CS350 ABET Objective 1 & 8

Analyze the running time and space complexity of algorithms.

Compare the rates of growth of functions.

Textbook Section 2.1, ~5%.

We outline a general framework for analyzing the efficiency of algorithms. Time efficiency indicates how fast an algorithm runs.

Most <u>algorithms</u> are designed to work with inputs of arbitrary size. The efficiency of an algorithm is stated as a function relating the input size to the number of steps executed (or storage locations occupied) to completion.

Typical efficiency functions are compared and worst-, best-, and average-cases are defined.

Efficiency of an Algorithm

Concern about two resources:

- 1. Running time
- 2. Memory space

time efficiency/complexity
 = time required to run
space efficiency/complexity
 = space required to run
(space usually less crucial)

Requires resources depend on inputs. Usually a larger input takes more resources.

E.g.: multiply two numbers.

E.g.: sorting a sequence.

Input's size

What do we measure or count? It depends on the problem. Must know/understand algorithm.

E.g.: multiply two numbers. Number of digits. Digits are multiplied with each other. More digits. more multiplications.

E.g.: sorting a sequence. Length (number of elements) of the sequence. Elements are moved around. More elements, more moves.

E.g.: evaluate a polynomial. Degree of the polynomial. Multiply and add variables and/or coefficients. Higher degree, more multiplications and additions.

Objective 1 and 8, page 3/8

Unit for Measuring Time

Some obvious choice:

- 1. Clock actual running time
- 2. Count all the operations executed
- 3. Count one particular basic operation

Last option is the standard choice (no time!)

Let:

- n = the input size
- C(n) = the count of basic operation
- cop = the execution time of basic op
- T(n) = running time

$$T(n) \approx c_{op} C(n)$$

Time of Basic Op

Typically C_{op} is hard to guess and ignored.

What can you say if

- 1. double machine speed?
- 2. double input size?
- 1. Half the time.
- 2. Assume $C(n)=3.3n^2$ (arbitrary):

$$\frac{T(2n)}{T(n)} \approx \frac{c_{op}C(2n)}{c_{op}C(n)} = \frac{3.3(2n)^2}{3.3n^2} = 4$$

In both cases C_{op} does not matter.

© 2012, S. Antoy

Objective 1 and 8, page 5/8

Orders of growth

n	log ₂ n	п	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^1	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	3.6·10 ⁶
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0.10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Worst, Best, Average Case

ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search //Input: An array A[0..n − 1] and a search key K //Output: The index of the first element in A that matches K // or −1 if there are no matching elements i ← 0 while i < n and A[i] ≠ K do i ← i + 1 if i < n return i else return −1

Basic operation: key comparison

Worst: n Key is not in array.

Best: 1 Key is in A[0].

Average: assume key found with probabilty p, and every index is equally likely:

$$C_{aver}(n) = \frac{p(n+1)}{2} + n(1-p)$$

References

Textbook Section 2.1

Web:

http://en.wikipedia.org/wiki/Analysis_o
f_algorithms