. Antoy Objective 10-1, page 2/19

Efficiency of Div-and-Conq

Assume a ≥ 1, b > 1, n power of b

T (n)=aT (n /b)+f (n)

Master Theorem: if f (n)∈Θ(nd) , d ≥ 0, then:

T (n)={
Θ(nd

)

Θ(nd logn)

Θ(nlogba)

if a<bd ,
if a=bd ,
if a>bd.

Same for O and Ω.

Example: addition above, a=2, b=2, and d=0:

A (n)∈Θ(nlogb a)=Θ(nlog2 2
)=Θ(n)

© 2012, S. Antoy Objective 10-1, page 3/19

Mergesort

Sort an array by divide-and-conquer.

1. Split it in the middle.

2. Sort the two halfs.

3. Merge them.

© 2012, S. Antoy Objective 10-1, page 4/19

Merge

Merge 2 sorted arrays:

Transfer the smaller of the first elements

© 2012, S. Antoy Objective 10-1, page 5/19

Efficiency of Mergesort

Assume n is a power of 2.

C (n)=2C (n /2)+Cmerge(n)

C (1)=0
for n>1

Worst case of merge: Cmerge(n)=n−1

Cworst (n)=2Cworst (n /2)+n−1
Cworst (1)=0

for n>1

From Master Th.: Cworst (n)∈Θ(n log n)

From recurrence: Cworst (n)=n log2 n−n+1

Average: ~0.25n less than worst.

© 2012, S. Antoy Objective 10-1, page 6/19

Quicksort

Divide-and-Conquer like Mergesort, but
divides on value rather than position.

Most of the work is done by Partition, the rest
is mainly recursion.

Note that l and r in the formal argument A[l..r]
must be considered as variables.

© 2012, S. Antoy Objective 10-1, page 7/19

Partition

A partition is an arrangement of an array such
that all the elements before A[s] come before
A[s] and similarly all the elements after.

© 2012, S. Antoy Objective 10-1, page 8/19

Efficiency of Quicksort

Assume n is a power of 2.

Cbest (n)=2Cbest (n /2)+n
Cbest (1)=0

for n>1

From Master Th.: Cbest (n)∈Θ(n log n)

From recurrence: Cbest (n)=n log2 n

Worst case (array sorted): Cworst (n)∈Θ(n2
)

Aver case: Caver(n)≈2n ln n≈1.39n log2n

© 2012, S. Antoy Objective 10-1, page 9/19

Quicksort notes

“Usually” runs faster than mergesort and
heapsort.

Weaknesses:

1. Worst case: O(n2
)

2. Stack for recursion: O(logn)

Improvements:

1. Median-of-three pivot

2. Switch to insert sort for small arrays

3. Three-way partition

© 2012, S. Antoy Objective 10-1, page 10/19

Binary Trees

A binary tree is either of two values: a leaf or a
branch consisting of a root and two binary
trees called left and right.

Efficiency: size is number of branches
(decorations), operation is addition (same as
comparison of max).

A (n(T))=A (n(T l))+A (n(T r))+1
A (0)=0

for n(T)>0

Height makes one addition for each branch.

A (n)=n

© 2012, S. Antoy Objective 10-1, page 11/19

Traversals

Recur on left and right, visit the root before or
after or in between.

Pre-order: root, left right

In-order: left, root, right

Post-order: left, right, root

Example:

© 2012, S. Antoy Objective 10-1, page 12/19

Multiplications

How many digit * digit for two n-digit numbers?

By hand is n * n. It can be less.

Example:

23∗14=(2⋅101

+3⋅100
)∗(1⋅101

+4⋅100
)

 (2∗1)102+(2∗4+3∗1)101+(3∗4)100

Then:
2∗4+3∗1=(2+3)∗(1+4)−2∗1−3∗4

where the last 2 are already computed.

It generalizes to a number of 2n digits:

1234∗5678=(12⋅102+34)∗(56⋅102+78)

© 2012, S. Antoy Objective 10-1, page 13/19

Efficiency

A multiplication of n-digit numbers requires 3
multiplications of n/2-digit numbers:

M (n)=3 M (n/2)

M (1)=1
for n>1

Solve for n=2k :

M (2k)=3M(2k−1)=…3k M (2k−k)=3k

since k=log2n :

M (n)=3log2n=nlog23
≈n1.585

What about additions?

A (n)=3 A (n /2)+c n
A (1)=1

for n>1

Master Th. gives:

A (n)∈Θ(nlog23
)

© 2012, S. Antoy Objective 10-1, page 14/19

Strassen's MM

Multiply two 2*2 matrices with 7 * and 18 + instead
of 8 * and 4 + by brute force.

Scales to larger sizes.

© 2012, S. Antoy Objective 10-1, page 15/19

Strassen's Efficiency

Number of * assuming n=2k :

M (2k
)=7M(2k−1

)=…7k M (2k−k
)=7k

M (n)=7log2n=nlog2 7
≈n2.807

Recurrence relation:

A (n)=7 A (n/2)+18(n /2)
2

A (1)=1
for n>1

Master Th. Gives:

A (n)∈Θ(nlog27
)

There are tighter bounds by algorithms that
are not practical.

© 2012, S. Antoy Objective 10-1, page 16/19

Closest-Pair

Find two closest points in a set of n points.

Brute-force algorithm is O(n2
)

Idea: divide (and conq) points into two subsets
of n/2 points each by drawing a separating line
“in the middle”; recur on each subset; check
pairs of point that cross the separating line.

© 2012, S. Antoy Objective 10-1, page 17/19

Closest-Pair (2)

Let d be the distance of closest pair so far.
Have 2 sorted lists of points according to their
x and y coordinates.

Only points with x within d of the separating
line must be checked.

For any such point p with given y, only points
with y within d of p must be checked.

The number of such points is small (6) no
matter what. Thus recurrence is:

T (n)=2T (n/2)+f (n)

where f (n)∈Θ(n) . Thus by Master Th:

T (n)∈Θ(n log2n)

© 2012, S. Antoy Objective 10-1, page 18/19

References

Textbook Section 5

Web: http://en.wikipedia.org/wiki/
has pages for all the problems/algorithms and
the Master Theorem.

© 2012, S. Antoy Objective 10-1, page 19/19

http://en.wikipedia.org/wiki/

