CS350 ABET Objective 1 & 8

Analyze the running time and space complexity of
algorithms.

Compare the rates of growth of functions.
Textbook Section 2.1, ~5%.
We outline a general framework for analyzing the

efficiency of algorithms. Time efficiency indicates
how fast an algorithm runs.

Most algorithms are designed to work with inputs
of arbitrary size. The efficiency of an algorithm is
stated as a function relating the input size to the
number of steps executed (or storage locations
occupied) to completion.

Typical efficiency functions are compared and
worst-, best-, and average-cases are defined.

© 2012, S. Antoy Objective 1 and 8, page 1/8

http://en.wikipedia.org/wiki/Algorithm

Efficiency of an Algorithm

Concern about two resources:
1. Running time
2. Memory space

time efficiency/complexity
= time required to run

space efficiency/complexity
= space required to run

(space usually less crucial)

Requires resources depend on inputs.
Usually a larger input takes more resources.

E.g.: multiply two numbers.
E.g.: sorting a sequence.

© 2012, S. Antoy Objective 1 and 8, page 2/8

Input's size

What do we measure or count?
It depends on the problem.
Must know/understand algorithm.

E.g.: multiply two numbers.

Number of digits.

Digits are multiplied with each other.
More digits. more multiplications.

E.g.: sorting a seguence.

Length (number of elements) of the sequence.
Elements are moved around.

More elements, more moves.

E.g.: evaluate a polynomial.

Degree of the polynomial.

Multiply and add variables and/or coefficients.
Higher degree, more multiplications and additions.

© 2012, S. Antoy Objective 1 and 8, page 3/8

Unit for Measuring Time

Some obvious choice:
1. Clock actual running time
2. Count all the operations executed
3. Count one particular basic operation

Last option is the standard choice (no time!)

Let:
* n = the Input size
« C(n) = the count of basic operation
e cop = the execution time of basic op
 T(n) = running time

© 2012, S. Antoy Objective 1 and 8, page 4/8

Time of Basic Op

Typically C,, Is hard to guess and ignored.

What can you say Iif
1. double machine speed?
2. double input size?

1. Half the time.
2. Assume C(n)=3.3n’ (arbitrary):

T(QH)NcOpC(Zn)_B.B(Zn)2_4
T(n) c,,C(n) 33n>

In both cases C,, does not matter.

© 2012, S. Antoy Objective 1 and 8, page 5/8

Orders of growth

n log, n n nlogyn af n 2" n!

10 33 0t 33100 10 10° 107 3.6-10°
10° 6.6 10° 66107 10 10° 1310 9310™
10° 1) 17 L0108 108 107

10 13 0t 130 107 10

10° 17 17 L70° (VR (1 o

1P 200 1t 20007 (TR (1

© 2012, S. Antoy Objective 1 and 8, page 6/8

Worst, Best, Average Case

ALGORITHM SequentialSearch(A{0..n — 1|, K)
//Searches for a given value in a given array by sequential search
[Input: An array A{(.n — 1| and a search kev K
[{Output: The index of the first element in A that matches K

I or —1 if there are no matching elements
P
while i < n and A|i|# K do

Pe—i+1

ifi = nreturn i
else return —1

Basic operation: key comparison

Worst: n Key Is not in array.
Best: 1 Key is in A[Q].

Average: assume key found with probabilty p,
and every index is equally likely:

o) =2) (1)

© 2012, S. Antoy Objective 1 and 8, page 7/8

References
Textbook Section 2.1

Web:

http://en.wikipedia.org/wiki/Analysis o
f algorithms

© 2012, S. Antoy Objective 1 and 8, page 8/8

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms

