
CS350 ABET Objective 1 & 8

Analyze the running time and space complexity of 
algorithms.

Compare the rates of growth of functions.

Textbook Section 2.1, ~5%.

We outline a general framework for analyzing the 
efficiency of algorithms. Time efficiency indicates 
how fast an algorithm runs. 

Most algorithms are designed to work with inputs 
of arbitrary size. The efficiency of an algorithm is 
stated as a function relating the input size to the 
number of steps executed (or storage locations 
occupied) to completion.

Typical efficiency functions are compared and 
worst-, best-, and average-cases are defined.

© 2012, S. Antoy Objective 1 and 8, page 1/8

http://en.wikipedia.org/wiki/Algorithm


Efficiency of an Algorithm 

Concern about two resources:

1. Running time

2. Memory space

time efficiency/complexity

= time required to run

space efficiency/complexity

= space required to run

(space usually less crucial)

Requires resources depend on inputs.

Usually a larger input takes more resources.

E.g.: multiply two numbers.

E.g.: sorting a sequence.

© 2012, S. Antoy Objective 1 and 8, page 2/8



Input's size 

What do we measure or count?

It depends on the problem.

Must know/understand algorithm.

E.g.: multiply two numbers.

Number of digits.

Digits are multiplied with each other.

More digits. more multiplications.

E.g.: sorting a sequence.

Length (number of elements) of the sequence.

Elements are moved around.

More elements, more moves.

E.g.: evaluate a polynomial.

Degree of the  polynomial.

Multiply and add variables and/or coefficients.

Higher degree, more multiplications and additions.

© 2012, S. Antoy Objective 1 and 8, page 3/8



Unit for Measuring Time 

Some obvious choice:

1. Clock actual running time

2. Count all the operations executed

3. Count one particular basic operation

Last option is the standard choice (no time!)

Let:

• n = the input size

• C(n) = the count of basic operation

• cop = the execution time of basic op

• T(n) = running time

T (n)≈copC (n)

© 2012, S. Antoy Objective 1 and 8, page 4/8



Time of Basic Op

Typically cop is hard to guess and ignored.

What can you say if

1. double machine speed?

2. double input size?

1. Half the time.

2. Assume C (n)=3.3n2 (arbitrary):

T (2n)

T (n)
≈

copC (2n )

copC (n)
=

3.3(2n)
2

3.3n2 =4

In both cases cop does not matter.

© 2012, S. Antoy Objective 1 and 8, page 5/8



Orders of growth

© 2012, S. Antoy Objective 1 and 8, page 6/8



Worst, Best, Average Case

Basic operation: key comparison

Worst: n Key is not in array.

Best: 1 Key is in A[0].

Average: assume key found with probabilty p, 
and every index is equally likely:

Caver (n)=
p(n+1)

2
+n(1−p)

© 2012, S. Antoy Objective 1 and 8, page 7/8



References

Textbook Section 2.1

Web:

http://en.wikipedia.org/wiki/Analysis_o
f_algorithms

© 2012, S. Antoy Objective 1 and 8, page 8/8

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms

